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Abstract This paper presents a novel ensemble classifier

system designed to process data streams featuring occa-

sional changes in their characteristics (concept drift). The

ensemble is especially effective when the concepts reap-

pear (recurring context). The system collects information

on emerging contexts in a pool of elementary classifiers

trained on subsequent data chunks. The pool is updated

only when concept drift is detected. In contrast to other

ensemble solutions, classifiers are not removed from the

pool, and therefore, knowledge of past contexts is pre-

served for future use. To ensure high classification per-

formance, the number of classifiers contributing to

decision-making is fixed and limited. Only selected ele-

ments from the pool can join the decision-making ensem-

ble. The process of selecting classifiers and adjusting their

weights is realized by an evolutionary-based optimization

algorithm that aims to minimize the system misclassifi-

cation rate. Performance of the system is evaluated through

a series of experiments presenting some key features of the

system.

Keywords Concept drift � Multiple classifier systems

1 Introduction

In the early days of machine learning research on classifier

systems, it was assumed that the environment is stable, i.e.,

prior class probability and the conditional distribution of

objects in classes do not change over time. However, a

recently emerged trend focuses on the range of applications

in data stream mining [1] where some changes in data

characteristics occur [2, 3]. One of the most well-known

examples of this problem is SPAM detection and filtering.

User perceptions of what is considered to be SPAM and the

attack methods used, have evolved over time. Other well-

known applications address problems of fraud detection

[4], credit application [4], and market analysis [5].

The possibility of change naturally makes static classi-

fication systems irrelevant [6, 7]. To counteract this nega-

tive effect, an appropriate response is required, which

should be based on continuous monitoring of incoming

data and applying amendments to the systems. Knowledge

of the nature of the change can help design an appropriate

algorithm.

First, it is important to identify the places where drift

may occur. From a probabilistic point of view, the changes

can relate to any of the following parameters [8]:

1. Prior probability of classes, where the proportion of

each class in the population changes (or new classes

emerge [9]);

2. Conditional distribution of objects in classes, where

values of the object features drift in the feature space;

3. Posterior probability that a given object belongs to a

particular class.

Change in the first case is called virtual concept drift,

while that in the other cases is called real concept drift [10].

Typically, drift can affect all these parameters.

Considering the possible reaction to drift, one of the

main questions is how to effectively recognize the moment

when drift appears. This question is crucial because a fast

response to change helps avoid deterioration of the clas-

sifier performance [11, 12]. This problem is not trivial, as a
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drift detector must be able to distinguish precisely between

drift and fluctuations caused by noise [2, 13].

Another important factor, which determines the possible

reaction to drift, is the way in which changes appear. A

well-known taxonomy in this regard lists the following

types of drift [14]: (1) sudden, (2) gradual, and (3) incre-

mental concept drift. In the first case, essential changes

appear suddenly at a particular moment in time (e.g.,

changes in accent for speech recognition). In the other two

cases, changes occur in an evolutionary manner and are

spread over time (e.g., seasonal characteristics of morbid-

ity). Knowledge of the type of drift allows selection of the

appropriate scenarios for system adjustment. For example,

replacing an old classifier with a new one, which has been

trained on recent data, could be an effective strategy when

abrupt drift affects the data. On the other hand, when

changes are spread over time, evolutionary adaptation of

the classifier may be a better alternative.

It is usually assumed that changes are not reversible, i.e.,

although the current state is not permanent and further drift

can appear, the past context does not occur again. This fact

allows the possible application of a different kind of for-

getting mechanism, which can relate either to instances that

arrive in the data stream, or to classifiers that are included

in the ensemble system [15, 16]. However, yet another

category of drift has been identified in the literature, Called

recurring context, it relates to the situation when past

contexts re-emerge. The moment of their recurrence and

the sequence thereof are unknown [2, 17]. The prospect of

context reappearance makes the forgetting strategy useless.

If there is no knowledge of previous contexts, re-emer-

gence of a past context is treated in the same manner as the

emergence of a new one. On the other hand, reference to a

previously acquired experience allows for significant sav-

ings in terms of time and cost of learning. One of the most

popular approaches for this category of drift is the

exploitation of ensemble classifiers [18], the strength of

which stems from accumulating knowledge of contexts in a

set of elementary classifiers and making a collective

decision [19, 20].

Analysis of the nature of context drift and a review of

existing solutions has lead to the following conclusions:

1. Preserving once acquired knowledge of contexts for

future use, rather than irreversible forgetting, is a better

solution when dealing with recurring contexts;

2. Evolutionary adaptation of the classifier to new

conditions, rather than abrupt reconstruction of the

system, works better when the drift coincides with

natural fluctuations in the data caused by noise or other

factors;

3. Weighted fusion of classifiers improves classification

accuracy;

4. Limiting the number of classifiers contributing to

decision-making prevents spoiling the classification by

the irrelevant voices of outdated classifiers and also

reduces processing time;

5. Drift detection should be robust and noise-resistant.

The Evolutionary-Adapted Ensemble (EAE), proposed

in this paper, addresses the different and sometimes con-

flicting demands (points 1, 3, and 4 above). The main

features of the algorithm are as follows:

1. The system gathers knowledge on the contexts in the

form of elementary classifiers stored in a pool with

unlimited size.

