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Abstract Control chart pattern analysis is a crucial task

in statistical process control. There are various types of

nonrandom patterns that may appear on the control chart

indicating that the process is out of control. The presence

of nonrandom patterns manifests that a process is affected

by assignable causes, and corrective actions should be

taken. From a process control point of view, identification

of nonrandom patterns can provide clues to the set of

possible causes that must be searched; hence, the trouble-

shooting time could be reduced in length. In this paper, we

discuss two implementation modes of control chart pattern

recognition and introduce a new research issue concerning

pattern displacement problem in the process of control

chart analysis. This paper presents a neural network-based

pattern recognizer with selected features as inputs. We

propose a novel application of statistical correlation anal-

ysis for feature extraction purposes. Unlike previous stud-

ies, the proposed features are developed by taking the

pattern displacement into account. The superior perfor-

mance of the feature-based recognizer over the raw data-

based one is demonstrated using synthetic pattern data.

Keywords Nonrandom patterns � Features � Pattern

recognition � Correlation analysis � Neural networks

1 Introduction

Since today’s industrial firms are moving towards agile

manufacturing, rapid and economic on-line statistical pro-

cess control (SPC) solutions are in great demand. Statistical

process control concepts and methods have been success-

fully implemented in manufacturing industries for several

decades. As one of the primary SPC tools, control chart

plays a very important role in maintaining an acceptable

level of process variability. The control charts may signal

an out-of-control condition when either one or more points

fall outside the control limits or plotted points show some

nonrandom patterns of behavior. Any nonrandom patterns

shown on control charts imply possible assignable causes

that may deteriorate the process performance. In many

situations, the pattern of the plotted points will provide

useful process diagnostic information which can be used to

make process changes or adjustments that reduce variation.

Hence, timely detecting and recognizing control chart

patterns (hereafter referred to as CCPs) are very important

in the implementation of SPC. Under the pattern recogni-

tion approach, numerous researchers [1–3] have defined

several types of out-of-control nonrandom patterns with a

specific set of possible causes. Various supplementary rules

known as runs rules or runs tests have been suggested to

the practitioners to detect nonrandom patterns. The Wes-

tern Electric Handbook [3] first proposed a set of zone rules

for identifying the out-of-control process by observing

systematic patterns on the control charts. Nelson [1, 2]

further developed a set of runs rules for nonrandom pat-

terns. For purposes of control chart pattern recognition, the

application of runs rules is not without drawbacks. As

already pointed out by Cheng [4], there is no one-to-one

mapping relation between a runs rule and a nonrandom

pattern. There might be several patterns associated with a
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particular rule. For this reason, interpretation of the process

data often relies on the skill and experience of the quality

control personnel to identify the existence of a nonrandom

pattern in the process.

In the increasingly common situation of automated

production, the intelligent pattern recognition of control

charts has been an important and widely studied topic. An

efficient control chart pattern recognition system can

ensure consistent and unbiased interpretation of CCPs

leading to fewer false alarms and better implementation of

control charts. Several techniques have been proposed to

control chart pattern recognition. These include statistical

[5, 6], rule-based system [7, 8], artificial neural network

(ANN) techniques [4, 9–13], and support vector machines

[14]. Among different methods, neural networks have been

popularly used for control chart pattern recognition over

the past few years. Many researchers have obtained

promising results on control chart pattern recognition

applying different neural networks methods. For a com-

prehensive review of the applications of neural networks

for process monitoring, the interested reader is referred to

Zorriassatine and Tannock [15], Barghash and Santarisi

[16], and Masood and Hassan [17]. In the following, we

review some important issues related to this work,

including input vector and implementation modes of pat-

tern recognition.

Most of the previous works in the literature used raw

(unprocessed) process data as the input vector for control

chart pattern recognition. Recently, a few researchers

[18–22] have attempted to recognize control chart patterns

using extracted features from raw process data as the input

vector. The reported advantages include improvement of

recognition performance, robustness to the amount of noise

embedded in monitoring data, and saving of computation

time. In the existing literature, features could be obtained

in various forms, including statistical features [23], shape

features [19, 21], and Wavelet features [18].

For purposes of control chart pattern recognition, it is

not enough to look at each observation in time sequentially.

Rather, one has to deal with sliding analysis (monitoring)

window. The window size, m, is usually determined with

the consideration of computational effort and recognition

performance. Typical values of m range from 8 to 60

samples, with m = 16 and 32 being popular choices [15].

