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Abstract Automatic facial expression recognition has

made considerable gains in the body of research available

due to its vital role in human–computer interaction. So far,

research on this problem or problems alike has proposed a

wide verity of techniques and algorithms for both infor-

mation representation and classification. Very recently,

Farajzadeh et al. in Int J Pattern Recognit Artif Intell

25(8):1219–1241, (2011) proposed a novel information

representation approach that uses machine-learning tech-

niques to derive a set of new informative and descriptive

features from the original features. The new features, so

called meta probability codes (MPC), have shown a good

performance in a wide range of domains. In this paper, we

aim to study the performance of the MPC features for the

recognition of facial expression via proposing an MPC-

based framework. In the proposed framework any feature

extractor and classifier can be incorporated using the meta-

feature generation mechanism. In the experimental studies,

we use four state-of-the-art information representation

techniques; local binary pattern, Gabor-wavelet, Zernike

moment and facial fiducial point, as the original feature

extractors; and four multiclass classifiers, support vector

machine, k-nearest neighbor, radial basis function neural

network, and sparse representation-based classifier. The

results of the extensive experiments conducted on three

facial expression datasets, Cohn–Kanade, JAFFE, and

TFEID, show that the MPC features promote the perfor-

mance of facial expression recognition inherently.
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1 Introduction

In our daily life, we may change our faces many times

based on the situation we are involved in. These changes in

our faces, so called facial expressions, are a rich source of

information that exposes our emotions. By perception and

subtle changes in muscles of the face, we can understand a

lot that we may alternatively need several words or phrases

to express instead. In other words, facial expressions con-

tain key features of our emotional reactions when facing or

experiencing various occasions, and play a crucial role in

our non-verbal communication. It is also very helpful for

emotion-awareness in smart environments [2, 3].

Research on analysis of facial expressions was origi-

nated by Darwin [4] in the nineteenth century. Later, in

1974, Ekman and Friesen [5] defined six basic emotions

that can be distinguished easily from human faces and are

common among humans: anger, disgust, fear, happiness,

sadness and surprise. Each of these emotions has its own

unique characteristics and thus can be distinguished from

the others without any difficulties.

We, as humans, are able to distinguish and interpret

facial expressions easily. It is obvious that this ability or

the other abilities alike are based on the way we observe
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(information representation) and the way we learn (classi-

fication) or interpret the observed activities over time. Yet,

there is no clear explanation as to how we have established

such a, perhaps highly parallel and indeed very accurate,

vision system. Therefore, the research on automation of

facial expression recognition (FER) or other related fields

in machine vision literature has proposed a wide verity of

techniques and algorithms for both information represen-

tation and classification towards an optimal vision system.

A survey of recent advantages in the literature can be found

in [6–9].

Generally speaking, it is difficult to group automatic

facial expression recognition approaches based on the

classification algorithms used to recognize different

expressions. This is due to the fact that the role of classi-

fication has been considered as of secondary importance in

machine vision, while the role of information representation

is considered first [10]. The more intuitive reason, which

supports the aforementioned statement, can be sought in the

fact that the different classification approaches fit for dif-

ferent types of information representation; and, indeed,

there is no classifier that can outperform other classifiers in

any given problem due to the lack of a universal approach

for information representation. Nevertheless, it is obvious

that classification is one of the primary stages for any vision

system, and the final performance heavily depends on the

performance of the classifier utilized.

Very recently, Farajzadeh et al. [1] proposed a novel

approach for information representation. Their approach

derives a set of new features from the original features

based on machine learning techniques. These features,

which are called meta probability code (MPC), consist of

the probabilities of the corresponding sample being a

member of pair-wise classes. In other words, the MPC is a

set of new features that represent an instance in terms of

similarities between pairs of classes instead of the original

attributes that have been measured or extracted. Therefore,

the MPC features are more discriminative and informative

than the original features, and have shown a good perfor-

mance in both clustering and classification problems in a

wide range of domains [1].

As the authors of [1] have mentioned, their approach is

well suited for the problems with balanced datasets, i.e., the

numbers of samples per classes are almost equal or good

enough. In this paper, we aim to study how well the MPC

features represent facial expressions and improve the rec-

ognition performance, where the datasets available for this

problem are almost balanced.

To achieve the above-mentioned goal, we propose an

MPC-based framework for the recognition of facial

expressions in which any feature extractor and classifier

can be incorporated in the proposed framework using the

meta-feature generation mechanism.

In the experimental studies, we integrate different fea-

ture extractors and classification algorithms into the pro-

posed framework yielding different single MPC-based FER

systems. In order to compare the performances of the

MPC-based FER systems with the other systems in a sys-

tematical and statistical [11] manner, the original features

and the classifiers of interest are also integrated into several

simple and common original-feature-based FER systems.

To extract the original features, we use four state-of-the-art

information representation approaches: local binary pattern

[12], Gabor-wavelet [13], Zernike moment [14] and facial

fiducial points, and, for the classification purpose, we use

four multiclass classification algorithms; support vector

machine [15], k-nearest neighbor [16], radial basis function

neural network [17] and sparse representation-based clas-

sifier (SRC) [18].

The experimental results conducted on three publicly

available datasets: Cohn–Kanade [19], JAFFE [20] and

TFEID [21], show that, using a system based on the MPC

features, the performance of facial expression recognition

is significantly improved. The results also indicate that the

MPC features markedly improve the generalization per-

formance on across datasets evaluation, where one of the

datasets of interests is used as the training set and the other

two datasets are used as the testing sets.

This paper not only evaluates the performance of the

newly proposed features MPC for the recognition of facial

expression, but also conducts the experiments in a very

promising manner to ensure the consistency and the reli-

ability of the results. To the best of our knowledge, this is

the first effort in the literature that the performance of

different information representation techniques and classi-

fication algorithms for the recognition of facial expressions

are compared systematically and statistically. It is obvious

that the evaluation of different approaches for FER by

directly quoting the reported results and comparing them is

not consistent (e.g., [6–8]), as their exploited datasets,

preprocessing techniques, comparison protocols, informa-

tion representation techniques and classification algorithms

are not the same. In other words, there are always two or

three things out of five important things (datasets, prepro-

cessing, protocols, classifiers and features) that are differ-

ent in the available comparisons for the recognition of

facial expressions. And more importantly, none of the

studies have compared the performance of the approaches

statistically to ensure the reliability of the results from the

statistical view point.

The rest of this paper is organized as follows. In the next

section, Sect. 2, a review of the previously proposed facial

expression recognition approaches is presented; Sect. 3

describes our MPC-based facial expression recognition

framework; Sect. 4 provides brief introductions of some of

the commonly used information representation approaches
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and classification algorithms for immediate reference;

Sect. 5 gives the experimental results; and Sect. 6 is the

conclusion.

2 Related work

Based on the research done in the literature, one can

group automatic facial expression recognition approaches

into roughly two categories according to the employed

information representation methods [6]: holistic-based

representation [22–30] and analytic-based representation

[31–34]. However, we can also group the related works

into another two main categories according to the charac-

teristic of the observations [35]; image-based approaches,

where the apex of an expression is captured and used as an

observation; and video-based approaches, where the whole

sequence of an expression or a subset of it is considered

[36]. As this paper is involved with the image-based

approaches, in the following, we provide a review of the

previously proposed image-based approaches under the

former categorization.

The holistic-based approaches extract features from the

whole face or major parts of it. These approaches are also

known as the template-based techniques, as they, for

example, use a labeled graph or a 2D array of intensity

values to represent facial images as a whole [6].

As one of the recent holistic approaches, Yu and Bhanu

[22] used Gabor-wavelet (GW) to represent primitive fea-

tures of a face. Then, they applied genetically inspired

learning method for selecting the extracted features. The

significant advantage of their method was the use of SVM

to classify facial expressions. However, the accuracy of

their approach (80.9 %) on JAFFE dataset was relatively

low compared to the other approaches’ achievement on the

same dataset. Littlewort et al. [23] also used GW features

to represent facial images and an SVM to classify them.

But the technique they used for selecting a subset of

extracted GW features was Adaboost. They achieved a

classification accuracy of 93.3 % on Cohen–Kanade

dataset.

