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Abstract In this paper, a robust sparse kernel density

estimation based on the reduced set density estimator is

proposed. The key idea is to induce randomness to the

plug-in estimation of weighting coefficients. The random

fluctuations can inhibit these small nonzero weighting

coefficients to cluster in regions of space with greater

probability mass. By sequential minimal optimization,

these coefficients are merged into a few larger weighting

coefficients. Experimental studies show that the proposed

model is superior to several related methods both in spar-

sity and accuracy of the estimation. Moreover, the pro-

posed density estimation is extensively validated on

novelty detection and binary classification.

Keywords Kernel density estimator � Reduced set

density estimator � Integrated squared error � Sequential

minimal optimization � Randomness

1 Introduction

Density estimation is widely used in statistical feature

models in computer vision and pattern recognition. Given a

set of training data of the features (e.g., intensity, shape,

texture), the underlying probability density can be described

by a simple or more complicated distribution function.

Uniform distribution [1], Gaussian distribution [2] or non-

parametric functional [3] were considered in the past. By

contrast, without the assumption that the forms of the

underlying densities are known, a kernel density estimator

(KDE) (also called the Parzen window estimate) is an effi-

cient nonparametric approach to model nonlinear distribu-

tions of training data. In this technique the density function is

estimated by a sum of kernel functions. The kernel number is

equal to the size of the training data. When the training data

set is very large, the KDE suffers from high computational

cost and becomes intractable for subsequent use. In addition,

the feature space is complex, noisy and most often not all the

training data obey the same parametric model. This leads to a

need for robust estimators to handle data in the presence of

severe contaminations, i.e., outliers. In this work, we focus

on the problem of how to employ a small percentage of the

available data sample to provide a robust and highly accurate

density estimator.

KDE is frequently used for various computer vision

problems, such as mean shift [4], background subtraction [5],

object tracking [6], image segmentation [3, 7] and classifi-

cation [8]. Even though there have been several attempts to

improve the computational efficiency [9, 10], its very high
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memory requirements and computational complexity inhibit

the use of kernel density estimation in real applications. In

[11], the support vector approach was used to obtain an

estimate from the training data in the form of a mixture of

densities. This approach has no additional free parameters.

However, for large sample sizes, it requires Oðn3Þ optimi-

zation routines. The reduced set density estimator (RSDE)

was proposed by Girolami and He [12] to solve the above

problem by providing a KDE which employs a small subset

of the available training data. It is optimal in the integrated

squared error (ISE) between the unknown true density and

the RSDE. In contrast to the support vector approach, the

RSDE only requires Oðn2Þ optimization routines to provide

similar levels of performance. In order to increase the spar-

sity further in the weight coefficients, Chen et al. [13] con-

structed a sparse kernel density estimate using an orthogonal

forward regression technique using the classical Parzen

window estimate as the desired response. In addition, sparse

kernel density estimate has gained attention toward the

integration of explicit sparse constraint to the weight coef-

ficients as regularization term [14, 15]. These methods create

a trade-off between the sparsity and the quality of the density

estimation. They can produce sparsity in the samples at the

cost of a slight reduction in the quality of the estimates.

Instead of creating a new probability density estimator,

we try to generalize the RSDE to provide more satisfying

performance. In this paper, our work focuses on the RSDE

based on KDE with Gaussian kernel. In RSDE, there exist

many nonzero coherent weighting coefficients which are

clustered in regions of space with greater probability mass,

specifically for low dimensional data. In order to break the

relationship between coherent coefficients, our idea is to

induce randomness to the plug-in estimation of weighting

coefficients. By means of sequential minimal optimization

(SMO), these coherent weighting coefficients can be

replaced approximately by one or several larger incoherent

weighting coefficients. In contrast to the RSDE, the pro-

posed model can improve the sparsity and accuracy of the

density estimation. Moreover, this technique is robust to

outliers by analysis in feature space.

This paper is organized as follows. In Sect. 2 the RSDE

is reviewed briefly, and in Sect. 3 the proposed robust

sparse kernel density estimation by random fluctuations for

coherent coefficients is presented. Experimental results are

provided in Sect. 4, and the conclusions in Sect. 5.