The approaches in the literature to the pattern recognition

for control charts can be divided into two main categories.

One is the direct continuous recognition [4, 10, 11].

Another is referred to by Hassan and Baksh [23] as ‘‘rec-

ognition only when necessary’’ approach. In the continuous

recognition mode, the recognition activities are performed

in a continuous manner for all data streams as they appear

in the sliding analysis window. One significant problem of

the continuous monitoring mode is unnecessary recognition

of stable process. Besides, premature attempts of recogni-

tion may increase the possibility of incorrect diagnosis

because of insufficient information. This point is evident

from an example shown in Fig. 1 where a cycle is mis-

recognized as a trend or a shift.

A stability test procedure called abnormality detector is

required in ‘‘recognition only when necessary’’ approach to

determine the necessity to recognize prior to triggering the

recognition process. This implementation mode is intended

to avoid unnecessary recognition of stable processes and

allow timely recognition of unstable processes. Under this

approach, all the process data streams will be tested for its

stability prior to the recognition process. If a data stream is

considered as coming from a stable process, then the pro-

cess will continue without any recognition. With this

configuration, attempts to classify streams of process data

are allowed only when they are identified as possibly

coming from an unstable process. Hassan and Baksh [23]

suggested using runs rules and CUSUM (short for cumu-

lative sum) as a procedure to determine process stability.

Wang et al. [8] suggested using correlation analysis to

determine if abnormality exists prior to a recognition

procedure.

One major assumption made by most previous studies is

that the pattern has a fixed starting point in the develop-

ment stage (training). However, this assumption is not

always realistic. Using an analysis window approach, some

basic pattern features might change over time due to the

time-varying characteristics of nonrandom patterns. The

shape of the pattern collected in an analysis window may or

may not be the same as a specific pattern considered in the

development stage. The variations may be due to the

starting point of a pattern in the analysis window (e.g.,

trend or shift) or the phase difference of a pattern (e.g.,

cyclic or systematic pattern). This phenomenon is referred

to by the authors as ‘‘pattern displacement’’ in this paper.

Figure 2 provides several examples to support the above

argument. The examples (from left to right) include: (1)

difference in starting point of the trend; (2) difference in

shift position in terms of sampling time; (3) the phase

difference of cycles; and (4) difference in starting location
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Fig. 1 An example of premature attempt of recognition

76 Pattern Anal Applic (2015) 18:75–86

123



of a systematic pattern in terms of above or below average.

These examples show that the shape of a particular pattern

appeared in the analysis window (the subplots in the lower

row) might be different from that of a prototype learned in

the development stage (the subplots in the upper row). The

level of pattern displacement may be influenced by the

disturbance level or the sensitivity of a stability test. For

instance, a large shift may result in a pattern with shifting

position near the end of analysis window. A sensitive sta-

bility test can detect the process shift earlier, thus produces

a shift pattern with fewer number of shifted observations.

Al-Assaf [18] conducted several experiments and found

that the performance of the pattern recognizer is highly

dependent on the location and duration of a pattern

appearing in the analysis window. The variations of non-

random patterns considered in previous research are too

simplified. Hassan et al. [20] considered the case that a

shift only appears in the middle of an analysis window. In

Wang et al. [8] work, the change points of shifts are ran-

domly selected around half of the window. In view of this,

it is desirable to construct a set of pattern features that are

robust against the pattern displacement. Considering all

possible variants of a pattern during the pattern recog-

nizer’s development stage is one way to approach the

displacement problem. However, this method may com-

plicate the training of the pattern recognizer considerably

and consequently degrade the recognition performance. An

alternative way is to pre-compute a set of features and use

these features as the input vector of a pattern recognizer.

However, special care should be given to the pattern dis-

placement problem when constructing the relevant fea-

tures. The plots in the leftmost column of Fig. 2 are used to

illustrate the issues introduced above. The plots in this

figure are two-data series which differ in the starting point

of a trend. The feature ‘‘apm’’ proposed by Pham and Wani

[21] is used for differentiate a trend from other patterns.

Based on 1,000 simulation replicates, the average value of

feature ‘‘apm’’ is (a) 40.21 for data series and (b) 20.89 for

data series. The distributions of the values of feature ‘‘apm’’

are shown in Fig. 3. This example shows that the time-

varying nature of pattern displacement may dilute the

usefulness of a distinct feature. Similar observations can be

found in the feature ‘‘RVPEPE’’ introduced by Gauri and

Chakraborty [19]. Figure 4 shows the distributions of the

values of this feature for two different data series. We

notice that the average values are quite different, (a) 3.49

for data series and (b) 1.26 for series.