By manually selecting the positions of eyes and using

local binary patterns (LBP) as features, Feng et al. [24]

proposed a new approach for human facial expression

recognition. Using linear programming (LP), they pro-

duced 21 binary classifiers per each pairs in which each

pair was composed of two expressions (e.g., fear-happi-

ness, sadness-surprise, etc.). Then they generated a simple

binary tournament tree (BT) using these binary classifiers

in order to induce the final classifier. The successful clas-

sification rate of their approach on JAFFE dataset was

93.8 %. In another recent work, Shan et al. [25] also used

LBP features to represent facial expressions. They

extensively evaluated the performance of LBP features

with different classification algorithms. The best recogni-

tion rates that they reported on Cohn–Kanade dataset were

obtained by using SVM; 92.6 % for six expressions and

88.9 % for seven expressions (including Neutral).

Xie and Lam [26] proposed a new model, spatially

maximum occurrence model (SMOM), based on statistical

characteristics of the training images for representing facial

expressions. The technique they used to classify different

expressions was the similarities among the images. To

measure the similarity they applied elastic shape–texture

matching (ESTM) technique. The successful recognition

rates of their work were reported at 94.5 and 94.7 % on AR

dataset and Yale dataset, respectively. In [27], Lajevardi

and Hussain used Zernike moments (ZM) as the statistical

features to represent facial expressions. They evaluated the

performance of Zernike moments against noises and rota-

tions. Applying LDA on Cohn–Kanade and JAFFE data-

sets, under different noises and rotations, the average

successful recognition rates of their approach were 73.2

and 92.8 %, respectively. In the proposed approach by

Yang et al. [28], facial images were divided into some

patches according to the locations of action units. Then,

Haar-like features were extracted from each patch and

selected by Adaboost. They named these features as

combined features (CF). Using minimum error-based

optimization strategy (MEOS), the successful recognition

rate of their approach on Cohn–Kanade dataset was

92.3 %.

In a very recent work, Zhi et al. [29] proposed a novel

approach based on graph-preserving sparse non-negative

matrix factorization (GSNMF). The GSNMF algorithm

transforms a high dimension space into a locality-pre-

serving subspace with sparse representation, where the

sparse representation is obtained by minimizing the

‘1-norm. Extensive experiments conducted on Cohn–

Kanade and JAFFE datasets with clean and partially

occluded facial images have shown the performance of

GSNMF and its robustness to partial occlusions. In

another recent work, Cotter [30] used sparse representa-

tion theory and a classification scheme based on this

theory (SRC) on different type of features such as GW

and raw pixels. His work also demonstrated promising

performances on clean, noise corrupted, and partially

occluded facial images of JAFEE.

In the Analytic or feature-based approaches, some facial

points or contours of the key facial features such as eyes,

eyebrows and mouth are used to model the face [6]. These

feature points can either be used directly as the input fea-

ture vector, or can be used to measure the relative distances

in between and construct a feature vector accordingly.

Kobayashi and Hara [31] manually measured 30 facial

characteristic points (FCP) and they used them as inputs for
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a back-propagation neural network (BPNN) to classify

facial expressions. The classification rate of their approach

reached the value of about 80.0 %. Ushida et al. [32] also

used features introduced by Kobayashi and Hara and

applied a bi-directional associative neural network

(BANN) together with fuzzy logic (FL) to classify three

expressions angry, happiness, and sadness. They achieved

79.0 % of successful classification accuracy. Sohail and

Bhattacharya [33] used spatio-temporal representation of

face with 11 facial characteristic points. The classification

accuracy of their approach using a distance weighted kNN

classifier was 90.8 % on JAFFE dataset. Using a semantic-

based learning algorithm along with the analytical hierar-

chy process (AHP), Cheng et al. [34] introduced the

hybridization of low-level features and high-level semantic

concept. The classification accuracy of their approach

using weight-assigned semantic information supported

kNN on JAFFE dataset for the recognition of five facial

expressions (neutral, happiness, anger, sadness and sur-

prise) was reported at 85.2 %.

A summary of the reviewed related works and the systems

based on our proposed framework (see Sects. 3.2, 5.3 and

5.9) are provided in Table 1. In this table, the column

Comments is to emphasis the differences between the

experiments in terms of preprocessing and feature

enhancement techniques, number of samples per subject,

number of expressions, etc. Obviously, these differences can

have a considerable effect on the final performance, and

therefore, one should carefully take them into account when

comparing the performance of different FER approaches.

Table 1 Summary of the reviewed FER systems

Feature Classifier Dataset Protocol Accuracy

(%)

Comments

1992 [31] 30 FCPs BPNN 19 JSa 1/2 80.0 –

1993 [32] 30 FCPs BANN ? FL 19 JS 1/2 79.0 Three expressions were considered

2006 [22] GW SVM JAFFE 10CVb 80.9 A genetically inspired process was used for feature selection

2006 [23] GW SVM CKc LOOd 93.3 Adaboost was used for feature selection

2007 [24] LBP LP?BT JAFFE 10CV 93.8 The subsystem introduced in [37] was used for preprocessing

2007 [33] 11 FCPs kNN JAFFE LOO 90.7 –

2007 [34] 14

FCPs ? AHP

kNN JAFFE 1/2 85.2 Five expressions were considered

2009 [25] LBP SVM CK 10CV 88.9 The last three peak frames of each sequence were used

2009 [26] SMOM ESTM AR 1/2 94.5 The face model proposed in [38] was adopted to produce a facial

mask

2009 [26] SMOM ESTM Yale LOO 94.7 The face model proposed in [38] was adopted to produce a facial

mask

2009 [27] ZM LDA CK 1/2 73.2 Some amount of noises and several degrees of rotations were

considered

2009 [27] ZM LDA JAFFE 1/2 92.8 Some amount of noises and several degrees of rotations were

considered

2010 [28] CF MEOS CK 2/3 92.3 The last three peak frames of each sequence were used

2010 [30] GW SRC JAFFE LOO 93.9 PCA was applied to reduce the dimension of features

2011 [29] GSNMF kNN CK 1/8e 93.5 Six expressions were considered, and only a subset of 30

individuals was used

Our

method

MPC MPC-FER CK 1/8 93.3 Six expressions were considered, and only a subset of 30

individuals was used

Our

method

MPC SVM CK 1/8 93.1 Six expressions were considered, and only a subset of 30

individuals was used

Our

method

MPC RBFNN CK 10CV 87.2 The last peak frame of each sequence was used

a Japanese students
b Tenfold cross validation
c Cohn–Kanade
d Leave-one-out
e One out of the last eight peak frames of each sequence was used for training and the remaining frames were used for testing
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3 MPC-based FER framework

The goal of automatic facial expression recognition is to

use distinctive features of the expressions and label them

with the respective emotions. In this section, we propose a

facial expression recognition framework that uses MPC to

represent facial expressions and an MPC-based classifier to

recognize them. The next subsection introduces the MPC,

followed by the proposed framework for automatic facial

expression recognition.

3.1 Meta probability code (MPC)

One common and popular way to solve a multiclass clas-

sification problem via decomposition technique is one-

against-one (OAO) strategy. In this strategy, given a

training sample set X and k class labels, K = k(k - 1)/2

binary classifiers are induced each of which separate a pair

of classes:

hB
r;sðxiÞ ¼

1 if xi 2 Cr

0 if xi 2 Cs

�
ð1Þ

for r ¼ 1; . . .; k � 1; and s ¼ r þ 1; . . .; k;

where the superscript B indicates that hB is a binary clas-

sifier [1]. The class label of an unknown sample is assigned

based on the majority voting scheme, where the votes are

collected from hBs results.

Borrowing the idea of stacked generalization [39], the

authors of [1] have interpreted the outputs of hBs as a set of

new features for a further processing instead of using them

for the voting scheme. Thus, a function that projects the

original features to a new feature vector t has been pro-

posed [1]:

t ¼ f ðxÞ; ð2Þ

f ðxÞ ¼ �hB
r;sðxÞ; f : RN �! Q

K ;

where � is the concatenation operator, and N and K are the

dimensions of the original data space and the projected data

space, respectively.

The new feature vector t is called MPC if the outputs of

hBs are considered to be the class probabilities (real-valued

outputs):

MPCðxÞ ¼ �hB
r;sðxÞ where hB

r;sðxÞ ¼ pðrjxÞ: ð3Þ

We should note that the probability output of hr,s for a

given sample x (Eq. 3) is, in most cases, an estimation of

the posterior probability. Therefore, following [1], we use

the probability estimation method proposed by Wu [40] in

order to produce the class probabilities in the proposed

framework.