2 Reduced set density estimator

Given n data samples x1; x2; . . .; xn 2 R‘, each have a

weight xi� 0;
Pn

i¼1 xi ¼ 1, and the distribution density

can be estimated by a KDE with weight coefficients,

f̂ ðx; xÞ ¼
Xn

i¼1

xikrðx; xiÞ; ð1Þ

where krðx; xiÞ is a kernel function (satisfying non-

negativity and normalization conditions), and r is a

parameter which controls the kernel width. The most

commonly used kernel function is a Gaussian kernel

krðx; xiÞ ¼ ð2pr2Þ�‘
2exp � x� xik k2

2r2

( )

ð2Þ

Girolami and He [12] estimated KDE by minimizing

ISE between the true density f ðxÞ and the estimated density

f̂ ðx; xÞ, which was defined as

ISEðxÞ ¼
Z

f ðxÞ � f̂ ðx; xÞ
�
�

�
�2dx

¼
Z

f̂ 2ðx; xÞdx� 2

Z

f̂ ðx; xÞf ðxÞdx

þ
Z

f 2ðxÞdx ð3Þ

Notice that the first term is

Z

f̂ 2ðx; xÞdx ¼
Z Xn

i¼1

xikrðx; xiÞ
 !2

dx

¼
Xn

i¼1

Xn

j¼1

xixj

Z

krðx; xiÞkrðx; xjÞdx

¼ xTQx

Here, x ¼ ½x1;x2; . . .;xn�T and Q ¼
R

krðx; xiÞkrðx; xjÞdx

is a n� n matrix whose elements are defined as

Qij ¼ k ffiffi2
p

rðxi; xjÞ. Since we do not know the true f ðxÞ, we

need to estimate the second term, which is denoted as MðxÞ.
An unbiased estimate of it for a KDE can be written as

MðxÞ ¼
Z

f̂ ðx; xÞf ðxÞdx

� 1

n

Xn

i¼1

Xn

j¼1

xikrðxi; xjÞ ¼
Xn

i¼1

xi
1

n

Xn

j¼1

krðxi; xjÞ

¼
Xn

i¼1

xidi ¼ xTD

Here, the KDE for the point xi is denoted as

di ¼ 1
n

Pn
j¼1 krðxi; xjÞ, and D ¼ ½d1; d2; . . .; dn�T. Notice

that D ¼ K1n, where K is the Gram matrix whose

elements are defined as Kij ¼ krðxi; xjÞ, and 1n is the n�
1 vector whose elements are all 1

n
. The last term in (3) can

been dropped due to its independence of x. Then the

minimum ISE can be written as follows

x̂ ¼ arg min
x

ISEðxÞ ¼ 1

2
xTQx� xTD

n o

s:t: xT1 ¼ 1 and xi� 0 8i
ð4Þ
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Observe that the Q is positive semi-definite. Thus, the

object function is convex with respect to x, and can be

solved using SMO [12, 16].

3 Robust sparse kernel density estimation

The RSDE was shown in [12] to be able to provide a sparse

representation in the weighting coefficients. The authors

observed that the weights obtained from minimizing the

estimated ISE were sparse. This is because the right hand term

xTD in (4) is a convex combination of positive numbers. Such

a convex combination is maximized by assigning a unit

weight to the largest, and setting the rest to zero. SMO is a

simple algorithm that can quickly solve the quadratic pro-

gramming (QP) optimization problem (4), by breaking the

large QP problem into a series of smallest possible QP prob-

lems. The optimal solution should satisfy the following rules

(R1) If xi ¼ 0;xj [ 0 then Ii� Ij.

(R2) If xi;xj [ 0 then Ii ¼ Ij.

Here, Ii ¼
Pn

j¼1 Qijxj � di. Clearly, if more points satisfy

rule (R1), then we can obtain a more sparse solution. In rule

(R2), xi and xj are positive and updated only when Ii 6¼ Ij.

Therefore, we hope to reduce the number of points which

satisfy rule (R2) in order to increase the sparsity further in the

weight coefficients. Due to the convex constraint, the coef-

ficients obtained from SMO are naturally sparse. If we sup-

pose that the precision of numbers is sufficient (Ii 6¼ Ij; i 6¼ j),

then we will finally obtain only one nonzero weighting

coefficient in x by using SMO. It implies that the true density

f ðxÞ is estimated by only one kernel function with a nonzero

weight coefficient xk, f̂ ðx; xÞ ¼ xkkrðx; xkÞ. Obviously, this

is a time-consuming method to enforce sparsity and the

resulting density estimator is inaccurate. Even when the

precision of numbers is increased, the RSDE allows for many

relatively close points and their corresponding weighting

coefficients are small and nonzero in the optimal solution. As

can be seen easily in Fig. 1a, these nonzero weighting

coefficients are clustered in regions of space with greater

probability mass. If these points in each cluster could be

replaced approximately by one or several points with larger

weighting coefficients, then this can improve the sparsity

further in the weight coefficients.