The objective of this paper is to provide an appropriate

solution to address the aforementioned problems. The

proposed feature-based approach consists of two main

steps. First, a novel application of correlation analysis is

used to extract a set of relevant CCP features that are less

affected by the displacement of nonrandom patterns. Then,

we develop a neural network-based CCP recognizer with

extracted features as the input vector. Its performance is

compared with that of a raw data-based recognizer.

Although the proposed methodology can be applied to

either implementation mode of control chart pattern rec-

ognition, the discussions and performance reported are in

the context of ‘‘recognition only when necessary’’ mode.

Since the abnormality detector is not a major concern of

the current study, some pattern parameters are manipulated

to simulate the diversity of patterns that may be identified

by a detector. The various pattern parameters will be dis-

cussed later in this paper.

The remaining parts of the paper are arranged as fol-

lows. After describing a set of equations useful for gener-

ating nonrandom patterns in Sect. 2, we introduce the
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Fig. 2 Illustrations of pattern

displacement using noise-free

data
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Fig. 4 The distributions of the values of feature RVPEPE

Pattern Anal Applic (2015) 18:75–86 77

123



proposed pattern features computed from correlation

analysis in Sect. 3. Subsequently, a description of the

neural network-based recognizer is presented in Sect. 4.

Section 5 provides the experimental results and discussions

on the comparison between the raw data-based recognizer

and feature-based recognizer. Finally, we conclude the

paper in Sect. 6.

2 Patterns generation

In the research described here, six commonly found non-

random patterns on control charts were considered,

namely, upward trend (UT), downward trend (DT), upward

shift (US), downward shift (DS), cyclic pattern (CYC), and

systematic pattern (SYS). Figure 5 gives an example for

each pattern class. Ideally, sample patterns should be

developed from a real process. In practical situations,

sufficient training samples of nonrandom patterns may not

be readily available. One common approach adopted by

previous studies was to generate training samples based on

predefined mathematical model and Monte Carlo simula-

tion. The previous research work usually used the mathe-

matical models proposed in Swift [24] and Cheng [7]. The

generator is expressed in a mathematical formula and

includes an in-control mean, a random noise, and a dis-

turbance. The pattern generator can be expressed as:

xt ¼ lþ nt þ dt ð1Þ

where xt is the observation collected at time t, l represents

a known in-control process mean (can be estimated from

historical data), nt is a random noise, and dt is a special

disturbance due to assignable cause. By manipulating the

value of dt, a pattern can then be simulated. For simplicity

and with no loss of generality, we assume l = 0 and nt has

a Nð0; 1Þ distribution as in most of the previous studies.

The level of disturbance is usually expressed in terms of

process standard deviation, r. Note that a normal pattern

(NORM), indicating the process is in the normal operating

condition, can be expressed as xt ¼ lþ nt. In this paper, a

set of mathematical expressions are proposed to address the

pattern displacement issue. The mathematical models are

slightly different from those of Swift [24] and Cheng [7],

with the intention to simulate the diversity of patterns that

may be identified by an abnormality detector. The param-

eters along with the equations used for simulating the CCPs

are given in Table 1.

A set of training samples is required in the development of

a pattern recognizer. In this research, the training samples for

each pattern were generated according to the parameters

described in Table 2. There were a total of 7,000 samples

(1,000 for each pattern class, including normal pattern) in the

training dataset. This dataset is marked as DS1. The value of

t� for systematic patterns was set to 0.
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Fig. 5 Various types of control

chart patterns considered in this

research

Table 1 The formulae and parameters used for CCPs

Pattern Parameters Formula for dt Remarks

Trend h is the trend slope dt ¼ hðt � t0Þ, if t� t0; else

dt ¼ 0

t0 determines the starting point of a trend;

the sign of h determines the direction of trends

Shift d is the magnitude of the shift dt ¼ d, if t� t0; else dt ¼ 0 t0 determines the point of the shifting; the sign of d
determines the direction of shifts

Cycle j is the amplitude of the cyclic patterns;

X is the period

dt ¼ j � sinð2pðt þ t0Þ=XÞ t0 determines the phase difference of a cyclic pattern