3.2 Proposed framework

The proposed MPC-based framework for automatic facial

expression recognition consists of three steps. In the first

step, a typical feature extraction approach is used to obtain

the facial expression features. For this step, one can use any

state-of-the-art feature extractor. The extracted features,

referred to as the original features, are then sent to the next

step in order to be projected into a new feature space, MPC.

In the second step, the MPC features are derived from

the original features using the projection function in

Eq. (3). The projection function in Eq. (3) is built based on

the training set. That is, all the binary classifiers (hBs),

which constitute the projection function, are trained based

on the original features extracted in the first step. In this

step, one can also use any classification algorithm to induce

hBs and build the projection function.

The third step employs a multiclass classification algo-

rithm to classify the MPC features. For this step, in par-

ticular, we use the classification algorithm introduced in

[1], which is called MPC-clustering. We will refer to this

particular system as MPC-FER. However, in order to

evaluate the performance of the MPC features, only from

the information representation point of view, we will also

use several well-known and promising multiclass classifi-

cation algorithms in the third step of the proposed

framework.

In the third step of MPC-FER, given projected samples’

set T ¼ fðti; yiÞ; i ¼ 1; . . .; lg; a clustering scheme is used

to cluster T; T ¼
SS

s¼1 ‘s; where S is the number of pro-

duced clusters and the elements of ‘s are pairwise disjoint.

Then using the samples in each and every produced clus-

ters, ‘s ¼ fðtj; yjÞ; j 2 N sg; where N s is the set of samples’

indexes in cluster ‘s, S multiclass classifiers are induced

such that hM
s ðtjÞ ¼ yj (the superscript M is to indicate that

hM is a multiclass classifier) [1]. For an unknown sample,

its original features are extracted first, and then applying

the projection function in Eq. (3), its MPC features are

produced; subsequently, the cluster that the sample belongs

to is determined. Finally, the corresponding individual

multiclass classifier is used to label the sample. The block

diagram of the proposed framework is demonstrated in

Fig. 1.

4 Facial expression representation and recognition

4.1 Expression representation

In this section, a brief introduction of four state-of-the-art

information representation (extraction) approaches along

with their properties used in the experiments is presented.
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We select three holistic face representation approaches;

local binary patterns, Gabor-wavelets, Zernike moments,

and one analytic approach; facial fiducial points. In this

study, the features extracted by these approaches are

referred to as the original features (ORG).

4.1.1 Local binary pattern

The local binary pattern (LBP) is one of the most pop-

ular image descriptors due to its efficiency in descrip-

tiveness and computational complexity. The LBP

operator, introduced by Ojala et al. [12], assigns a label

to every pixel of an image by thresholding the gray-level

of a given pixel’s neighbors with the gray-level of the

pixel itself, and considering the result as an integer

number.

In order to capture more dominant features in some

textures, the basic 3 9 3 LBP operator was extended to use

different sizes of neighborhoods and radii by means of

interpolation of the adjacent pixels. Another extension to

the original LBP is to use only a subset of patterns out of 2P

total binary patterns that are more informative, called

uniform patterns. The uniform local binary pattern with

P neighborhood pixels and R radius is indicated by LBPP,R
u2 .

The purpose of the LBP operator is to extract and codify

the local micro-patterns such as edges, corners, spots and

flat areas of a given image [12]. The local micro-patterns

are then used to describe the image statistically by the

means of their distribution over the whole image.

In our experiments, in order to have a good trade-off

between feature vector length and the recognition perfor-

mance, we follow the settings used in [41]: a given face

image is divided into 42 (6 9 7) non-overlapping regions,

and LBP8,2
u2 operator is applied on each region separately

(Fig. 2). Concatenating the LBP histograms of the regions

results in a feature vector of length 2,478 (59 9 42) [25].

4.1.2 Gabor-wavelet

The Gabor filter is a linear filter that was originally used for

edge detection in images [13]. The similarity of Gabor

filters in terms of frequency and orientation representations

to those of human visual system have made them very

appropriate technique for image description [42–44].
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A set of Gabor-wavelet (GW) functions W ¼
fw1;1;1; . . .;wP;Q;Rg with P frequencies and Q orientations

at R feature points is defined as follows:

wi;j;kðx; yÞ ¼
f 2
i

2p
exp �0:5f 2

i ðx� cxk
Þ2 þ ðy� cyk

Þ2
h in o

� sin
n

2pfi

h
ðx� cxk

Þ cos hj þ ðy� cyk
Þ sin hj

io

ð4Þ

where fi is the frequency, hj is the orientation, cxk
and cyk

are the positions of the wavelet. To obtain the GW features

of an image, the convolution of the image with the Gabor

filters bank given in Eq. (4) is calculated.

In the experiments, a bank of Gabor filters with eight

different orientations and five spatial frequencies is used to

represent face images [45]. For an image of 110 9 150

pixels (in the experiment, every image is normalized to

110 9 150 pixels) the length of the feature vector is

660,000 (40 9 110 9 150), which is far greater than the

original data for the image. To reduce the computational

burden and to have a good generalization performance, the

length of the feature vector is reduced to 42,560 via down-

sampling Gabor filters by a factor of 16 [46].

4.1.3 Zernike moments

The orthogonal moments, also known as the statistical

information representation approaches, have gained con-

siderable attention in the literature due to their invariant

properties1 [14]. Among the well-known orthogonal

moments, such as Legendre moments, Fourier–Mellin

moments, and pseudo-Zernike moments, Zernike moments

(ZM) have been frequently used as an image descriptor,

and have shown a good performance in face and facial

expression recognition problems [27, 47].

The ZMs are calculated in polar coordinates, and thus,

to utilize them as a descriptor one needs to map a given

image to a unit disc and set the center of the image as the

center of the unit disc, i.e., x2 ? y2 B 1. The complex ZM

of order n and repetitions m subject to n - |m| = even and

|m| B n is defined as follows:

ZMnm ¼
nþ 1

p

X
x

X
y

FxyVnm x; yð Þ; ð5Þ

where Fxy represents the current pixel and Vnm(x, y) is the

Zernike polynomial in polar coordinate as follows:

Vnm r; hð Þ ¼ Rnm rð Þ exp jmhð Þ; r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and h

¼ tan�1 y

x

� �
: ð6Þ

The real-valued orthogonal radial polynomial, Rnm, is

defined as:

Rnm rð Þ ¼
Xn�jmj2

s¼0

�1ð Þsrn�2s n� sð Þ!
s! nþ mj j

2
� s

� �
! n� mj j

2
� s

� �
!
: ð7Þ

As it has been mentioned in [47], finding the best order

and repetitions for an invariant moment-based image

descriptor is an NP-hard problem. Thus, a straightforward

approach to form an optimal feature vector based on

invariant moments has been suggested; the feature vector

for ZM with lower bound k and upper bound N is defined as

follows:

FVZM
k;N ¼ fZMnmg; ð8Þ

where n ¼ k; . . .;N; and m ¼ 0; 2; . . .; n when n is even,

and m ¼ 1; 3; . . .; n when n is odd.

In our experiments, according to our empirical studies,

we set the value of k and N equal to 2 and 15, respectively,

which results in a feature vector of length 70.

4.1.4 Facial fiducial points

The facial fiducial point (FFP) or facial characteristic point

is another approach for representing facial expressions. In

this approach, after localizing a face in an image, the

precise positions of the center of the eyes is determined.

These points are then used to extract and normalize the

face sub-image. Subsequently, other facial components

including eyes, eyebrows, nose, and mouth, are localized in

order to extract more fiducial points such as the tip of nose,

lip corners, their upper and lower mid-points, mid-point,

etc. Finally, all the extracted fiducial points are concate-

nated to form a feature vector. Two examples of different

facial fiducial points are demonstrated in Fig. 3.

Fig. 2 A given facial expression image is divided into 42 regions and

the LBP histograms of the regions are extracted and concatenated into

a single feature vector

1 If a given image is changed in terms of scale, position, rotation or a

combination of them, its statistical features will remain unchanged.
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In the experiments, we use publicly available FFPs for

the Cohn–Kanade dataset. There are 59 fiducial points in

total for each image in Cohn–Kanade dataset, resulting in a

feature vector of length 118 (2 9 59). For the JAFFE

dataset, we use the fiducial points introduced in [48], where

there are 34 fiducial points for each image, resulting in a

feature vector of length 68 (2 9 34). For the TFEID, there

are no publicly available fiducial points. Therefore, we do

not consider these features for TFEID in our experiments.