For the Gaussian kernel, note that there exists a feature

mapping functional /r : R‘ ! R
Lð‘\LÞ. It maps the fea-

ture to a high dimensional feature space: x! /rðxÞ, such

that Kij ¼ krðxi; xjÞ ¼ /rðxiÞ;/rðxjÞ
� �

[17]. Then the KDE

with Gaussian kernel can be represented as the inner product

between a mapped test point and the centroid of mapped

training points in kernel feature space [18]. We have

di ¼ 1
n

Pn
k¼1 krðxi; xkÞ ¼ /rðxiÞ; 1

n

Pn
k¼1 /rðxkÞ

� �
. Here,

1
n

Pn
k¼1 /rðxkÞ can be treated as nonzero constants which

clearly do not depend upon the value xi. Similarly, there

exists / ffiffi
2
p

r such that Qij ¼ k ffiffi2
p

rðxi; xjÞ ¼ / ffiffi
2
p

rðxiÞ;
D

/ ffiffi
2
p

rðxjÞi and Hi ¼
Pn

k¼1 Qikxk ¼ / ffiffi
2
p

rðxiÞ;
Pn

k¼1 xk

D

/ ffiffi
2
p

rðxkÞi. By analysis in feature space, we have

Ii � Ij ¼ / ffiffi
2
p

rðxiÞ � / ffiffi
2
p

rðxjÞ;
Xn

k¼1

xk/ ffiffi
2
p

rðxkÞ
* +

� /rðxiÞ � /rðxjÞ;
1

n

Xn

k¼1

/rðxkÞ
* +

If di ¼ dj, then we have /rðxiÞ � /rðxjÞ; 1
n

Pn
k¼1 /r

�

ðxkÞi ¼ 0, and /rðxiÞ ¼ /rðxjÞ. Thus, / ffiffi
2
p

rðxiÞ ¼ / ffiffi
2
p

r

ðxjÞ, and Ii ¼ Ij.

Fig. 1 a The true density and the RSDE; each of the 87 nonzero

weighting coefficients is placed at the appropriate sample data point

and the value is denoted by the length of the vertical line. The

corresponding L1 error and L2 error between them are 0.0147 and

4.54 9 10-4. b The true density and the RSKDE; each of the 20

nonzero weighting coefficients is placed at the appropriate sample

data point. The corresponding L1 error and L2 error between them are

0.014 and 3.71 9 10-4
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In fact, di; dj are unequal but may be very close. Assume

that di is very close to dj, then their feature points /rðxiÞ
and /rðxjÞ are also very close. It implies that it is easy to

meet the condition Ii ¼ Ij in the rule (R2). In other words,

if di; dj are close enough, and xi is nonzero, then xj is more

likely to be nonzero. Hence, there are two cases for di and

dj in the rule (R2): (a) jdi � djj\d (d is small enough),

(b) jdi � djj � d. If xi and xj satisfy case (a) in rule (R2),

then xi;xj [ 0 are called coherent coefficients.

3.1 Random perturbation of coherent coefficients

In this section, we hope to break the relationship between

coherent coefficients, which are clustered in regions of space

with greater probability mass. A natural approach is to

induce randomness to D, in order to produce incoherence for

most of di 2 D. Based on the existing structure of D, a part of

values that stay very close are added a small random values,

while keeping the rest unchanged. The randomness can make

all these elements in each cluster stay apart from each

other. Assume that there are n0 coherent coefficients

x1; . . .;xn0
[ 0, and the corresponding d1; . . .; dn0

are close

enough. After inducing random values to di, the relationship

I1 ¼ � � � ¼ In0
in rule (R2) does not exist. Clearly, case (a) in

rule (R2) would be reduced and a part of them would be

reclassified to rule (R1). The weight coefficients in the

optimal solution could be made more sparse. Assume that all

the elements of D are collected into a set X. Then we have the

following definitions to partition the set X.

Definition 1 Coherent relation � is defined as:

di � dj , dib cm¼ dj

� �
m
; di; dj 2 X.

There are many methods to describe the coherent rela-

tion. Here, considering that di is a positive decimal number,

the truncated m-digit approximation to it is the number

dib cm obtained by simply discarding all digits beyond the

mth. Hence, we have di � dib cm
�
�

�
�\10�m. Clearly, the

coherent relation di � dj is an equivalence relation that

identifies those numbers of X that stay very close. More-

over, this relationship gives rise to a partition of X into

equivalence classes.