2. A collective decision is made by a committee of

selected classifiers. The size of the committee is fixed

and limited. The weighted fusion of the discriminating

functions of the classifiers in the committee forms the

basis of the decision.

3. The system continuously adjusts committee members

and their weights while processing subsequent data

chunks.

4. A new classifier is created and trained on the recently

processed data chunk, if the system cannot maintain

classification accuracy using the classifiers in the pool.

5. A learning algorithm is implemented as a compound

optimization task. It uses an evolutionary algorithm

that constantly processes the population of individuals

representing the set of possible solutions.

As the EAE is a batch processing algorithm, it can be

used in a wide range of applications without the strict

resource and processing time limitations characteristic of

online classifiers.

The rest of the paper is organized as follows: Section 2

provides a review of related works on classifier systems

working under concept drift, while Sect. 3 provides details

of the proposed EAE model and its learning algorithm.

Results of the experimental evaluation of the algorithm

performance are presented in Sect. 4. Section 5 concludes

the paper and presents some guidelines for further work.

2 Related works

The first algorithms designed to deal with drifting data

were STAGGER proposed by Schlimmer and Granger

[21], IB3 proposed by Aha [22], and the suite of FLORA

algorithms by Widmer and Kubat [2]. Since then, a plethora

of solutions has been proposed, which, together with the

growing interest in the domain, has resulted in an increasing

number of publications. Basically we can divide these

algorithms into four main groups: (1) online learners, (2)

instance-based solutions, also called sliding-window-based
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solutions, (3) ensemble approaches [18, 23], and (4) drift

detection algorithms.

The first group relates to the family of algorithms that

continuously update the classifier parameters while pro-

cessing incoming data. Not all types of classifiers can act as

online learners; they have to meet some basic requirements

[24]:

• Each object must be processed only once in the course

of training;

• The system should consume only limited memory and

processing time irrespective of the execution time and

amount of data processed;

• The training process can be paused at any time and its

accuracy should not be lower than that of a classifier

trained on batch data collected up to the given time.

Classifiers that fulfill these requirements work very fast

and can adapt their model in a very flexible manner.

Among the others, the following are the most popular

online learners: naive Bayes, Neural Networks [25], and

Nearest Neighbor [22]. A more sophisticated solution can

be found in [26], that is, the CVFDT algorithm, an exten-

ded version of the ultra fast decision tree, which ensures

consistency with incoming data by maintaining alternative

subtrees. CVFDT replaces the outdated tree when its

respective alternative is more accurate. Selected online

learners have been incorporated into the Massive Online

Analysis framework (MOA) [27], an open framework

dedicated to the implementation and testing of online

algorithms working with changing data streams.

The second group consists of algorithms that incorporate

the forgetting mechanism. This approach is based on the

assumption that the recently arrived data are the most

relevant, because they contain characteristics of the current

context. However, their relevance diminishes with the

passage of time. Therefore, narrowing the range of data to

those that were most recently read may help form a dataset

that embodies the actual context. There are three possible

strategies here:

• Selecting the instances by means of a sliding window

that cuts off older instances [2];

• Weighting the data according to their relevance; and

• Applying bagging and busting algorithms that focus on

misclassified instances [28, 29].

When dealing with the sliding window the main ques-

tion is how to adjust the window size. On the one hand, a

shorter window allows focusing on the emerging context,

though data may not be representative for a longer lasting

context. On the other hand, a wider window may result in

mixing the instances representing different contexts.

Therefore, certain advanced algorithms adjust the win-

dow size dynamically depending on the detected state

(e.g., FLORA2 [2] and ADWIN2 [30]). In more sophisti-

cated algorithms, multiple windows may even be used [31].

In [32] authors present algorithm incorporating active

learning method which automatically decides which data

will be used as training samples.

In object weighting algorithms the relevance of the

instance is used to calculate its weight, which is usually

inversely proportional to the time that has passed since the

instance was read [15, 33].

The third group consists of algorithms that incorporate a

set of elementary classifiers [34, 35, 42]. The idea of

ensemble systems is not new and their effectiveness has

been proven in static environments [19]. It has been shown

that a collective decision can increase classification accu-

racy because the knowledge that is distributed among the

classifiers may be more comprehensive. This premise is

true if the set consists of diverse members [36]. In static

environments, diversity may refer to the classifier model,

the feature set, or the instances used in training. In a

changing environment diversity can also refer to the con-

text. This makes ensemble systems interesting for

researchers dealing with concept drift.

Several strategies are possible for a changing

environment:

1. Application of dynamic combiners, where individual

classifiers are trained in advance and their relevance to

the current context is evaluated dynamically while

processing subsequent data. The level of contribution

to the final decision is directly proportional to the

relevance. This strategy was used in [37, 38]. The

drawback of this approach is that all contexts must be

available in advance; emergence of new unknown

contexts may result in a lack of experts.