Systematic D is the offset from the process mean dt ¼ ð�1Þðt�t
0
�t�ÞD, if t� t0;

else dt ¼ 0

t0 determines the starting point of a systematic pattern;

t� 2 f0; 1gcontrols the location of the first observation
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We have to mention here that a number of previous

studies assumed that the magnitude of random noise

associated with nonrandom patterns is less than that of a

normal pattern (e.g., [20, 25]). The implication is that they

considered the cases when signal to noise ratios of patterns

are very high. The reported results may be too optimistic

and misleading. It can be shown that the pattern recognizer

performs worse if more noise is added to the data series. In

the generation of nonrandom patterns, some authors

[20, 25–28] maintain that the observations of nonrandom

patterns should be kept within control limits. The remark

could be ignored, however, due to the reasons that the

existence of nt; the control chart pattern recognition is for

analyzing long-term behavior of process data.

3 Feature extraction

This section describes the feature extraction based on the

concept of correlation analysis. There have been some

applications of correlation analysis in control chart pattern

recognition [26, 28]. Basically, the approach involves

computing correlation coefficient between the input data

and various reference patterns. The determination of ref-

erence patterns is an influential design issue in correlation

coefficient-based pattern recognizer. It is easy to show that

the reference pattern determined in Yang and Yang [28] is

in essence a nearly noise-free (or highly smoothed) version

of the nonrandom pattern. The recognition method intro-

duced in Yang and Yang [28] will sometimes yield an

incorrect classification due to pattern displacement. As an

example, consider data sequences shown in Fig. 6. A low

correlation coefficient (-0.074) indicates that the data

sequence in the analysis window is different from the

reference pattern even though they have the same pattern

characteristics. The procedure proposed in Wang et al. [8]

suffered the same problem. Certainly, if the data sequence

in analysis window resembles the reference pattern, a high

correlation coefficient could be obtained after several

window movements.

In order to address the aforementioned problems, this

research proposes a feature extraction approach without the

need for defining the reference patterns. The details of fea-

ture extraction are described in the following. Let X ¼
fx1; x2; . . .; xmg denote the most recent m observations when

an abnormality detector determines that the collected

observations are coming from an unstable process, where the

subscript i in xi indicates simply the order in which the

observations were recorded. To implement the proposed

approach, the window size m has to be determined first. For

the purpose of avoiding computational complexity and

excessive computation time, the parameter m is determined

empirically as 32. Let X ¼ fY; Zg, where Y =

fy1; y2; . . .; y16g = fx1; x2; . . .; x16g and Z = fz1; z2; . . .;

z16g = fx17; x18; . . .; x32g. Some variants of data vectors X

and Z are defined as follows.

W a circle shift of X, denoted as

W ¼ fx32; x1; x2; . . .; x31g.Za a set of order statistics

obtained by sorting the fzig in ascending order. The

resultant is denoted as Za ¼ fzð1Þ; zð2Þ; . . .; zð16Þg.Zd a set

of order statistics obtained by sorting the fzig in descend-

ing order. The resultant is denoted as Zd ¼
fzð16Þ; zð15Þ; . . .; zð1Þg.

T and U are two additional vectors whose elements are

time indices, defined as T ¼ f1; 2; . . .; 32g and U ¼
f17; 18; . . .; 32g. Let qð�; �Þ denote the product–moment

correlation coefficient or Pearson’s correlation coefficient

of a set of paired observations, measuring the strength of a

relationship between two variables. The mathematical

expressions for extracted features are given below:

r1 ¼ qðZa; ZÞ, r2 ¼ qðZd; ZÞ, r3 ¼ qðY; ZÞ,
r4 ¼ qðX; WÞ, r5 ¼ qðX; TÞ, r6 ¼ qðZ; UÞ,

Regarding the application of correlation analysis to

extracting features, one important point to be mentioned is

that a reference pattern is not required in our proposed

method. This is a uniqueness compared to other studies in

the literature. The proposed method computes the corre-

lation coefficient between the input vector and its variants

with the intention to retain the shape characteristics of a

specific nonrandom pattern. One minor restriction imposed

on the proposed method is that the size of analysis window

is divisible by 2. Two additional features are the commonly

used summary statistics: mean and standard deviation. The

eight features described above establish the input vector for

the feature-based recognizer.