Definition 2 Coherent set is an equivalence class defined

as: Xð~diÞ ¼ djjðdj 2 XÞ ^ ð~di � djÞ
� 	

. Here, ~di is called a

generator. The partition induced by the coherent relation is

given by: PðX;�Þ ¼ X1; . . .;Xcf g; c� Xj j, where Xj j is the

cardinality of X, and X1j j � X2j j � � � � � Xcj j. Let ~di be the

corresponding generators of Xi, i ¼ 1; 2; . . .; c, and they

form a set XB ¼ ~d1; ~d2; . . .; ~dc

� 	
. Subsequently, we define

XN ¼ X� XB, and obtain the corresponding partition

PðXN ;�Þ ¼ XN
1 ;X

N
2 ; . . .;XN

t

� 	
, where XN

1

�
�

�
�� XN

2

�
�

�
�� � � �

� XN
t

�
�

�
�. Obviously, t\c and XN

i

�
�

�
� ¼ Xij j � 1; 8i ¼ 1; 2;

. . .; t. Here, we select an appropriate m or magnify the values

of X for partition such that XNj j\ XBj j\n.

Definition 3 /rðxiÞ and /rðxjÞ are coherent feature

points, such that /rðxiÞ � /rðxjÞ , di � dj. Since one to

one correspondence between di and /rðxiÞ, we define the

corresponding feature sets H ¼ /rðx1Þ;/rðx2Þ; . . .;/rf
ðxnÞg, HB;HN ¼ H1;H2; . . .;Htf g of X;XB;XN .

Given a coherent relation �, the set X is divided into XB

and XN (Fig. 2). Our method is to induce randomness to XN ,

and keep XB unchanged. For any d 2 XN
i ; i ¼ 1; 2; . . .; t, we

obtain �XN
i by setting d	 ¼ d þ kir, where r is a random value

from a uniform distribution on the interval [0, 1], and ki is a

scaling parameter for XN
i . Here, k1� k2� � � � kt. In our

experiments, a simple method is used to define these scaling

parameters, ki ¼ di � dib cm

 �

XN
i

�
�

�
�. Then, X	N ¼

�XN
1 ;

�XN
2 ; . . .; �XN

t

� 	
is obtained and XB;XN ;X

	
N can be writ-

ten in matrix form as DB;DN ;D
	
N . After rearrangement, the

proposed ISE approximation model can be minimized as

x̂B x̂N½ � ¼ argmin
xB;xN

ISE	ðxB;xNÞf

¼ 1

2
xB xN½ �

QBB QBN

QNB QNN

� 

xB

xN

� 


� xB xN½ �
DB

D	N

� 
�

;

ð5Þ

which is called the robust sparse kernel density estimation

(RSKDE). In contrast to the RSDE, we use D	N instead of

DN , D	N ¼ DN þ R. Here, R ¼ R1;R2; . . .;Rbt
½ �T¼ k1r1;½

. . .; k1rb1
; k2rb1þ1; . . .; k2rb2

; . . .; ktrbt
�T; where bj ¼

P j
i¼1

�XN
i

�
�

�
�; j ¼ 1; 2; . . .; t and ri is a random value from a uni-

form distribution on the interval ½0; 1�; i ¼ 1; 2; . . .; bt.

Fig. 2 A diagram of set partition
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Observe that the object function (5) stays convex with

respect to x, and SMO is also used to solve this problem. Set

partitioning is easy to implement in computer program. Our

implementation approach is summarized in Algorithm 1.

Specially, the proposed model can be viewed as a sparse

KDE based on a random weighted L1 penalty. Then it can

be also written as

x̂ ¼ arg min
x

ISEðxÞ � b Pxk k1

s:t: xT1 ¼ 1 and xi� 0 8i:
ð6Þ

Here P ¼ 0 R½ �T, where 0 is a ðn� btÞ � 1 column

vector of zeros, and b[ 0 is the regularization parameter.

3.2 Analysis of RSKDE

In the RSDE, an unbiased estimate of MðxÞ in Sect. 2 can

be obtained as a xi weighted sum of KDE di of each point

xi. However, the di can be expressed as the inner product

between a mapped test point and the mean of mapped

training points in kernel feature space, di ¼ 1
n

Pn
j¼1

krðxi; xjÞ ¼ /rðxiÞ; 1
n

Pn
j¼1 /rðxjÞ

D E
. As we know, the

mean estimator ĥ ¼ 1
n

Pn
j¼1 /rðxjÞ can be drastically

influenced by outliers. The following proposition shows

that the proposed algorithm improves performance of the

density estimate.