4.2 Expression recognition

In this section, we provide very short introductions of some

well-known and promising multiclass classification algo-

rithms being employed and examined in this study as well

as the detailed information regarding their parameter set-

tings and training procedures. The classifiers of interest are:

support vector machine, radial basis function neural net-

work, k-nearest neighbor, and sparse representation-based

classifier.

4.2.1 Support vector machine

The support vector machine (SVM) is a class of linear

classification algorithms proposed by Vapnik [15], in

which it aims to find a separating hyperplane with as wide a

margin as possible between two different categories of

data. Unfortunately, the linear optimization problem pro-

posed in SVM algorithm is not enough for practical usage

due to the linearly inseparable nature of the data in real-

world applications. One possible approach to overcome

this problem is to map the data to an alternative dimension

space, which is higher (possibly infinite) than the original

space, in the hope that the data will be linearly separable in

that space. To employ this approach efficiently, a trick

known as the kernel trick is utilized. This trick allows us to

compute dot products between the vectors in a high

dimension space within the original space without ever

having to compute the mapping explicitly. There are sev-

eral popular kernel functions that can be employed in SVM

algorithm, among which we use Gaussian function in our

experiments.

To generalize a two-class SVM to a multiclass SVM, we

use three strategies in our experiments: one-against-one

(OAO), one-against-all (OAA), and a single machine

approach2 SVM proposed in [49]. In the experiments, we

use a publicly available implementation of SVM, libsvm

[50], where the optimal parameter selection is done based

on the grid optimization strategy [51].

4.2.2 Radial basis function neural network

The radial basis function neural network (RBFNN) is a

type of non-linear classifier which is well suited for

regression and complex (non-linear) pattern classification

problems [17]. The basic architecture for a RBFNN is a

3-layer network: the first layer, input layer; the hidden layer,

RBF units; and the third layer, output layer. The unique

characteristic of the RBFNN is that the units in the hidden

layer are assumed to be the centers of the possible clusters

(also known as the prototypes) in a given dataset. Therefore,

to build the RBFNN, we need to know the number of units

forming the hidden layer in advance. To this end, we use

k-means clustering scheme to find the existing clusters in

the training set and assign them to the hidden layer units.

The proper number of clusters is found by cross validation

on the training set. The radius of the units (clusters’ widths)

are all set to a single value as half the average distance

between the set of centers, and the weights are tuned by

means of gradient descent algorithm [52].

4.2.3 k-nearest neighbor

The k-nearest neighbor classifier (kNN) is the most

straightforward classifier in machine learning [16]. In this

classifier, the generalization task is postponed until the

classification of a sample is required. That is, there is no

effort to gain prior assumptions about the distribution of

the training samples, and due to this, the learning algorithm

in kNN is called lazy or instance-based algorithm. In its

simplest form (1NN), once an unseen sample is presented,

its label is assigned based on the nearest training sample’s

label; and in its general form (kNN), the majority label of

k-nearest training samples is assigned to the unknown

sample. In our experiments, the number of nearest neigh-

bors, k, is set to 10.

2 In the single machine approach, a binary classifier is generalized by

adapting its internal operations to a single multiclass optimization

problem.

Fig. 3 Two different examples of facial fiducial points: left Cohn–

Kanade dataset, right JAFFE dataset
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4.2.4 Sparse representation-based classifier

Sparse representation is a recently developed theory for

signal processing in the compressed sensing. It has been

shown that the sparse representation can be very efficiently

used for acquiring, representing, and compressing high-

dimensional signals [53], as the signals such as images

have naturally sparse representations. With the help of

sparse representation, it is possible to exactly reconstruct

sparse signals from a small number of linear measurements

[54].

To employ the spares representation theory in the clas-

sification context, where there are a number of training

samples available, examples of different classes are con-

sidered as the measurements. That is, forming a dictionary

of training vectors from all available samples, a relation-

ship between the test vector and the training vectors must

be found to classify the test vector [30]. This idea has been

proposed by Wright et al. [18] and has been applied suc-

cessfully for the recognition of face and facial expressions

[18, 30]. The main idea in [18] is to represent test sample i

as efficiently as possible merely using a linear combination

of the training samples from class i [30]. The solution for

this combination problem is formed by using a small

number of training vectors from the large training set, and

thus, it is sparse and can be achieved by solving the fol-

lowing equation:

min kak1 subject to Aa ¼ y; ð9Þ

where A is the matrix of all the training samples, a denotes

the weights on each of the dictionary vectors, and y is the

test vector.

In our experiment, following [30], we use an imple-

mentation of Basis Pursuit from the SparseLab software

package [55] to find the solution to Eq. (9), which results in

SRC.

5 Experiments

5.1 Datasets

In this study, experimental studies are carried out on three

facial expression image datasets: Cohn–Kanade, JAFFE

and TFEID. In the following, the descriptions of these

datasets are presented.

5.1.1 Cohn–Kanade

The Cohn–Kanade facial expression dataset consists of

100 adult subjects aged from 18 to 30 and of which

69 % were female, 81 % European-American, 13 %

African-American, and 6 % other groups [19]. The subjects

were asked to perform six emotions starting from a neutral

emotion and ending with the target emotion. Some of the

subjects were asked to perform one of the emotions twice.

The image sequences of each performance were captured

and digitized into 640 9 490 pixel arrays.

For our experiments, we carefully label the emotion of

each sequence and chose only the peak frame of the

selected sequence as the target emotion. The images for

Neutral emotion are collected from the first frame of 97

different sequences. For those subjects that have more than

one performance for a given emotion, we only consider

selecting one sequence, resulting 407 images: 36 anger, 40

disgust, 33 fear, 84 happiness, 97 neutral, 42 sadness, and

75 surprise.

5.1.2 JAFFE

The JApanese Female Facial Expression (JAFFE) image

dataset consists of 10 Japanese female facial expression

images [20]. Every subject in this dataset has 2–4 images

for each expression, 213 images in total of size 256 9 256

pixels: 30 anger, 29 disgust, 32 fear, 31 happiness, 30

neutral, 31 sadness, and 30 surprise. In our experiments, we

use all the images in this dataset.

5.1.3 TFEID

The Taiwanese Facial Expression Image Dataset (TFEID)

consists of seven different facial expressions captured from

40 Taiwanese models (50 % male) [21]. There is only one

image of each expression available for each subject, totally

268 images of size 480 9 600 pixels: 34 anger, 40 disgust,

40 fear, 40 happiness, 39 neutral, 39 sadness, and 36 sur-

prise. All the images of this dataset are used in our

experiments.

5.2 Preprocessing

All the facial images in the datasets of interest are nor-

malized to a fixed distance between the center of the eyes

and are cropped to sub-images of size 110 9 150 pixels

[25]. The eye coordinates for Cohn–Kanade and JAFFE

datasets are from the available facial fiducial points, and

for TFEID, they are manually labeled. The cropped facial

sub-images are then rotated to place the center of the eyes

in line. We should note that no further preprocessing pro-

cedures such as the subsystem used in the CSU Face

Identification Evaluation System [37], the face model

proposed in [38], illumination correction, histogram

equalization, etc., are applied. Figure 4 shows some pre-

processed sample images of the facial expressions used in

the experiments.
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5.3 Systems of interest

In the experiments, 11 different systems are evaluated from

which five systems, SVMOAO
ORG ; SVMOAA

ORG ; kNNORG;

RBFNNORG; and SRCORG are based on the original features.

The other five systems, SVMOAO
MPC ; SVMOAA

MPC ; kNNMPC;

RBFNNMPC; and SRCMPC are based on the MPC features.

The last one is MPC-FER; for this system we use binary

SVMs and multiclass SVMs to induce hBs and hMs,

respectively. For the clustering step of the MPC-FER, self

organizing map (SOM) [56] is employed (see [1] for more

information).

5.4 Protocol

To assess the performance of the facial expression recog-

nition systems on a given dataset, we perform tenfold

cross-validation strategy. That is, we divide the samples of

a given dataset into 10 disjoint and equally sized subsets,

and we use nine subsets as the training sets and one subset

as the testing set. This procedure is repeated 10 times using

one subset exactly once as the testing set. The obtained

results from 10 runs are averaged at the end.