Table 2 Parameters for simulating training samples

Control chart pattern Parameter values t0

Up trend h: 0.1 to 0.15 0

Down trend h: -0.15 to -0.1 0

Up shift d: 1 to 3 13, 17

Down shift d: -3 to -1 13, 17

Cycle j: 1 to 3, X = 8 0

Systematic D: 1 to 3 1
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Fig. 6 Incorrect recognition due to pattern displacement
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Before describing the discriminating capability of each

feature, it is useful to look at the distributions of the pro-

posed features. An ideal set of features should maximize

the inter-class variability while minimizing the intra-class

variations. Figure 7 shows the distributional properties of

the selected features. The subplots in each column, arran-

ged from left to right, represent various r0is, calculated

mean, and standard deviation, respectively. The subplots
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from a specific pattern class are arranged in the same row.

The rows in the figure, from top to bottom, represent trend,

shift, cycle, systematic pattern, and normal pattern,

respectively. Note that only the upward versions of trend

and shift patterns are given in order to conserve space. The

vertical axis of each plot in Fig. 7 is a percent scale. The

following is a detailed explanation of the aforementioned

features.

First, it is not surprisingly to see that the r0is of normal

pattern are all cluster around zero. This is due to the fact

that normal data vector and its variants are random in

nature. We can see from Fig. 7 that the magnitude of r1 for

trend and cyclic patterns is different from zero. For all

other patterns, i.e., shift, systematic, and normal, the value

of r1 is distributed around zero. The magnitude of r1 can

differentiate trend and cyclic patterns from other patterns.

The sign (±) of r1 can assist in distinguishing between

upward and downward trends. From Fig. 7, we observe that

the magnitudes of r2 for shift, systematic, and normal

patterns will vary in the same fashion as r1. The sign of r2

for trend and cyclic patterns is opposite to that of r1. The

magnitude of r3 will be highest for cyclic and systematic

patterns, intermediate for trend patterns, and around zero

for shift and normal patterns. The values of r3 for cyclic

and systematic patterns show a strong positive correlation.

Therefore, we conclude that the magnitude of r3 is a dis-

tinguishing feature to differentiate cyclic and systematic

patterns from other patterns.

It is observed that the magnitude of r4 will be highest for

systematic patterns, intermediate for trend, shift, and cyclic

patterns, and around zero for normal patterns. The values

of r4 for systematic patterns show a strong negative cor-

relation. The systematic patterns can be differentiated more

efficiently from other patterns by the magnitude of r4. The

magnitude of r5 will be highest for trend patterns, inter-

mediate for shift patterns, and around zero for other pat-

terns. We conclude that the magnitude of r5 is an important

distinguishing feature used to differentiate trend and shift

patterns from other patterns. The sign of r5 can help dis-

tinguish between upward and downward trends and upward

and downward shifts. The magnitude of r6 will be highest

for trend patterns, intermediate for cyclic patterns, and

around zero for other patterns. Thus, this feature differen-

tiates trend patterns from other patterns. The sign of r6 is

helpful in distinguishing between upward and downward

trends.

The plots in Fig. 7 show that the magnitude of the cal-

culated mean will be highest for trend patterns, interme-

diate for shift patterns, and around zero for all other

patterns. The magnitude of the calculated mean can be used

to differentiate trend and shift patterns from other patterns.

In addition, the sign of the calculated mean can distinguish

between increasing and decreasing trends and upward and

downward shifts. The value of the standard deviation will

be highest for systematic patterns, followed by cyclic

patterns, intermediate for trend and shift patterns, and least

for normal patterns. The magnitude of standard deviation is

a distinguishing feature useful to differentiate normal pat-

terns from other patterns.

Determining a pattern recognition algorithm is the sec-

ond step of the feature-based recognizer. The following

section is devoted to the description of designing a neural

network-based control chart pattern recognizer.

4 Neural network-based pattern recognizer

Recently, artificial neural networks have received increas-

ing attention in the area of control chart pattern recogni-

tion, due to their noteworthy generalization performance.

The most frequently used neural network is feed-forward

multi-layer perceptrons (MLPs). The typical MLP-type

neural network is composed of an input layer, one or more

hidden layers, and an output layer of nodes. The MLP

neural networks have been successfully applied to diverse

fields. The details of neural networks are well described in

standard text books (e.g., [29]). This section provides a

brief summary of MLP networks.