Proposition 1 In contrast to the RSDE, a small increment

of di 2 XN can make the proposed model more robust

against outliers, and improve the quality of the density

estimates.

Proof The RSDE uses mean estimation for KDE, which

is not robust against outliers in the data. In our case, the

larger the value of Xkj j, k ¼ 1; . . .; t, the more coherent

feature points in Hk. It implies that /rðxjÞ 2 Hk is more

unlikely to be an outlier. To reduce the influence of

possible outliers among the training data, we would like to

set small weight values for outliers. Instead of giving the

concrete implement algorithm, a feasible robust estimate

for the sample mean is described below just for the proof.

ĥ ¼
X

/rðxjÞ2Hk

a0/rðxjÞ þ
X

/rðxjÞ2HN�Hk

1

n
/rðxjÞ

þ
X

/rðxjÞ2HB

a1/rðxjÞ

where a0� 1
n
� a1 [ 0, and a0 Hkj j þ 1

n
HN �Hkj j þ a1 HBj

j ¼ 1. It can be seen that the influence from /rðxiÞ 2 HB is

decreased. If /rðxiÞ 2 Hk, then we have d	i ¼

/rðxiÞ; ĥ
D E

¼ /rðxiÞ;
P

/rðxjÞ2Hk

a0/rðxjÞ þ
P

/rðxjÞ2HN�Hk

1
n

*

/rðxjÞ þ
P

/rðxjÞ2HB

a1/rðxjÞi[ /rðxiÞ; 1
n

Pn
j¼1 /rðxjÞ

D E
.

Hence, d	i [ di. There exists a small enough ki, such that

d	i ¼ di þ kiri [ di. On the contrary, we suppose that d	i is

a little larger than di ¼ /rðxiÞ; 1
n

Pn
j¼1 /rðxjÞ

D E
, then d	i ¼

/rðxiÞ;
Pn

j¼1 aj/rðxjÞ
D E

satisfies ai [ 1
n
. Therefore, a

small increment of di 2 XN makes the proposed model

more robust against outliers.

In addition, suppose that x1 ¼ argminxISEðxÞ and

x2 ¼ argminxISE	ðxÞ, the density estimation based on x2

is more accurate than x1, since ISEðx1Þ� ISE	ðx1Þ�
ISE	ðx2Þ: h

The matrix DB D	N½ �T defined in (5) can be interpreted

as the more robust estimation of MðxÞ. It can be written in

the form M	ðxÞ ¼
P

di2XB
xidi þ

P
di2XN

xiðdi þ RiÞ. In

this case, the error of estimation is bounded as follows:

MðxÞ �M	ðxÞj j ¼
P

di2XN
xiRi

�
�
�

�
�
�\k1:

As mentioned previously, the RSDE involves Gaussian

kernels of bandwidth
ffiffiffi
2
p

r and r, which occurs in Q and D.

The normalizing constants for these kernels are ð4pr2Þ�‘=2

and ð2pr2Þ�‘=2
, respectively. As can be seen, the ratio

between them is 2�‘=2. If the dimension ‘ is large enough,

the linear term D dominates the quadratic term Q. It

implies that, in high dimensional data, it is hard to find the

coherent coefficients. In other words, the RSDE has already

yielded a more sparse solution on most high dimensional

data. There are no significant difference between the

RSKDE and RSDE. This agrees with our intuition that the

representation of signals is easier in lower dimensions. For

high dimensional data, many of the dimensions are often

irrelevant. These irrelevant dimensions can hide clusters in

noisy data. It is common for all of the training data to be

nearly equidistant from each other in very high dimensions

[19]. Therefore, the sparsity for lower dimensional data is

much more than the sparsity achieved in the case of higher

dimensional data for similar quality of estimates.

Algorithm 1 Robust sparse kernel density estimation

Step 1: Choose appropriate m, and generate a random vector

r1; . . .; rn½ �; ri 2 ½0; 1�
Step 2: Compute Q and D ¼ ½d1; d2; . . .; dn�T, where Qij ¼

k ffiffi2
p

rðxi; xjÞ and di ¼ 1
n

Pn
j¼1 krðxi; xjÞ

Step 3: Compute dib cm, i ¼ 1; . . .; n, and indicate DB and DN

Step 4: Compute ki, where ki ¼
0; di 2 DB

di � dib cm

 �

XN
i

�
�

�
�; di 2 DN

�

Step 5: Compute D	 ¼ Dþ R, where Ri ¼ kiri

Step 6: Solve x̂ ¼ SMOðQ;D	Þ

Pattern Anal Applic (2015) 18:367–375 371
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4 Experimental results

We implement the proposed RSKDE in MATLAB based on

the KDE Toolbox (written by Ihler and Mandel [20]) and

evaluate the performance in density estimation. Because of

the good performance of RSKDE, it is extensively validated

on novelty detection and binary classification.