2. Updating the ensemble members, where each ensemble

consists of a set of online classifiers that are updated

incrementally based on the incoming data [27, 28, 39,

43]. Some advanced approaches exploit different types

of classifiers to increase diversity [40].

3. Structural changes in the ensemble, where ensemble

classifiers are evaluated dynamically and the worst one

is replaced by a new one trained on the most recent data.

Among the most popular ensemble approaches, the

following are worth noting: the Streaming Ensemble

Algorithm (SEA) [41] or the Accuracy Weighted Ensemble

(AWE) [42]. Both algorithms keep a fixed-size set of

classifiers. Incoming data are collected in data chunks,

which are used to train new classifiers. If there is a free

space in the ensemble, a new classifier joins the committee.

Otherwise, all the classifiers are evaluated based on their

accuracy and the worst one in the committee is replaced by

a new one if the latter has higher accuracy. The SEA uses a

majority voting strategy, whereas the AWE uses the more
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advanced weighted voting strategy. A similar formula for

decision-making is implemented in the Dynamic Weighted

Majority (DWM) algorithm [43]. Nevertheless, unlike the

former algorithms, the DWM modifies the weights and

updates the ensemble in a more flexible manner. The

weight of the classifier is reduced when the classifier makes

an incorrect decision. Eventually the classifier is removed

from the ensemble when its weight falls below a given

threshold. Independently, a new classifier is added to the

ensemble when the committee makes a wrong decision.

The final group consists of algorithms that address the

question of when drift occurs. Not all classification algo-

rithms dealing with concept drift require drift detection.

Some evolving systems continuously adjust the model to

incoming data [44]. This technique is called implicit drift

detection [11] as opposed to explicit drift detection meth-

ods that raise a signal to indicate change [11, 12]. The

detector can be based on changes in the probability dis-

tribution of the instances [9, 45, 46] or classification

accuracy [47, 48, 49].

Among the machine learning methods dealing with

concept drift, a new class has recently emerged [50],

comprising algorithms that process data streams featuring a

recurring context. Two additional requirements are

imposed on algorithms in this class:

• The system should maintain knowledge of previously

emerged contexts, and

• It should be effective in recognizing contexts and

switching to a valid one.

Both issues can be effectively solved by an ensemble

system. For example, in [51] the authors propose collecting

context oriented learners in a ‘‘global set’’ of classifiers

along with their selection procedure. The ensemble consists

of classifiers that achieve arguably better results than a

random classifier.

To address the second issue, certain algorithms use a

conceptual representation of contexts. This idea originates

from Turney’s definition of context-sensitive features [52]

and the early work by Widmer [53] on meta-learning

algorithms. It is based on mapping attributes into contextual

clues representing some characteristic features of the

respective context. Changes in the clues may indicate drift.

In [54], the authors exploit an additional similarity measure

between context representations for weighting a classifier’s

contribution to the ensemble. The method presented in [55]

incorporates a stream clustering algorithm, which aims to

group incoming data batches automatically based on their

conceptual representation. An incremental classifier is cre-

ated (and updated if needed) for each cluster/context and

stored in the pool. A similar solution can be found in [56],

but here classifiers in the pool are adaptively weighted

according to their performance on a recent data batch.

3 Evolutionary-adapted ensemble for concept drift

Techniques that are based on forgetting (applied implicitly

or explicitly) have limited usefulness in applications that

process streams with a recurring context because the

information on past contexts is lost over time. Probably the

most appropriate for this sort of application is the ensem-

ble-based approach, in which the knowledge of contexts

can be stored in a set of elementary classifiers. The pos-

sibility of the context reappearing demands that the clas-

sifiers are not removed from the ensemble. On the other

hand, the ensemble cannot contain too many experts,

because irrelevant voters could spoil the collective deci-

sion. A possible solution is as follows: all classifiers are

permanently stored in the pool of available classifiers, but

only selected classifiers join the ensemble.

Selecting the experts and adjusting their weights based on

their accuracy seems to be intuitive and certainly easy to

implement. However, the model for selection falls into the

category of greedy optimization algorithms, which do not

guarantee reaching an optimal solution as they tend to fall

into local minima. Therefore, it seems reasonable to use

various heuristic optimization algorithms aimed at minimiz-

ing the misclassification rate of the entire ensemble system.

Among the many possible techniques for making a col-

lective decision, majority voting is regarded as the most

intuitive. However, it is not appropriate when dealing with

voters of diverse competence. Weighted voting allows much

higher flexibility and therefore, is much more satisfactory.

The final question is when the pool should be updated.

Periodic unconditional updates lead to an infinitely increas-

ing pool. Conversely, updates triggered by a drift detector

update (assuming that the number of contexts is finite and

strictly limited) extend the pool size to a limited degree only.

Taking all these issues into consideration, we propose

imposing the following assumptions on the proposed EAE

algorithm:

1. The EAE is intended to work in a changing environ-

ment with a recurring context. It should gather

knowledge of the emerging contexts in a pool of

elementary classifiers.

2. The EAE should choose a subset of classifiers from the

pool to create a decision-making committee with a

fixed size.

3. The EAE committee should make a decision according

to the weighted fusion of the discriminating function

strategies [19].