Two different types of MLP-based recognizers are

constructed in this paper. For feature-based recognizer, the

input vector is composed of the extracted features descri-

bed in Sect. 3. On the other hand, the input vectors of raw

data-based recognizer are data sequences each comprising

32 data points. The parameters selection is critical to the

success of the neural network-based recognizer. The

determination of the number of nodes in each layer is

described as follows. In the proposed methodology, the size

of the input vector determines the number of input nodes

(nI). Hence, the values of nI are set as 32 and 8 for the raw

data-based and feature-based recognizers, respectively.

There are no general guidelines for determining the optimal

number of nodes (nH) required in the hidden layer. The

number of hidden layer nodes was chosen through exper-

imentation by varying the number of hidden nodes. The

appropriate value of the hidden layer nodes should be

chosen to limit the computational requirements and achieve

a reasonable recognition performance. The determination

of the values of nH will be discussed later in this section.

The number of nodes in the output layer (nO) of both the

two types of networks is set according to the number of

pattern classes, i.e., seven, each representing a particular

pattern class.

There are various algorithms available to train the MLP

in a supervised manner. Gradient descent (GD) is a first
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order optimization algorithm that attempts to move incre-

mentally to successively lower points in search space in

order to locate a minimum. The basic gradient descent

method adjusts the weights in the steepest descent direc-

tion. This is the direction in which the performance func-

tion is decreasing most rapidly. Although the function

decreases most quickly along the negative of the gradient,

this approach does not always generate the fastest con-

vergence. Many advanced versions of training algorithms

have been proposed. Conjugate gradient (CG) is a fast

training algorithm for MLP that proceeds by a series of line

searches through error space. Succeeding search directions

are selected to be conjugate (non-interfering). A search along

conjugate directions usually produces faster convergence

than steepest descent directions. The Broyden–Fletcher–

Goldfarb–Shanno (BFGS) method (or Quasi-Newton) is a

powerful second order training algorithm with very fast

convergence but high memory requirements.

In the following, we describe the development of the

neural network-based pattern recognizer. In this study, a

BFGS algorithm, built in the MATLAB, was selected for

training the MLP neural networks. The BFGS training

algorithm was adopted since it provides good performance

and more consistent results. The input data were scaled to

the interval [-1,1] using a simple linear transformation due

to the reason that the data points include both positive and

negative values. In this research, the transfer function used

was a hyperbolic tangent for hidden nodes and a sigmoid

for the output nodes. The maximum number of the itera-

tions to train was 200. Some early stopping criteria were

set to achieve better generalization performance. The per-

formance was minimized to the goal 10�7, the performance

gradient was 10�6. Other parameters were adopted as

default in MATLAB.

The trained neural network stores the implicit decision

rules through a set of interconnection weights used to

recognize the nonrandom patterns. Given an input vector,

the neural network produces an output vector. In this

application, the value of each output layer node is a real-

valued variable (between 0 and 1). The neural network

selects the pattern class corresponding to the output node

having the maximum value.

We now describe the determination of the number of nH.

We investigated the recognition rate (expressed as a per-

centage) of the MLP neural networks by varying the

number of hidden nodes. The recognition rate is one of the

major performance measurements of a recognizer. It is

defined as the ratio of correctly recognized patterns to the

whole set of patterns. Since the trained MLP networks

produced different results according to the initial learning

condition, we averaged 10-trial results of the average

performance for each size selection. The simulation results

are reported in Figs. 8 and 9. It can be observed the value

of hidden layer nodes has a significant impact on the per-

formance measurement. The performance of the MLP

neural network improves as the number of hidden nodes

increases. However, the results also indicate that the

number of hidden layer nodes has a diminishing return in

recognition accuracy. From Figs. 8 and 9, it is inferred that

best performances for raw data-based and feature-based

recognizers are 21 and 8, respectively. The final neural

network structure for both types of recognizers is shown in

Fig. 10. The values in parenthesis indicate the number of

nodes for the feature-based recognizer.

5 Computational results and discussion

This section describes the results and comparisons of per-

formance between the feature-based and raw data-based

recognizers. The performance of the recognizer using

features proposed by Wang et al. [8] was used as a

benchmark. The set of features proposed by Wang et al. [8]

were chosen simply because they addressed the same pat-

terns considered in this research. The benchmark pattern

recognizer was optimized in the manner described above.
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Fig. 8 The performance of the raw data-based recognizer under

different hidden nodes
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Fig. 9 The performance of the feature-based recognizer under

different hidden nodes

82 Pattern Anal Applic (2015) 18:75–86

123



With a series of experiments, we show that the recognizer

with the proposed features as input vectors substantially

improve the recognition performance. In the first experi-

ment (experiment I), the parameters used for simulating

testing patterns are given in Table 3. A total of 35,000

samples (5,000 9 7), termed as DS2, were generated for

the testing dataset. The value of t� for systematic patterns

was randomly set to 0 or 1. It is evident that the testing

dataset is quite different from that of the training dataset.