4.1 Density estimation

We experiment with one-dimensional data which is drawn

from a heavily skewed distribution defined as

p1ðxÞ ¼ 1
8

P7
i¼0 gðx; li;riÞ, where ri ¼ ð2=3Þi and li ¼

3ðri � 1Þ [21]. Here, gðx; l; rÞ is a univariate Gaussian

distribution with mean l and variance r. Data samples of n

are randomly drawn from the distribution to construct

KDE. The width of the kernel is found by Rule of Thumb

[22], and a separate test data set of 10,000 samples is used

to calculate the L1 error and L2 error for the resulting

estimate which are defined in [13]. The parameter m is set

to 4. For n ¼ 500, a typical result is shown in Fig. 1b. As

we can see, the nonzero weighting coefficients are not

concentrated in regions of space with greater probability

mass in contrast to Fig. 1a. In addition, there exist one or

several points with larger weighting coefficients to repre-

sent high probability mass. Therefore, the RSKDE achieves

a much sparser estimator than the RSDE estimator.

Moreover, the resulting estimate is much closer to the true

density. To demonstrate the effectiveness and robustness,

we test our model with several recent methods: RSDE, KD-

tree based density reduction method of Ihler et al. [20],

sparse kernel density estimates (SKDE) with L0 penalty

[14]. The experiment is repeated 200 times for different

sample sizes. The remaining data (percentage of sample

size) are shown in Fig. 3a. The average L2 error

(mean ± SD) between the true density and respective

density estimators against sample size are shown in

Fig. 3b. From the results, it is clear that the proposed

method provides a significant improvement both in sparsity

and accuracy under the same experimental conditions.

To test the robust performance, we add uncorrelated

outliers from a random distribution over [-4, 4]. For

n = 650 (500 data samples are generated from the previous

probability density function, and 150 outliers), a typical

result is shown in Fig. 4. The L2 error for the RSKDE is

only slightly superior to the RSDE, but the RSKDE has the

remarkable advantage for the sparsity. Only 20 nonzero

weighting coefficients are need for the RSKDE, while 114

nonzero weighting coefficients are required for the RSDE.

To further compare the results of the proposed algo-

rithm, the experiment is repeated 200 times with 500 fixed

data samples and different numbers of outliers. The

average L1 error (mean ± SD), L2 error (mean ± SD) and

the number of nonzero weighting coefficients against

sample size (data sample size ? outlier size) are shown in

Table 1. After adding outliers to the original data set, it is

clear from the results that the RSKDE we have developed

is always better than the RSDE both in sparsity and

accuracy of the estimates. Moreover, the number of non-

zero weighting coefficients provided by the proposed

model remains fairly consistent, when the number of out-

liers is increased.

4.2 Novelty detection

Novelty detection is the identification of new or unknown

data that a machine learning system is not aware of during

training. Novelty detection is one-class classification. The

known data form one class, and a novelty-detection method

tries to identify outliers that differ from the distribution of

ordinary data. The RSKDE for novelty detection is tested

on real-world data sets: Banana and Phoneme. Both data

sets are available at http://sci2s.ugr.es/keel. The Banana

dataset contains a total of 5,300 samples over two classes.

The novelty detectors are trained on the first 400 samples in

the first class. The remaining samples are used for testing.

The Phoneme dataset has two classes and 5,404 samples.

The aim of the dataset is to distinguish between nasal (class

Fig. 3 a Plot of the remaining data (percentage of sample size) for

four related methods. b L2 error between the true density and

respective density estimators against sample size over 200 runs
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0) and oral sounds (class 1). There are five features. The

novelty detectors are trained on the first 730 samples in

class 0. The remaining samples are used for testing.

The density estimator f̂ ðx; x; rÞ obtained from the

training set give us a quantitative measure of the degree of

novelty for each test sample. This is used to reject samples

where the estimate f̂ ðx; x; rÞ\q for some threshold q [23].

Thus, any sample where the likelihood f̂ ðx; x; rÞ is below

some threshold is considered to be novel. It implies that all

test samples are classified into one of two classes: those

which are similar to the training data, and those which are

novel. Therefore, we adopt the standard definitions [24]

used in binary classification to compare the results of

RSKDE with existing algorithms. TP and TN stand for the

number of true positives and true negatives, respectively.