4. Selecting the committee members and adjusting their

weights should be realized in continuous training

routines based on processing subsequent data chunks.

The process should aim to minimize the EAE

misclassification rate.
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5. The training process should automatically detect new

and recurring contexts.

3.1 Ensemble classifier model

We start by introducing some basic terms and symbols.

Assume that we have a pattern recognition problem with M

classes. Let PW denote the pool of all elementary classi-

fiers and K denote the pool size.

PW ¼ W1;W2; . . .;WKf g ð1Þ

Let NW denote the set of indexes of classifiers that are

taken from the pool to join the ensemble.

NW ¼ c1; c2; . . .; cEf g ð2Þ

According to assumption 2 given above, E B K.

Let WW denote the set of weights assigned to the

ensemble members

WW ¼ w1;w2; . . .;wEf g; ð3Þ

and de;iðxÞ denote the discriminating function of the clas-

sifier from PW pointed to by index ce supporting the ith

class [19].

Now, the formula describing the decision made by the

ensemble is given by (4).

�WðxÞ ¼ arg Max
M

i¼1

XE

e¼1

we de;iðxÞ; ð4Þ

where �W denotes the ensemble classifier response, that is,

class label.

According to assumption 4, the learning procedure

should minimize the misclassification rate of the ensemble.

The rate can be estimated over the learning set, which

consists of pairs of instances together with the associated

correct class label.

LS ¼ ðx1; j1Þ; ðx2; j2Þ; . . .; ðxN ; jNÞf g; ð5Þ

where xn denotes the feature vector of the nth instance in

the set and jn its class label.

3.2 Objective function

The objective function to minimize the misclassification

rate of the ensemble is given by (6).

Q
�W ¼ 1

N

XN

n¼1

L �WðxnÞ; jn

� �

¼ 1

N

XN

n¼1

L arg Max
M

i¼1

XE

e¼1

we de;iðxÞ; jn

 !
; ð6Þ

where L is the loss function

Lða; bÞ ¼ 1 a 6¼ b

0 else

�
ð7Þ

Searching for the minimum of the objective function (6)

is a complex optimization problem. The solution can be

found by selecting the ensemble members and setting their

weights at the same time. To do so, the algorithm has to

update two variables in Eq. (6):

• the set of selected classifiers NW; and

• their weights stored in WW:

The final issue that has to be solved is the implementation

of an effective detector. The proposed procedure updates the

pool when one of the following conditions is satisfied:

1. The size of the pool is smaller than the desired

ensemble size. This condition is satisfied at the

beginning of stream processing when the first batches

of data are processed;

2. The ensemble misclassification rate increases while

processing a subsequent data batch. This situation is

likely to occur when the EAE training procedure

cannot find appropriate experts in the pool to maintain

the accuracy of the ensemble.

There are two possible reasons for an increased

ensemble misclassification rate: (a) a new context is

emerging, and (b) incoming data are spoiled by noise. In

the first case, it would be more desirable to create not one,

but a set of classifiers, which would replace all outdated

classifiers in the committee with experts in the given

context. In the second case (i.e., when the context remains

the same), it is not obligatory to refresh the entire com-

mittee. Therefore, it would be more appropriate to create

just a single expert and evaluate the ensemble performance.

If needed, a further expert could be added in the next step.

3.3 Evolutionary-adapted ensemble

All the above considerations led to the implementation of

the EAE learning procedure as an evolutionary algorithm

[57]. Apart from the author’s extensive experience with

exploiting evolutionary algorithms for learning ensemble

systems [58], other, even more important conditions

affected the choice. As stated in the introduction, we

believe that evolutionary adaptation of the ensemble to

changing conditions may improve the stability of training.

Therefore, an evolutionary algorithm seems to fit perfectly.

The EAE consists of functions common to all evolutionary

algorithms: initialization of the population, and mutation

and crossover operators.

During optimization, which is realized by the EAE,

the population of individuals is processed in a series of
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generations. Each individual represents a possible solution,

which is encoded in the form of compound chromosomes.

A chromosome consists of two components (8):

Ch ¼ WW

NW

�
¼ w1;w2; . . .;wE½ �

c1; c2; . . .; cE½ �

�
: ð8Þ

3.4 Initialization of the population

Usually evolutionary algorithms begin with initialization of

the population where chromosomes are filled with randomly

selected values. In the EAE, the procedure was modified

because: (1) when the first data chunk is processed, the

algorithm starts with an empty pool; and (2) the population

processed with the nth data chunk should be used as the

initial population when the next chunk arrives. Pseudo code

for the Init Population routine is given in Listing 1.

The procedure begins by creating a population of empty

individuals or filling the population with individuals

remaining after processing the previous data chunk (lines

12 and 13, respectively). If the number of classifiers in the

pool is smaller than the ensemble size, a new classifier is

created (lines 17–19) and its index is added to all the

chromosomes with a random weight (lines 20–24).

3.5 Data stream

It is important to mention how data chunks read from the

stream are pre-processed before they are used in the EAE.