The purpose is to test the generalization capability of the

feature-based pattern recognizer.

The overall recognition results for the raw data-based

and feature-based pattern recognizers are displayed using

confusion matrices. Entries (in boldface) along the diago-

nal indicate correct recognitions, whereas off-diagonal

entries would indicate the misrecognitions. Considering the

effects of training and testing data as well as the initial

learning condition of neural networks, we performed ten

independent simulation runs to obtain more reliable con-

clusions. Entries of the confusion matrices presented below

are averages over ten independent runs. Tables 4 and 5

give the confusion matrices showing the recognition results

of the raw data-based and feature-based pattern recogniz-

ers, respectively. The results for recognition of normal

patterns in Tables 4 (95.9 %) and 5 (94.8 %) suggest that

both types of recognizers perform equally well in terms of

type I error. Valuable improvement obtained by the pro-

posed features can be noticed by comparing Tables 4 and

5. The feature-based recognizer gives an overall correct

recognition rate of 88.47 %; on the other hand, raw data-

based recognizer gives a poor value of 67.84 %. Table 4

shows that cycles and systematic patterns are the hardest to

be recognized correctly by the raw data-based recognizer.

This happens because the shape characteristics of non-

random patterns observed from raw data are different

between training dataset and testing dataset. Another

explanation is that the raw data-based recognizer treats the

value of each time point as one absolute attribute. The raw

data-based recognizer identifies a pattern by matching the

attribute at each position in the monitoring window. As can

be seen from these tables, the performance of the feature-

based pattern recognizer is affected very little by the dis-

placement of the nonrandom pattern, whereas the perfor-

mance of the raw data-based recognizer worsens as the

displacement varies. The results also imply that the pro-

posed features can retain the pattern characteristics even

when pattern displacement occurs.

In the second experiment (experiment II), we swapped

training dataset and testing dataset. That is, the recognizers

were trained with DS2 and tested with DS1. In this

experimental setting, the training samples are more diver-

sified than testing samples. The determination of the value

of nH is exactly similar to the first experiment. Based on

our numerical experiments, the optimal values for nH were

set as 8 for feature-based recognizer and 22 for raw data-

based recognizer. The recognition results are summarized

in Tables 6 and 7. Examining the results in Tables 6 and 7

demonstrates the superiority of the feature-based recog-

nizer. The feature-based recognizer achieves a 93.8 %

recognition rate, while raw data-based recognizer yields a

poorer value of 87.28 %. It is noted here that both recog-

nizers have higher recognition rates than in the first

experiment. The increase of recognition rate can be

Input Hidden layer

32 (8)
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21 (8)

Output layer

W2

b2

7

Fig. 10 The structure of MLP neural network

Table 3 Parameters for simulating testing samples

Control chart pattern Parameter values t0

Up trend h: 0.1 to 0.15 2 to 6

Down trend h: -0.15 to -0.1 2 to 6

Up shift d: 1 to 3 8, 9, 15, 18, 19

Down shift d: -3 to -1 8, 9, 15, 18, 19

Cycle j: 1 to 3, X = 8 1 to 4

Systematic D: 1 to 3 5

Table 4 Recognition results for

raw data-based recognizer (I)
Actual Predicted pattern class

pattern class UT DT US DS CYC SYS NORM

UT 80.0 0.0 20.0 0.0 0.0 0.0 0.0

DT 0.0 80.9 0.0 19.1 0.0 0.0 0.0

US 30.2 0.0 67.4 0.0 0.2 0.0 2.2

DS 0.0 30.0 0.0 67.8 0.1 0.0 2.2

CYC 0.0 0.0 1.1 2.1 34.4 2.0 60.4

SYS 0.1 0.0 11.3 0.5 23.5 48.5 16.2

NORM 0.0 0.0 1.3 1.0 1.4 0.3 95.9
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attributed to the fact that pattern recognizers learned more

diversified samples. Also note that the performance of the

feature-based recognizer can still be improved by the

identification of new features that will be more useful in

discriminating trend from shift patterns.