FP and FN represent, respectively, the number of mis-

classified positive and negative cases. In two-class prob-

lems, the accuracy rate on the positives, called sensitivity,

is defined as TP/(TP ? FN), whereas the accuracy rate on

the negative class, also known as specificity, is TN/

(TN ? FP). Classification accuracy is (TP ? TN)/N,

where N = TP ? TN ? FP ? FP is the total number of

Fig. 4 a The true density and the RSDE; each of the 114 nonzero

weighting coefficients is placed at the appropriate sample data point.

The corresponding L1 error and L2 error between them are 0.0296

and 0.00197. b The true density and the RSKDE; each of the 20

nonzero weighting coefficients is placed at the appropriate sample

data point. The corresponding L1 error and L2 error between them

are 0.0291 and 0.00192

Table 1 L1 error and L2 error between the true density and respective density estimators against sample size over 200 runs

Sample size 500 ? 50 500 ? 100 500 ? 150 500 ? 200 500 ? 250

KDE kernel no. 550 ± 0.0 600 ± 0.0 650 ± 0.0 700 ± 0.0 750 ± 0.0

KDE L1 error 9 10-2 2.85 ± 0.409 3.66 ± 0.382 4.41 ± 0.436 5.07 ± 0.364 5.66 ± 0.418

KDE L2 error 9 10-3 2.63 ± 0.718 4.04 ± 0.705 5.62 ± 0.879 7.05 ± 0.783 8.42 ± 0.894

RSDE kernel no. 80.5 ± 33.0 79.5 ± 32.3 76.3 ± 27.0 77.6 ± 29.5 82.2 ± 29.2

RSDE L1 error 9 10-2 1.89 ± 0.394 2.59 ± 0.367 3.26 ± 0.422 3.92 ± 0.361 4.52 ± 0.425

RSDE L2 error 9 10-3 0.756 ± 0.375 1.34 ± 0.421 2.23 ± 0.591 3.2 ± 0.625 4.2 ± 0.734

KD-tree kernel no. 39.0 ± 3.60 37.1 ± 3.15 34.7 ± 2.89 33.6 ± 2.54 32.0 ± 2.22

KD-tree L1 error 9 10-2 2.85 ± 0.409 3.66 ± 0.381 4.41 ± 0.436 5.08 ± 0.363 5.67 ± 0.418

KD-tree L2 error 9 10-3 2.63 ± 0.718 4.05 ± 0.705 5.62 ± 0.880 7.05 ± 0.782 8.43 ± 0.893

GMM kernel no. 30 ± 0.0 30 ± 0.0 30 ± 0.0 30 ± 0.0 30 ± 0.0

GMM L1 error 9 10-2 4.81 ± 0.378 4.61 ± 0.314 5.44 ± 0.363 5.77 ± 0.305 5.85 ± 0.327

GMM L2 error 9 10-3 7.92 ± 1.72 5.96 ± 1.20 8.45 ± 1.50 7.81 ± 1.22 7.75 ± 0.968

SKDE kernel no. 27.5 ± 3.71 23.5 ± 4.24 24.7 ± 3.21 18.5 ± 6.07 21.0 ± 4.62

SKDE L1 error 9 10-2 2.07 ± 0.406 3.24 ± 0.350 3.52 ± 0.374 4.91 ± 0.462 5.79 ± 0.514

SKDE L2 error 9 10-3 1.13 ± 0.658 2.89 ± 0.613 3.17 ± 0.770 5.76 ± 0.839 7.55 ± 0.910

RSKDE kernel no. 21.7 ± 5.39 19.9 ± 4.83 17.8 ± 3.98 16.6 ± 3.7 15.3 ± 3.27

RSKDE L1 error 9 10-2 1.82 ± 0.397 2.53 ± 0.382 3.22 ± 0.436 3.88 ± 0.375 4.5 ± 0.444

RSKDE L2 error 9 10-3 0.705 ± 0.355 1.29 ± 0.418 2.19 ± 0.587 3.17 ± 0.617 4.19 ± 0.739
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cases. Table 2 compares qualitatively RSKDE for novelty

detection with other algorithms. Here, N1 is the number of

training data, and N2 is the number of test data. The like-

lihood cross-validation is employed in selecting the kernel

width for fair comparison. In the k-nearest neighbor algo-

rithm, k is set to 3. The weighting coefficient x of the

RSKDE is obtained by optimizing (5) over training sam-

ples. We can see that in both datasets the RSKDE out-

performs the KDE and RSDE.