An incoming data chunk is randomly split into four sepa-

rate datasets:

1. Pool training set—used for training elementary

classifiers,

2. Ensemble training set—used for ensemble learning,

3. Validating set—used for overtraining detection,

4. Testing set.

The size of the learning sets is crucial for maintaining

high accuracy and avoiding the risk of overfitting.

However, it is hard to answer the question: what is the

optimal size of the set, since the answer strongly depends

on the complexity of the recognition tasks (i.e., number of

classes, number of features, distribution of the classes in

the feature space, and extent and frequency of context

drift). For the purpose of the experiments presented in this

paper, we assume that each set consists of at least 100

instances. Nevertheless, it must also be emphasized, that

creating separate learning sets has been proposed to ensure

the highest level of generalization. In the case of limited

data or a rapidly changing environment when the chunk

size should be as small as possible, only one set can be

used for training and the size of the validation set can also

be reduced by half.

3.6 Mutation and crossover operators

Adjusting chromosome components is realized by means of

the crossover and mutation operators. The former is the

standard two-point crossover operator [57], which affects

both chromosome components. As the crossover produces

an offspring by exchanging parts of the parent chromo-

somes, the same classifier may appear at different positions

in the chromosome which means that the same classifier is

used twice. Nevertheless, we decided to tolerate this situ-

ation, since the computational complexity of a procedure

that avoids redundancy, would be too high. If redundancy

of one classifier in the chromosome reduces ensemble

efficiency, the instance is removed from the population by

the selection procedure.

The mutation operator (presented in Listing 2) is

somewhat more complex and affects both chromosome

components in a different manner. Usually mutation of

vectors of real numbers is realized by adding some ran-

dom noise generated with a Gaussian distribution. The

EAE uses this procedure to update the weight vector in

the chromosome. However, it should be remembered, that

weights must be in the range between 0 and 1. Therefore,

the vector is scaled at the end of mutation to satisfy this

condition (lines 13, 14). The vector of indexes is mutated

by replacing one randomly selected component with the

index of another classifier. The mutation procedure is

usually completely blind, i.e., there is no control over the

changes, which are entirely random. However, based on

the author’s experience, in compound optimization prob-

lems, blind mutation could lead to loss of stability.

Therefore, in the EAE, mutation of the indexes vector is

slightly supported. The probability of classifier selection

is directly proportional to its accuracy, i.e., it is more

likely that a classifier with high accuracy will be chosen

to join the ensemble during mutation. It must be

emphasized that this does not mean that only the best

classifiers can be selected. Selection is realized according
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to roulette selection and weak classifiers could also join

the ensemble (lines 10–13).

3.7 Fitness function

The quality of the ensemble represented by a particular

individual is measured using a fitness function, which

calculates the number of correctly classified samples stored

in the ensemble training set using Eq. (6). Two additional

functions were also implemented to detect overtraining and

drift, respectively.

3.7.1 Overtraining detector

Listing 3 gives the pseudo code for the overtraining

detector. The procedure is intended to protect the learning

process against overtraining [59]. It evaluates the best

individual in the population using the validation set, which

does not overlap with the learning set (lines 10, 11). The

procedure is launched at the end of each EAE generation.

The best individual in the population is evaluated using

the validation set and the result is compared with the

previous one. If the current result is better than the pre-

vious one, overtraining has not been detected and the

population is saved as the last one not affected by over-

training (lines 12–15). Otherwise, overtraining has occur-

red and the population is not saved, although the training

process is not cancelled. When the EAE finishes pro-

cessing, the last saved population is returned as the final

population.

3.7.2 Drift detector

Pseudo code for the drift detector is given in Listing 4. This

routine aims to detect deterioration in EAE performance.

Possible reasons and strategies were discussed at the

beginning of this section. Two threshold parameters (drift

and noise thresholds) are used to detect concept drift and

other minor performance fluctuations. The procedure starts

by evaluating the best individual using the ensemble learning

set (lines 15, 16). The result is compared with that obtained

while processing the previous data chunk. Slight deteriora-

tion in the accuracy (greater than the noise threshold but less

than the drift threshold) could indicate incidental fluctua-

tions in the data stream or the appearance of noisy data.

In this case, only one new classifier is added to the pool

(lines 17–19). Significant differences (greater than the drift

threshold) could indicate occurrence of a new context. In this

case, all classifiers in the ensemble are replaced (lines

20–22). Regardless of the reason, the procedure can, if

necessary, update the pool with a new classifier and increase

the number of generations to allow the new classifier to be

selected to join the committee (lines 23–29).

3.8 EAE main routine

The EAE algorithm is controlled by the following set of

parameters:

1. Size of the population. It is generally accepted that

the larger the size of the population, the better the

performance of the evolutionary algorithm. On the other

hand, computational effort is directly proportional to

size, and therefore, a compromise must be reached when

selecting the size.
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2. Crossover fraction—the fraction of the population that

passes through the crossover operator. The rest of the

population undergoes mutation.

3. Elite count—the number of best individuals uncondi-

tionally promoted to the offspring population.

4. Stopping criteria—the number of generations (itera-

tions).

Pseudo code for the proposed algorithm is given in

Listing 5.

The routine is launched when a new data batch is read.