6 Results

The results are broken down by the dataset category and

are presented in Tables 2, 3 and 4. The demonstrated

results also include the average performances and the

improvements in the performances achieved by the MPC

features on the same classifiers. Note that the demonstrated

averages in the tables are the overall performances of the

classifiers, not the averages of the columns. The best rates

are in bold face.

From the results, it can be seen that although the FFP

features used in Cohn–Kanade dataset have been carefully

labeled, and as a result a good performance was expected

for them, the LBP features achieved better performance

than FFPs. The average classification rates for LBP and

FFP features are 81.2 and 75.6 %, respectively3. In con-

trast, it can be seen that the average classification accura-

cies of LBP and FFP features are almost the same (80.1 %

for LBPs and 79.4 % for FFPs) on JAFFE dataset. The

reason can be found in the fact that the number of fiducial

points (59 points) used in the Cohn–Kanade dataset may

not be as appropriate as we hoped for. Also, their positions4

in different expressions may overlap or be very close,

which can cause the classifiers to suffer from over-fitting.

We, therefore, can conclude that choosing the right number

of the fiducial points and their positions are the key points

for FFP information representation approach.

However the length of feature vector in LBP is almost

one-eighteenth of the GW features, the LBP features out-

perform GW features in Cohn–Kanade and TFEID data-

sets, and it is slightly lower than GW features on JAFFE

dataset (1.3 % on average). Therefore, choosing LBP fea-

tures has advantages and is effective for both facial

expression representation and recognition. From the

results, we can also conclude that the orthogonal moments,

ZM in particular, compared to GW, have a good potential

to be used for facial expression representation, as the fea-

ture vector length in ZM is very low and its performance is

somewhat comparable to that of GW features.

As it has been mentioned, the MPC features consists of

meta features that are enriched by class-wise similarity,

while the original features are simply extracted from the

instances and no further processing has been done to

enhance them. Therefore, as it was expected and the results

clearly demonstrate, the MPC features outperform the

original features in most of the cases from which the

3 Since the classification rates obtained by SRC using ZM and FFP

features are very low, we do not include all of its results in the

averaging processes throughout this section in order to avoid unfair

comparisons.
4 The number of fiducial points (34) and their positions in JAFFE

dataset, as shown in Fig. 3, are different from those of Cohn–Kanade

dataset.

Fig. 4 Samples of facial expressions images. The first two rows are

samples of Cohn–Kanade, the second two rows are from JAFFE, and

the last two rows are samples of TFEID
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improvements in kNN and RBFNN-based systems are

more noticeable; on average kNNMPC and RBFNNMPC,

respectively, improved 28.9 and 14.3 % classification

accuracy in Cohn–Kanade dataset, 23.8 and 8.8 % in

JAFFE dataset, and 15.9 and 5.6 % in TFEID dataset.

However the performance of SRC using LBP and GW

features is comparable to the other classifiers, its perfor-

mance drops dramatically when using ZM and FFP fea-

tures. This is due to a very few number of features in these

two techniques (70 and 59 features for ZM and FFP,

Table 2 Classification accuracy (%) of various FER systems on Cohn–Kanade dataset

Trained on ORG features Trained on MPC features MPC-FER

SVMOAO SVMOAA kNN RBFNN SRC SVMOAO SVMOAA kNN RBFNN SRC

LBP

Anger 61.11 69.44 19.44 58.33 50.00 63.89 72.22 69.44 75.00 55.56 72.22

Disgust 82.50 82.50 52.50 70.00 72.50 80.00 82.50 82.50 90.00 52.50 85.00

Fear 57.58 63.64 18.18 30.30 51.52 63.64 72.73 54.55 60.61 30.30 75.76

Happiness 94.05 94.05 79.76 95.24 91.67 95.24 91.67 92.86 94.05 55.95 94.05

Neutral 90.72 92.78 68.04 82.47 87.63 89.69 88.66 87.63 89.69 24.74 88.66

Sadness 71.43 71.43 07.14 66.67 64.29 69.05 73.81 71.43 80.95 42.86 73.81

Surprise 94.67 94.67 81.33 86.67 92.00 96.00 94.67 97.33 96.00 54.67 94.67

Average 84.03 85.75 56.76 76.66 79.12 84.52 85.50 84.03 87.22 44.47 86.49

IMPCa ?0.49 -0.25 ?27.27 ?10.56 -34.65

GW

Anger 50.00 50.00 13.89 66.67 55.56 47.22 52.78 58.33 41.67 27.78 50.00

Disgust 60.00 60.00 15.00 40.00 47.50 62.50 65.00 57.50 65.00 42.50 62.50

Fear 48.48 48.48 0.00 45.45 78.79 51.52 45.45 30.30 27.27 30.30 48.48

Happiness 85.71 85.71 76.19 70.24 94.05 88.10 86.90 92.86 86.90 40.48 83.33

Neutral 78.35 78.57 56.12 70.41 47.42 80.61 82.47 82.65 78.57 40.82 81.63

Sadness 52.38 54.76 14.29 58.54 69.05 54.76 54.76 45.24 42.86 40.48 61.90

Surprise 96.00 96.00 84.00 81.33 94.64 94.67 93.33 96.00 98.67 56.00 97.33

Average 73.71 74.02 48.77 65.85 71.25 75.00 75.18 74.51 71.57 41.67 75.49

IMPC ?1.29 ?1.16 ?25.74 ?5.72 –29.58

ZM

Anger 52.78 50.00 25.00 44.44 22.22 41.67 47.22 47.22 41.67 47.42 47.22

Disgust 70.00 62.50 55.00 52.50 07.50 62.50 62.50 62.50 65.00 55.00 62.50

Fear 45.45 39.39 06.06 27.27 18.18 48.48 54.55 39.39 36.36 36.36 51.52

Happiness 85.71 85.71 83.33 88.10 19.05 90.48 86.90 85.71 95.24 57.14 90.48

Neutral 81.44 79.38 87.63 83.51 18.56 80.41 79.38 81.44 83.51 26.80 83.51

Sadness 42.86 40.48 30.95 07.14 19.05 52.38 50.00 52.38 52.38 42.86 57.14

Surprise 89.33 93.33 86.67 92.00 29.33 93.33 90.67 94.67 97.33 66.67 93.33

Average 73.22 71.74 65.36 67.08 19.90 74.20 73.46 73.46 75.92 47.42 76.17

IMPC ?0.98 ?1.72 ?8.10 ?8.84 ?27.52

FFP

Anger 63.89 55.56 05.56 55.56 00.00 66.67 61.11 58.33 66.67 38.89 63.89

Disgust 62.50 80.00 02.50 42.50 15.00 77.50 77.50 80.00 82.50 47.50 78.57

Fear 54.55 54.55 00.00 60.61 06.06 57.58 48.48 51.52 60.61 36.36 64.52

Happiness 90.48 90.48 33.33 54.76 07.14 95.24 94.05 92.86 91.67 48.81 94.05

Neutral 89.69 96.91 37.11 59.79 09.28 89.69 87.63 91.75 88.66 28.87 92.78

Sadness 66.67 76.19 00.00 54.76 30.95 76.19 76.19 73.81 76.19 57.14 80.95

Surprise 96.00 98.67 70.67 84.00 26.67 100 98.67 98.67 97.33 49.33 98.67

Average 80.84 85.01 29.48 60.69 13.76 85.50 83.29 84.03 84.77 43.00 86.73

IMPC ?4.66 -1.72 ?54.55 ?24.08 ?29.24

a Improvement/decline by the MPC features
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respectively). This problem has been pointed out in [18],

where the dimensionality of feature space has been indi-

cated as one of the critical points of SRC, i.e., the number

of features should be sufficiently large for a given classi-

fication problem. The same reason is true for the SRCMPC

systems, as the number of MPC features is very low (21

features).