4.3 Binary classification

This section further evaluates the RSKDE’s performance

for two-class classification problem. The experiments are

carried out on the datasets that were used in novelty

detection. The number of training samples is 1,000. The

remaining samples are used for testing. There are ten

randomly permuted partitions of each dataset into training

and test sets. We first estimate the two conditional density

functions f̂ ðx; x; rjC0Þ and f̂ ðx; x; rjC1Þ for class C0 and

C1 from the training data, and then apply the Bayes’ rule to

the test data set and calculate the corresponding accuracy

(ACC).

if f̂ ðx; x; rjC0Þ � f̂ ðx; x; rjC1Þ; x 2 C0

else; x 2 C1

�

ð7Þ

During training, the kernel width r is tuned by

likelihood cross-validation, and the weighting coefficient

x is obtained by optimizing (5) over training samples.

Table 3 compares the performance of the six related

methods. As can be seen, the test mean accuracy for the

RSKDE is 0.898 which is only slightly superior to 0.894 of

the KDE, but the RSKDE has the remarkable advantage for

the test complexity. Only 187 mean samples in the reduced

set are needed for the RSKDE classifier while all 1,000

training samples are required for KDE classifier.

Meanwhile, on average the RSKDE classifier reduces test

computational costs by *80 %. For high dimensional data,

results show no significant difference between the RSKDE

and RSDE.

Table 3 Performance of the

six related methods
Dataset (N1, N2, l) Method Mean

accuracy

Mean

sensitivity

Mean

specificity

Mean no.

points

Banana (1,000, 4,300, 2) KDE 0.894 0.938 0.840 1,000

Banana (1,000, 4,300, 2) RSDE 0.896 0.940 0.842 274.1

Banana (1,000, 4,300, 2) GMM 0.896 0.886 0.908 5

Banana (1,000, 4,300, 2) k-NN 0.899 0.937 0.853 1,000

Banana (1,000, 4,300, 2) SVM 0.864 0.873 0.855 840.5

Banana (1,000, 4,300, 2) RSKDE 0.898 0.949 0.836 187.8

Phoneme (1,000, 4,404, 5) KDE 0.821 0.811 0.846 1,000

Phoneme (1,000, 4,404, 5) RSDE 0.798 0.780 0.841 266.3

Phoneme (1,000, 4,404, 5) GMM 0.772 0.837 0.621 5

Phoneme (1,000, 4,404, 5) k-NN 0.838 0.925 0.635 1,000

Phoneme (1,000, 4,404, 5) SVM 0.788 0.880 0.573 524.5

Phoneme (1,000, 4,404, 5) RSKDE 0.799 0.783 0.836 252.6

Table 2 Performance of the

kernel density estimation

(KDE), reduced set density

estimation (RSDE) [25],

Gaussian mixture model

(GMM) [26], k-nearest neighbor

algorithm (k-NN), one-class

support vector machines SVM

[27] and the proposed RSKDE

Dataset (N1, N2, l) Method Accuracy Sensitivity Specificity No. points

Banana (400, 4,900, 2) KDE 0.800 0.902 0.649 400

Banana (400, 4,900, 2) RSDE 0.807 0.909 0.656 100

Banana (400, 4,900, 2) GMM 0.821 0.911 0.695 5

Banana (400, 4,900, 2) k-NN 0.805 0.788 0.830 400

Banana (400, 4,900, 2) SVM 0.818 0.796 0.849 226

Banana (400, 4,900, 2) RSKDE 0.819 0.922 0.667 70

Phoneme (730, 4,674, 5) KDE 0.725 0.910 0.364 730

Phoneme (730, 4,674, 5) RSDE 0.719 0.727 0.702 191

Phoneme (730, 4,674, 5) GMM 0.712 0.880 0.385 5

Phoneme (730, 4,674, 5) k-NN 0.741 0.879 0.472 730

Phoneme (730, 4,674, 5) SVM 0.676 0.550 0.922 527

Phoneme (730, 4,674, 5) RSKDE 0.728 0.704 0.774 96
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5 Conclusion

In this paper, a novel robust sparse kernel density estima-

tion based on the RSDE is presented. Instead of sparse

representation by regularization term, the proposed model

induces randomness to the plug-in estimation of the RSDE

and yield a more sparse representation in the weighting

coefficients. By means of SMO, the randomness can make

those nonzero and small weighting coefficients get together

into one or several points with larger weighting coeffi-

cients. The proposed model shows good performance both

in sparsity and accuracy of the estimates for the low

dimensional data. Numerical experiments show promising

results.
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