In the beginning, the batch is split into pool and ensemble

learning sets, and a validation set (line 9), and the popu-

lation is prepared. The population (line 10) is then

repeatedly processed in the main loop of the routine (lines

11–22).

In each generation (lines 11–21), the algorithm rates the

individuals (line 12). The results form the basis for

selecting the elite and parents, which undergo mutation or

crossover (lines 13–16). The offspring population is then

formed from the elite, mutated, and crossed individuals and

the system checks whether overtraining has taken place. In

the last repetition of the loop, the drift detector is launched

(lines 19–21). If drift is detected, the number of generations

is doubled in order to continue adaptation, because we wish

to provide the opportunity of finding a solution by means of

the newly added classifiers.

4 Experiments

To evaluate the performance of the proposed algorithm, a

series of experiments was carried out. The main objectives

of the tests were as follows:

1. Experiment 1—assessment of whether the EAE can

effectively adapt the ensemble to a changing environ-

ment while batch processing the data stream.

2. Experiment 2—estimation of the susceptibility of the

EAE to overtraining and its ability to counteract this

effect.

3. Experiment 3—assessment of how the pool size affects

learning time.

4. Experiment 4—comparison of the performance of the

EAE and selected competing methods.

4.1 Experimental setup

An experimental framework was implemented using Matlab

R2010 and its OPTIMTOOL toolbox, including the genetic

algorithm (GA) framework. The PRTools toolbox [60] was

used for modeling the datasets and elementary classifiers.

To control the number of contexts and drift as well as its

extent, five datasets without concept drift were downloaded

from the UCI Machine Learning Repository [61]. For these

datasets, artificial concept drift was generated. The drift

generation routine is presented in the next subsection. The

UCI datasets were used for Experiments 1, 2, and 3. To

ensure reliable comparison analysis in Experiment 4, two

datasets with real concept drift were used: the Electricity

Demand dataset [62] and the SPAM dataset [55] from the

Spam Assassin Collection (the Apache SpamAssasin Pro-

ject—http://www.spamassassin.apache.org/). Details of the

datasets are presented in Table 1.

In Experiments 1, 2, and 3, the k-nearest neighbor clas-

sifier model was used to create the pool of elementary

classifiers. The number of nearest neighbors was automati-

cally set in each classifier according to the optimization

routine using leave-one-out error. To reduce the possibility

of drawing too optimistic or pessimistic conclusions owing

to the randomness of the learning procedure, all experiments

were repeated 50 times. All data included in the figures and

tables denote average values. In the fourth experiment, a

naive Bayes classifier was used to fill the pool.

4.2 Drift generator

Details of the generator are given below:

1. As each dataset consists of a limited number of

instances, its size was extended. Copies of objects

were created and extra noise was added to the

attributes to avoid recurrence of the same pattern in

the data stream.

2. Drift was simulated by rotating selected pairs of

features in 2D space. The angle of rotation represents

the extent of drift. The smaller the angle, the lesser the

drift. In the case of an odd number of features, one

feature (remaining after selection of all pairs) was left

unchanged. Random selection of the pairs was carried

out separately for each drift generation.
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3. Each subset of instances representing a particular

context was split into the desired number of data

chunks, which were then sorted and merged into a

single data stream.

Figure 1 illustrates the results of drift generation for the

banana dataset. Four contexts were generated with a

varying degree of drift (angles are given in radians):

Context 1 (original), Context 2 (angle 0.5), Context 3

(angle 1.0), and Context 4 (angle 2.0).

4.3 Experimental results

4.3.1 Experiment 1: EAE performance and stability

of learning process

The objective of this experiment was to assess whether the

EAE can effectively adapt the ensemble to a changing

environment while batch processing a data stream.

Two datasets were used in the experiment: liver and

auto MPG. To analyze the response of the EAE to context

drift, three series of tests were conducted with a varying

number of contexts and degree of drift (see Table 2).

For comparative analysis, apart from the EAE, two other

classifier models were also tested.

1. Last added (LA)—a single elementary classifier is

created and trained on the most recent data chunk.

2. Weighted voting ensemble (WVE)—a classifier con-

sisting of a voting committee of elementary classifiers.

When a new data chunk arrives, a new classifier is

created and its accuracy is compared with all the

classifiers in the committee. If the new classifier

outperforms the worst one in the committee, the latter

is removed and the new classifier takes its place. The

weights of the classifiers are dynamically adjusted to

the current context in proportion to their accuracy.

Results of the experiment are presented in Figs. 2, 3, 4,

5, 6 and 7. The three labels on the x-axis denote (from top

to bottom): chunk number, context number, and occurrence

number.

Table 1 Datasets used in the

experiments
Name Liver

disorders

Auto

MPG

Pima Indians

Diabetes

Breast

cancer

Biomed Electricity

demand

SPAM

Instances 345 398 768 699 699 45,312 699

Classes 2 2 2 2 2 2 2

Attributes 6 6 8 9 5 6 9,324

Concept drift Synthetic Synthetic Synthetic Synthetic Synthetic Real Real

Fig. 1 Scatter plots of example

contexts created for the banana

dataset by the drift generator
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From an analysis of the results, we observed the

following:

1. LA was the most stable and resistant to drift. This is

not surprising since LA was trained on the most

recent data. Nevertheless, fluctuations in the accuracy

thereof can be observed. There are two possible

reasons for this: (1) low representativeness of the data

chunk, and (2) randomness of the data division into

sets (for learning and testing). The drawback of LA is

that in almost all cases it had the highest error rate.