Only from the classification point of view can we see

that SVMs with OAA strategy are performing better than

SVMs with OAO strategy; on average, SVMOAA
ORG and

Table 3 Classification accuracy (%) of various FER systems on JAFFE dataset

Trained on ORG features Trained on MPC features MPC-FER

SVMOAO SVMOAA kNN RBFNN SRC SVMOAO SVMOAA kNN RBFNN SRC

LBP

Anger 83.33 80.00 43.33 73.33 83.33 83.33 73.33 76.67 80.00 23.13 80.00

Disgust 79.31 82.76 65.52 68.97 79.31 86.21 86.21 89.66 68.97 13.79 86.21

Fear 75.00 78.13 71.88 71.88 87.50 71.88 78.13 78.13 78.13 28.13 78.13

Happiness 87.10 96.77 74.19 90.32 90.32 100 100 100 100 03.23 96.77

Neutral 66.67 90.00 63.33 76.67 93.33 86.67 83.33 83.33 86.67 10.00 83.33

Sadness 83.87 67.74 45.16 77.42 61.29 64.52 77.42 54.84 74.19 32.26 80.65

Surprise 96.67 96.67 40.00 90.00 90.00 93.33 90.00 90.00 93.33 00.00 100

Average 81.69 84.51 57.75 78.40 83.57 83.57 84.04 81.69 83.10 15.96 86.38

IMPC ?1.88 -0.47 ?23.94 ?4.70 -67.61

GW

Anger 90.00 90.00 33.33 79.31 80.00 90.00 86.67 90.00 90.00 50.00 86.67

Disgust 79.31 79.31 37.93 66.67 72.41 79.31 86.21 82.76 79.31 41.38 89.66

Fear 96.88 87.50 65.63 59.38 87.50 93.75 96.88 84.38 87.50 62.50 81.25

Happiness 83.87 90.32 64.52 74.19 61.29 83.87 87.10 87.10 90.32 51.61 100

Neutral 93.33 80.00 76.67 70.00 90.00 96.67 93.33 90.00 96.67 50.00 86.67

Sadness 77.42 74.19 38.71 70.97 61.29 74.19 77.42 70.97 70.97 45.16 74.19

Surprise 80.00 96.55 60.00 86.67 73.33 93.33 90.00 90.00 93.33 36.67 96.67

Average 85.92 85.38 53.99 72.30 75.12 87.32 88.26 84.98 86.85 48.36 87.79

IMPC ?1.4 ?2.88 ?30.99 ?14.55 -26.76

ZM

Anger 80.00 73.33 76.67 80.00 16.67 83.33 80.00 83.33 80.00 60.00 86.67

Disgust 72.41 82.76 62.07 62.07 06.90 79.31 79.31 82.76 79.31 55.17 89.66

Fear 78.13 96.88 78.13 71.88 00.00 78.13 84.38 81.25 78.13 31.25 75.00

Happiness 90.32 87.10 67.74 80.65 25.81 87.10 90.32 90.32 87.10 29.03 93.55

Neutral 93.33 96.67 60.00 70.00 16.67 90.00 96.67 96.67 93.33 33.33 83.33

Sadness 58.06 61.29 38.71 64.52 09.68 61.29 54.84 45.16 70.97 32.26 61.29

Surprise 83.33 90.00 70.00 83.33 13.33 90.00 90.00 93.33 83.33 53.33 96.67

Average 79.34 84.04 64.79 73.24 12.68 81.22 82.16 81.69 81.69 41.78 83.57

IMPC ?1.88 -1.88 ?16.9 ?8.45 ?29.10

FFP

Anger 76.67 73.33 66.67 76.67 13.33 73.33 83.33 76.67 73.33 40.00 76.67

Disgust 65.52 62.07 65.52 68.97 06.90 75.86 72.41 75.86 68.97 41.38 89.66

Fear 84.38 87.50 68.75 87.50 21.88 84.38 87.50 84.38 78.13 31.25 84.38

Happiness 87.10 83.87 58.06 67.74 03.23 80.65 83.87 90.32 90.32 19.35 87.10

Neutral 93.33 90.00 53.33 63.33 30.00 90.00 93.33 93.33 93.33 30.00 93.33

Sadness 77.42 77.42 48.39 74.19 22.58 80.65 77.42 80.65 83.87 38.71 67.74

Surprise 80.00 86.67 66.67 86.67 20.00 93.33 83.33 90.00 90.00 63.33 96.67

Average 80.75 80.28 61.03 75.12 16.90 82.63 83.10 84.51 82.63 37.56 84.98

IMPC ?1.88 ?2.82 ?23.48 ?7.51 ?20.66
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SVMOAA
MPC improve 2.1 and 1.0 % the performances of

SVMOAO
ORG and SVMOAO

MPC, respectively,5. Moreover, consid-

ering the MPC-FER as a complex classifier in which it uses

clustering and classification together, one can see that this

method improves the performances of SVMOAO
MPC and

SVMOAA
MPC about 2.2 and 1.2 %, respectively.

As Table 2 shows, the best overall performance on Cohn–

Kanade dataset (87.2 %) belongs to RBFNNMPC; where the

original features used to produce MPCs are LBPs, indicated

by RBFNNMPC(LBP). The SVMOAA
MPCðGWÞ; with an average

accuracy of 88.3 % on JAFFE dataset, is the dominating

system (Table 3), and as Table 4 demonstrates, MPC-

FER(LBP) is the best system among the other systems with an

average accuracy of 92.5 % on TFEID dataset. The confusion

matrices of the best performing systems on Cohn–Kanade,

JAFFE and TFEID datasets are provided in Tables 5, 6 and 7,

respectively.

From the confusion matrices, we can observe that the

two most confused expressions over all the datasets are

Neutral and Sadness. By contrast, Surprise is the least

confused expression, and the highest recognition rate,

considering only the best performing systems, also belongs

to Surprise with an average accuracy of 95.3 %.

6.1 Statistical comparison of the FER systems

In order to statistically compare the performance of the

facial expression recognition systems, we follow the two-

step procedure recommended by Demšar [11]. The first

Table 4 Classification accuracy (%) of various FER systems on TFEID dataset

Trained on ORG features Trained on MPC features MPC-FER

SVMOAO SVMOAA kNN RBFNN SRC SVMOAO SVMOAA kNN RBFNN SRC

LBP

Anger 79.41 88.24 47.06 73.53 82.35 85.29 85.29 82.35 85.29 35.29 94.12

Disgust 90.00 87.50 75.00 95.00 90.00 95.00 97.50 95.00 97.50 07.50 90.00

Fear 82.50 85.00 35.00 80.00 82.50 77.50 80.00 82.50 82.50 07.50 85.00

Happiness 97.50 100 97.50 100 100 100 100 97.50 97.50 10.00 100

Neutral 97.44 100 87.18 84.62 100 97.44 97.44 97.44 97.44 30.77 97.44

Sadness 76.92 76.92 41.03 58.97 74.36 79.49 84.62 76.92 76.92 15.38 82.05

Surprise 97.22 97.22 91.67 100 97.22 100 100 100 100 55.56 100

Average 88.81 90.67 67.91 84.70 89.55 90.67 92.16 90.30 91.04 22.39 92.54

IMPC ?1.86 ?1.49 ?22.39 ?6.34 -67.16

GW

Anger 76.47 70.59 58.82 70.59 70.59 76.47 79.41 73.53 76.47 41.18 85.29

Disgust 82.50 87.50 75.00 70.00 77.50 77.50 85.00 82.50 85.00 50.00 82.50

Fear 60.00 72.50 40.00 57.50 70.00 65.00 70.00 62.50 67.50 22.50 65.00

Happiness 87.50 87.50 95.00 95.00 77.50 95.00 97.50 97.50 95.00 52.50 90.00

Neutral 76.92 79.49 66.67 61.54 87.18 84.62 71.79 71.79 76.92 12.82 92.31

Sadness 66.67 64.10 35.90 71.79 61.54 58.97 76.92 58.97 61.54 23.08 71.79

Surprise 97.22 100 91.67 94.44 97.22 88.89 100 94.44 94.44 44.44 100

Average 77.99 80.22 66.04 74.25 77.24 77.99 82.84 77.24 79.48 35.07 83.58

IMPC 0 ?2.62 ?11.2 ?5.23 -42.17

ZM

Anger 85.29 76.47 55.88 70.59 17.65 76.47 79.41 73.53 79.41 14.71 76.47

Disgust 87.50 85.00 70.00 87.50 12.50 90.00 90.00 90.00 90.00 30.00 87.50

Fear 65.00 72.50 32.50 69.23 25.00 72.50 67.50 67.50 65.00 25.00 77.50

Happiness 95.00 95.00 97.50 100 12.50 97.50 97.50 97.50 97.50 45.00 90.00

Neutral 76.92 74.36 84.62 74.36 17.95 84.62 82.05 76.92 82.05 38.46 79.49

Sadness 56.41 64.10 17.95 35.00 17.95 53.85 58.97 51.28 58.97 28.21 71.79

Surprise 94.44 97.22 100 100 05.56 100 100 100 99.99 55.56 97.22

Average 79.85 80.60 65.30 76.49 15.67 82.09 82.09 79.48 81.72 33.96 82.84

IMPC ?2.24 ?1.49 ?14.18 ?5.23 ?18.29

5 In the averaging process only the results of the systems using LBP

features are considered.
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step is to accept or reject the null-hypothesis. The null-

hypothesis indicates that the performances of the systems

of interest are the same and there are no significant dif-

ferences between their performances. If the null-hypothesis

is rejected, we proceed to our comparison with a post hoc

test to analyze the results in more detail.

In the first step, which is called the Friedman test,

average ranks, Rj ¼ 1
N

P
i r

j
i ; are calculated for every sys-

tem, where ri
j is jth system’s rank on ith dataset. In case of

tie, the average rank is assigned to ri
j. Table 8 shows a

summary of the classification accuracies of the FER sys-

tems along with the assigned ranks.

Once the average ranks are assigned, the Friedman

statistic is computed as follows:

v2
F ¼

12N

k k þ 1ð Þ
X

j

R2
j �

k k þ 1ð Þ2

4

" #
; j ¼ 1; . . .; k; ð10Þ

where k and N indicate the number of classifiers and

datasets, respectively. In our experiments, the value of k

and N are both equal to 11. Substituting in Eq. (10), we

obtain the Friedman statistic with a value of 91.01. It has

been shown that when k and N are not large enough, the

Friedman statistic is not appropriate and it is undesirably

conservative, thus, the following correction has been

proposed [57]:

FF ¼
N � 1ð Þv2

F

N k � 1ð Þ � v2
F

: ð11Þ

The FF statistic is distributed according to the F-distri-

bution with (k - 1) and (k - 1) 9 (N - 1) degrees of

freedom. Substituting the value of vF
2 in Eq. (11), we obtain

FF = 47.94. The critical value for F(10,100) with a

significance level of a = 0.05 is 1.93. Therefore, we can

quite safely reject the null-hypothesis (FF [ 1.93), which

is to say that the performances of the systems of interest are

not the same.

The next step is to study the differences between the

performances in detail. To this end, a step-down procedure,

introduced by Holm [58], is applied. In this test, the

hypotheses (systems) are sorted in an ascending manner

according to their significance value, pi, and are then

Table 5 Confusion matrix of

RBFNNMPC(LBP) on

Cohn–Kanade dataset

Anger Disgust Fear Happiness Neutral Sadness Surprise

Anger 27 7 1 1

Disgust 36 4

Fear 1 2 20 1 5 4

Happiness 79 3 2

Neutral 2 2 1 87 4 1

Sadness 1 1 6 34

Surprise 3 72

Table 6 Confusion matrix of

SVMOAA
MPC ðGWÞ on JAFFE

dataset

Anger Disgust Fear Happiness Neutral Sadness Surprise

Anger 26 2 2

Disgust 2 25 2

Fear 31 1

Happiness 27 3 1

Neutral 28 1 1

Sadness 1 1 2 1 2 24

Surprise 2 1 27

Table 7 Confusion matrix of

MPC-FER (LBP) on TFEID

dataset

Anger Disgust Fear Happiness Neutral Sadness Surprise

Anger 32 1 1

Disgust 1 36 1 1 1

Fear 1 34 2 1 2

Happiness 40

Neutral 1 38

Sadness 2 2 3 32

Surprise 36
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sequentially tested by comparing pi with the adjusted

a, i.e., a/(k - i). If pi is below adjusted a, we reject the

corresponding hypothesis and proceed to examine the next

hypothesis. Once a certain null-hypothesis cannot be

rejected, we hold the remaining hypothesis.

To calculate the significance value p for each and every

system, z statistic is computed as follows:

zj ¼ R0 � Rj

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k k þ 1ð Þ

6N

r
; j ¼ 0; . . .; k: ð12Þ

where R0 is the average rank of the system that we are

interested in the comparison of its performance with the

other systems. Then, the value of p is found from the

normal distribution table based on z. Note that the value of

p is multiplied by two, as a two-tailed test is used.

In order to have meaningful p values, we only consider

comparing the seven best ranked systems among the 11

systems, which are as follows: SVMOAO
ORG ; SVMOAA

ORG ;

SVMOAO
MPC ; SVMOAA

MPC ; RBFNNMPC; kNNMPC and MPC-FER

(see Table 8). We select the SVMOAO
ORG as the controller

system with an average rank of R0 = 6.409. Table 9 shows

the ordered hypothesis according to their p values. This table

also includes corresponding z statistics and adjusted as.

According to Table 9, the first null-hypothesis is rejec-

ted as its p value (0.0003) is below the adjusted a (0.0083).

This is to say that the MPC-FER outperforms the other

systems and the difference between its performance and

the other remaining systems is statistically significant. The

remaining hypotheses are retained, as the p value of the

next hypothesis, SVMOAA
MPC ; is greater than the adjusted a

(0.0100).

6.2 Visualizing the effectiveness of MPC

As it pointed out in [59], compactness and separability of

regions in the input feature space are two basic

assumptions for a given pattern recognition problem. So,

the more compact and separate the patterns, the better

classification performance it will be. In this section, to

further the empirical results, we aim to visually demon-

strate the effectiveness of MPC in terms of compactness

and separability. To this end, a two-dimensional SOM

network is used to map features’ spaces to 2D spaces, so

that we can plot 2D maps of the MPC features and the

original features in order to visually study their effec-

tiveness. The size of the SOM network is chosen to be

200 9 200, and the Euclidean distance is used as a dis-

tance measure. Figure 5 shows the resulting clusters as

2D maps generated by SOM on Cohn–Kanade dataset.

The demonstrated results are drawn from one run of

tenfold cross validation.

Table 9 Ordered hypotheses in an ascending manner according to

their p values (k = 7 and a = 0.05)

i System z p Adjusted a [i.e., a/(k - i)]

1 MPC-FER 3.6320 0.0003 0.0083

2 SVMOAA
MPC

2.4106 0.0159 0.0100

3 SVMOAO
MPC

1.7356 0.0826 0.0125

4 RBFNNMPC 1.7035 0.0885 0.0166

5 SVMOAA
ORG

1.5428 0.1229 0.0250

6 kNNMPC 0.5785 0.5629 0.0500

Table 8 Summary of the FER systems’ performances. The ranks are indicated in the parentheses

Trained on ORG features Trained on MPC features MPC-FER

SVMOAO SVMOAA kNN RBFNN SRC SVMOAO SVMOAA kNN RBFNN SRC

CK

LBP 84.0 (6.5) 85.7 (3) 56.8 (10) 76.7 (9) 79.1(8) 84.5 (5) 85.5 (4) 84.0 (6.5) 87.2(1) 44.4 (11) 86.5 (2)

GW 73.7 (6) 74.0 (5) 48.8 (10) 65.8 (9) 71.2(8) 75.0 (3) 75.2 (2) 74.5 (4) 71.6(7) 41.6 (11) 75.5 (1)

ZM 73.2 (6) 71.7 (7) 65.4 (9) 67.1 (8) 19.9(11) 74.2 (3) 73.5 (4.5) 73.5 (4.5) 75.9(2) 47.4 (10) 76.1 (1)

FFP 80.8 (7) 85.0 (3) 29.5 (10) 60.7 (8) 13.7(11) 85.5 (2) 83.3 (6) 84.0 (5) 84.8(4) 43.0 (9) 86.7 (1)

JAFFE

LBP 81.7 (7.5) 84.5 (2) 57.7 (10) 78.4 (9) 83.6(4.5) 83.6 (4.5) 84.0 (3) 81.7 (7.5) 83.1(6) 15.9 (11) 86.4 (1)

GW 85.9 (5) 85.4 (6) 54.0 (10) 72.3 (9) 75.1(8) 87.3 (3) 88.3 (1) 85.0 (7) 86.8(4) 48.3 (11) 87.8 (2)

ZM 79.3 (7) 84.0 (1) 64.8 (9) 73.2 (8) 12.6(11) 81.2 (6) 82.1 (3) 81.7 (4.5) 81.7(4.5) 41.7 (10) 83.6 (2)