An obvious conclusion is that a correctly carried out

classifier fusion can improve the accuracy of the

system. Both the EAE and WVE proved their

effectiveness and took advantage of the collective

decision.

2. The emergence of new contexts caused a sudden

increase in the error rate of both ensembles. With the

processing of subsequent batches, the error was

gradually reduced, owing to the collection of addi-

tional knowledge in the form of classifiers filling the

ensemble. A marked difference in the reaction of the

EAE and WVE to drift can be observed in the second

half of the time series (when recurrence of contexts

took place). The EAE remained stable, whereas the

WVE still showed fluctuations at the time of drift. The

reason is that the WVE can deal with only a limited

number of classifiers and rejected ones cannot be

reused. On the other hand, the EAE can always select

trained classifiers from the pool. This proves that the

EAE can effectively deal with recurring contexts.

3. Of the tested classifiers, the EAE always achieved the

smallest error rate. Adjustment of weights based on

classifier accuracy, as occurs in the WVE, is easy to

compute, but this does not guarantee an optimal

solution. Therefore, subordination of the training

process to minimize the ensemble error can result in

even higher accuracy. The heuristic algorithm applied

in the EAE proved its effectiveness in this regard.

4.3.2 Experiment 2: EAE ability to counteract

overtraining

A common shortcoming of compound classifiers is their

susceptibility to overtraining, which leads to the loss of

generalization ability. The objective of the second experi-

ment was to assess whether the EAE is able to effectively

counteract this tendency.

The experiment was conducted on the breast cancer

dataset. Three contexts with three chunks per context were

generated. The EAE consisted of three classifiers. The

following three EAE error rates were compared:

Table 2 Drift details for

Experiment l
Contexts Drift extent

(rotation angle)

Chunks per

context

Ensemble

size

Chunk size

(instances)

Series 1 2 1.57 5 5 300

Series 2 4 0.78

Series 3 6 0.52

Fig. 2 Misclassification rate for

liver dataset (Series 1)
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Fig. 3 Misclassification rate for

auto MPG dataset (Series 1)

Fig. 4 Misclassification rate for

liver dataset (Series 2)

Fig. 5 Misclassification rate for

auto MPG dataset (Series 2)
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1. Error rate based on the learning set (LS);

2. Error rate based on the testing set with overtraining

detector routine disabled (TS without detector);

3. Error rate based on the testing set with an active

overtraining detector (TS with detector).

The results are depicted in Fig. 8.

The following observations were made:

1. The error rate based on the learning set is the smallest. This

is not surprising; it is mentioned merely for reference.

2. The error rate based on the testing set without the

overtraining detector is always slightly higher than that

using an active detector. This proves that too high

flexibility of the classifier may result in the loss of its

generalization ability. Implementation of additional

overtraining routines is a must in such systems. This

proves that the detector implemented in the EAE is

effective.

4.3.3 Experiment 3: evaluation of EAE learning time

As previously mentioned, the EAE updates the pool when

the drift detector identifies a significant change in the

quality of the system. This situation occurs when new

contexts appear in the stream. Therefore, together with the

occurrence of the last context, the pool is filled with clas-

sifiers representing all possible contexts. It is expected that

the processing time is directly proportional to the number

of contexts, and increases with the emergence of new

contexts until the last one is recognized. Thereafter, the

time should remain constant.

A series of experiments aimed at testing this hypothesis

were carried out on the Pima Indians Diabetes dataset.

Three contexts with five chunks per context were gener-

ated. The EAE algorithm consisted of an ensemble with

five members. The results are illustrated in Figs. 9 and 10.

The following are our observations based on the results:

Fig. 6 Misclassification rate for

liver dataset (Series 3)

Fig. 7 Misclassification rate for

auto MPG dataset (Series 3)
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1. With the arrival of new contexts in the stream, the drift

detector initiates the procedure for updating the pool.

This effect is visible on both graphs in the first half of

the time series. The learning time and pool size

increases linearly with an increase in the amount of

processed data (number of new contexts).

2. Re-emergence of known contexts does not elicit a

response from the detector. The size of the set and

learning time remains almost unchanged. This effect is

visible in the second half of the time series.

3. There is a 50 % reduction in learning time, which is

visible in the second part of the time series results from

the operation of the detector. As previously discussed,

the detector doubles the number of operations when it

detects a context (see the description of the drift

detector in Sect. 3.7.2 for the details).

Fig. 8 EAE misclassification

rate for the Breast Cancer

dataset based on learning set

and testing set with and without

overtraining detector

Fig. 9 Processing time at

subsequent learning steps (Pima

Indians Diabetes dataset)

Fig. 10 Size of pool at

subsequent learning steps (Pima

Indians Diabetes dataset)

Pattern Anal Applic (2014) 17:709–724 721

123



It should be noted that there are also other factors

affecting learning time, for example, number of attributes,

number of classes, and types of elementary classifiers used

in the ensemble. To understand how these factors affect

processing time, we need to analyze how the EAE works.