FFP 80.75 (6) 80.3 (7) 61.0 (9) 75.1 (8) 15.9(11) 82.6 (4.5) 83.1 (3) 84.5 (2) 82.6(4.5) 37.5 (10) 85.0 (1)

TFEID

LBP 88.8 (8) 90.7 (4.5) 67.9 (10) 84.7 (9) 89.5(7) 90.7 (4.5) 92.2 (2) 90.3 (6) 91.0(3) 22.3 (11) 92.5 (1)

GW 78.0 (5.5) 80.2 (3) 66.0 (10) 74.2 (9) 77.2(7.5) 78.0 (5.5) 82.8 (2) 77.2 (7.5) 79.4(4) 35.0 (11) 83.6 (1)

ZM 79.8 (6) 80.6 (5) 65.0 (9) 76.4 (8) 15.6(11) 82.1 (2.5) 82.1 (2.5) 79.4 (7) 81.7(4) 33.9 (10) 82.8 (1)

Average rank (R) 6.409 4.227 9.636 8.545 8.909 3.955 3.000 5.591 4.000 10.455 1.273
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Figure 5 clearly demonstrates that the MPC features are

clustered very well and their compactness and separability

are markedly better than the corresponding original fea-

tures. It indicates that using pair-wise class similarity as a

feature will result in more homogenous features for a group

of the same facial expressions. As a result, the classifiers,

which are trained based on the MPC features, and the

clustered MPC features in particular, will have a better

performance, as the empirical results have already shown.

6.3 Generalization performance on across datasets

In this section our goal is to evaluate the generalization

performance of the facial expression recognition systems in

a more challenging manner, one in which is more likely to

appear in real-world applications. This evaluation is an

across dataset evaluation where the training and the testing

sets are not from the same dataset [23]. More precisely, we

use one dataset among the introduced datasets as a training

set and the other datasets as the testing sets. To this end, the

Cohn–Kanade dataset is chosen as the training dataset and

all the selected samples (totally 407 samples) from this

dataset are used to train the systems. For the evaluation

purpose, we use the JAFFE and TFEID datasets as the

testing sets. For these datasets, we also use all the samples

that we used in the previous experiments. In this experi-

ment, we skip evaluating the RBFNN and kNN-based

systems. The results are presented in Table 10.

Table 10 shows that the MPC-based systems are again

performing better than the ORG-based systems on the

across datasets evaluation; considering the LBP features as

the best original features, MPC-FER improves the best

recognition rates by 6.7 and 3.0 % on JAFFE and TFEID

datasets, respectively. We, therefore, can conclude that

MPCs contain more informative features than the original

features that help the classifiers to be trained with a better

generalization for unseen samples from different datasets.

However, the generalization performances of the systems

using original GW features are better than the systems

using GW-based MPC features. This is because of the huge

number of the features in GW that may result in high-

variance hBs [60]. As a consequence, the produced MPC

features may not contain generalized pair-wise class simi-

larities, and the classifiers trained on these features may not

have an acceptable performance on different datasets

accordingly. We can also observe that the performances of

the systems using original LBP features are better than the

other ORG-based systems. This clearly indicates that the

LBP, compared to GW and ZM, is the dominating infor-

mation representation approach.

As can be seen from Table 10, the results on TFEID

dataset are better than those of JAFFE. This is due to the

fact that the samples demonstrating expressions in TFEID

are more authentic than the samples of JAFFE as some of

the subjects in JAFFE did not perform the requested

emotions correctly or perspicuously enough [24].

6.4 Comparison with other methods

In order to fairly compare the performance of the proposed

framework with one of the most recent works introduced in

[29], GSNMF, we follow the experimental setup used in

[29] and report the results (as our method) in Table 1 to

ease the comparison. The experimental setup is as follows

[29]; a subset of 30 individuals of Cohn–Kanade dataset is

selected and only six expressions (excluding neutral) are

considered. Then, the training set is composed using one of

the last eight peak frames of each sequence and the

remaining frames are used to compose the testing set.

To avoid any effects of one single run, we repeat the

aforementioned procedure 10 times in which 30 individuals

are randomly selected at each run and the results are

Fig. 5 2D maps of generated

clusters on Cohn–Kanade

dataset using SOM. In the

demonstrated maps, anger,

disgust, fear, happiness, neutral,

sadness and surprise are

indicated by red, gray, yellow,

orange, green, blue and pink,

respectively
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averaged at the end. And to derive the MPC features, we

use the LBP features as the original features.

As the results show in Table 1, the performance of two

systems based on the proposed framework, namely MPC-

FER and SVMOAA
MPC ; are comparable with the performance

of GSNMF, where their performances are, respectively,

only 0.2 and 0.4 % lower than GSNMF.

7 Conclusions and future work

The purpose of the MPC approach is to derive a set of new

discriminative and informative features from the original

features by the means of pair-wise class similarities. In this

paper, we studied and assessed the effectiveness of the

MPC features for the representation and recognition of

facial expressions via an MPC-based framework. In the

experiments, we introduced 11 different systems from

which five were based on the original features. The other

five were based on the derived MPC features, and the last

one was MPC-FER. The original features used in the

experiments were LBP, GW, ZM and FFP, and the clas-

sification algorithms included SVMOAO; SVMOAA; kNN,

RBFNN and SRC. Based on the extensive experiments

conducted on three publicly available datasets, Cohn–

Kanade, JAFFE, and TFEID, we draw our conclusions as

follows:

• It was observed that among the original features of

interest, LBP features were the dominating features for

the representation of facial expressions. It was also

observed that the MPC features, derived from the LBP

features, outperformed the other MPC features.

• The results indicated that the MPC features improved

the classification accuracy in most of the cases, among

which the improvements in kNN and RBFNN-based

systems were remarkable.

• We statistically showed that the MPC features

improved the performance of automatic facial expres-

sion recognition significantly. It was also shown that

the MPC features markedly improved the generaliza-

tion performance on across dataset evaluation.

• Finally, from the classification point of view, we

observed that the cluster-based classifier and the SVM

with OAA strategy preformed better than kNN,

RBFNN, SVM with OAO strategy and SRC.

In this study, we used several basic information repre-

sentation approaches as the original features and derived the

MPC features based on them accordingly. However, it is of

interest to see how well the performance of facial expression

recognition can be improved when some of the enhanced

information representation approaches such as; boosted-GW

[23], boosted-LBP [25], GMFA [61], boosted-WM [62], etc.,

are used to derive the MPC features. For example, Littlewort

et al. [23] used Adaboost to select GW features, and they

improved the recognition rate of their system by 5.3 %. Shan

et al. [25] showed that the boosted-LBP features, compared

to the LBP features, improved the classification accuracy by

about 2.5 %. In [61], Wang and Guo used a Gabor-based

marginal Fisher analysis (GMFA) approach to enhance the

GWs, and they improved the classification accuracy of

GW ? LDA ? kNN system by 1.4 and 3.6 % on ORL and

FERET datasets, respectively. In another work [62], the

authors used wavelet moment (WM) invariants to represent

facial expressions and AdaBoost to select effective features.

Their results indicated that the performance of the FER

system on JAFFE dataset using boosted-WM improved by

4.9 and 1.2 % compared to the systems using GW features

and ZM features, respectively. Hence, as our future work, we

are motivated to study and examine the effect of some of the

enhanced features as the original features on the performance

of the MPC-based FER system (step 1). We will also study

the effect of different combinations of the classifiers (2nd

and 3rd steps) on the performance of the MPC-based FER

systems.
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Table 10 Generalization

performances of the systems on

across datasets; trained on

Cohn–Kanade dataset and tested

on JAFFE and TFEID datasets

The improvements/declines in

the performances achieved by

the MPC features on the same

classifiers are indicated in the

parentheses

SVMOAO
ORG SVMOAA

ORG SVMOAO
MPC SVMOAA

MPC
MPC-FER

JAFFE

LBP 38.50 34.27 47.42 (?08.92) 45.54 (?11.27) 45.19

GW 21.13 25.82 20.66 (-00.47) 23.00 (-02.82) 20.66

ZM 35.68 32.39 44.13 (?08.45) 42.72 (?10.36) 40.29

TFEID

LBP 48.13 47.39 55.60 (?07.47) 54.10 (?06.71) 51.13

GW 24.25 30.22 20.52 (-03.73) 25.37 (-04.85) 24.12

ZM 44.40 43.28 48.51 (?04.11) 46.27 (?02.99) 45.76
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