The algorithm is based on continuous processing of

responses collected in a pool of classifiers.

The complexity of the recognition problem expressed in

the number of attributes or the number of objects in the

training set, directly affects processing time of the ele-

mentary classifiers. The EAE has access to these data only

through the elementary classifiers. The EAE learning pro-

cedure repeatedly activates elementary classifiers in sub-

sequent repetitions of the main loop. Thus, the EAE

processing time is directly proportional to the number of

classifiers, number of iterations, and size of the population.

These relationships are linear. In summary, the EAE pro-

cessing time is a linear function of the time required for

learning and activation of elementary classifiers.

4.3.4 Experiment 4: comparative analysis

of the performance of EAE and three other methods

The purpose of the last experiment was to verify the

effectiveness of the EAE compared with three other

methods, namely, AWE [42], Adaptive Hoeffding Tree

(AHT) with ADWIN [63], and LA, a single classifier

trained when concept drift is detected. Tests were con-

ducted using the two previously mentioned reference

datasets with real concept drift (Electricity Demands and

SPAM). It should be noted that the sets differ greatly in

terms of the numbers of examples and attributes describing

the objects.

To ensure an objective evaluation of the classifiers, an

interleaved chunk test-then-train strategy was employed. In

other words, each incoming chunk (except the first one)

was first used for testing, as it contains instances never seen

before and not previously used for training. Thereafter, the

chunk was used for training.

The datasets were divided into packets each containing

400 examples. Thus, the Electricity set consisted of 89

packages and the SPAM set consisted of 22 packets.

A naive Bayes classifier was used as the elementary clas-

sifier model. The size of the voting committee in the EAE

and AWE was 5.

A one-sided t test with a 0.05 confidence level was used

to test the statistical significance of the results [64], which

are presented in Table 3.

The following observations were made based on the

results. For both datasets, the EAE had the smallest average

misclassification rate of the tested classifiers. However, it

should be noted that in all cases the EAE’s error variance

was much higher than that of the other methods. The high

variance indicates that the EAE has a relatively smaller

ability to maintain stability of the learning process. This

can be due to randomness of the GA. The learning algo-

rithm definitely needs further improvement to ensure

higher stability. However, the statistical tests show that in

some cases the difference between the EAE and other

methods is statistically significant. This leads us to con-

clude that the EAE could be an interesting option for

systems processing streams with drifting data.

5 Conclusions

In this paper we proposed a new recognition system

designed to process data streams characterized by the

presence of recurring contexts. The classifier model

assumes that knowledge of all the contexts that have

emerged in the data stream is permanently stored in a pool

of elementary classifiers. This approach eliminates the need

to re-create elementary classifiers for recurring contexts,

which is a drawback of algorithms that eliminate outdated

classifiers. In addition, it also allows for easy and quick

adaptation of the system. These assumptions can be satis-

fied, if the applied learning algorithm is able to efficiently

recognize the moment of drift and the emerging context.

A specifically designed evolutionary algorithm was also

presented and implementation details of the genetic oper-

ators and learning procedures were discussed in detail. In

addition, the effectiveness of the proposed algorithm was

verified in an experiment that analyzed the system’s

response to changing contexts (Experiment 1). The results

Table 3 Results of

comparative tests of EAE,

DWM, AUE, and LA classifiers

for two datasets with real

concept drift

Dataset AWE AHT LA EAE Statistical test

(EAE significantly

better than)

Electricity demand

(90 chunks)

Average error 0,2673 0,2489 0,2624 0,2342 AWE

AHT

Error variance 0,0007 0,0009 0,0009 0,0060 LA

SPAM (23 chunks) Average error 0,1967 0,2006 0,1783 0,1002 AWE

Error variance 0,0031 0,0052 0,0030 0,0154
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show that the EAE reacts quickly to emerging changes, and

re-emergence of familiar context does not cause even the

slightest inaccuracy in the classification. Because the EAE

model has great flexibility, which is characteristic of

complex recognition systems, there are concerns that it

could lose its generalization ability. To prevent this, an

overtraining detector was implemented and its effective-

ness was confirmed through a second experiment.

The paper also presented an estimation of computational

complexity. Three main factors affect processing time: size

of the classifier pool, size of the population, and number of

generations. The relationship between these factors and

time is linear, as confirmed in the third experiment. It is

noteworthy that the results do not support the classification

of the EAE as an online algorithm. This was not the

intention of the authors, who assumed that it belongs to the

class of batch algorithms.

The final experiment compared the effectiveness of the

EAE with other algorithms designed to work in the pres-

ence of concept drift. Two benchmark datasets containing

real concept drift were used for this purpose and the results

were verified using statistical tests. We confirmed that the

EAE compares favorably with other algorithms.

By summarizing the results of all the experiments, we

can conclude that the EAE can be used successfully in

applications where there is no need for online classifiers.
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