In the final experiment (experiment III), we investigated

the performance of both types of recognizers using tradi-

tional evaluation approach. That is, the starting position

(relative to the analysis window) of a specific pattern is the

same for training and testing tasks. Training and testing

samples were generated according to the pattern parame-

ters and t0 described in Table 2. The results of both rec-

ognizers are comparable in terms of recognition rate. The

overall recognition rate is 98.14 % for raw data-based

recognizer and 97.81 % for feature-based recognizer. The

recognition rates are predictably higher than those of pre-

vious experiments due to the fact that the starting position

of nonrandom patterns is the same for training and testing.

The results of this experiment confirm that the recognition

performance deteriorates significantly with pattern

displacement.

To further demonstrate the advantage of the proposed

features over previous work, a comparative study was

conducted. Table 8 summarizes the performances of the

neural network-based control chart pattern recognizers

Table 5 Recognition results for

feature-based recognizer (I)
Actual Predicted pattern class

pattern class UT DT US DS CYC SYS NORM

UT 79.4 0.0 20.6 0.0 0.0 0.0 0.0

DT 0.0 81.4 0.0 18.6 0.0 0.0 0.0

US 11.3 0.0 87.0 0.0 0.1 0.0 1.6

DS 0.0 12.0 0.0 86.3 0.4 0.0 1.3

CYC 0.0 0.0 0.2 0.3 93.2 0.1 6.2

SYS 0.0 0.0 0.1 0.1 0.2 97.2 2.4

NORM 0.0 0.0 1.3 0.9 2.5 0.5 94.8

Table 6 Recognition results for

raw data-based recognizer (II)
Actual Predicted pattern class

pattern class UT DT US DS CYC SYS NORM

UT 98.5 0.0 1.5 0.0 0.0 0.0 0.0

DT 0.0 98.0 0.0 2.0 0.0 0.0 0.0

US 23.2 0.0 75.7 0.0 0.0 0.1 1.1

DS 0.0 21.6 0.0 77.1 0.0 0.1 1.2

CYC 0.0 1.1 0.2 6.1 67.8 1.5 23.3

SYS 0.0 1.4 0.1 0.0 0.1 97.5 1.0

NORM 0.0 0.0 0.9 0.8 1.3 0.5 96.5

Table 7 Recognition results for

feature-based recognizer (II)
Actual Predicted pattern class

pattern class UT DT US DS CYC SYS NORM

UT 96.8 0.0 3.2 0.0 0.0 0.0 0.0

DT 0.0 96.4 0.0 3.6 0.0 0.0 0.0

US 10.8 0.0 87.7 0.0 0.2 0.0 1.3

DS 0.0 11.1 0.0 87.5 0.3 0.1 1.0

CYC 0.0 0.0 0.0 0.5 93.8 0.0 5.7

SYS 0.0 0.0 0.0 0.1 0.2 98.9 0.8

NORM 0.0 0.0 1.1 1.0 1.5 0.9 95.5

Table 8 Performances of pattern recognizers using different sets of

features

Experiment\Method Wang et al.’s Features Proposed Features

I 87.22/84.23 (0.52) 97.38/88.47 (0.45)

II 86.52/87.26 (0.80) 93.10/93.80 (0.51)

III 87.68/87.57 (0.28) 98.05/97.81 (0.25)
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using the features proposed by the current research and

those of Wang et al. [8]. The reported performance is the

average recognition rate over 10 independent simulation

runs. The number in parentheses next to the average rec-

ognition rate indicates the standard deviation of recognition

rates. In all cases considered, our approach performs better

than the pattern recognizer using the features proposed by

Wang et al. [8]. The pattern recognizer using the proposed

features has a higher average recognition rate and a lower

standard deviation than that using Wang et al.’s features in

each experiment. Even for traditional evaluation approach

(experiment III), the average recognition rate of the pro-

posed approach is about 10 % higher than that of the rec-

ognizer using Wang et al.’s features. This comparison

clearly demonstrates the benefits of the proposed features

in control chart pattern recognition.

Through simulation experiments, we have confirmed

empirically that the feature-based recognizer performs

better than the raw data-based recognizer. The proposed

feature-based recognizer produces highly reliable and

consistent recognition performance. One further advantage

of the proposed approach can be noticed. It is found that

the performance of the feature-based recognizer is robust

against the variation of training samples in comparison

with the raw data-based recognizer. This property is very

attractive in terms of stability of the pattern recognizer.

6 Conclusion

In this paper, we have described a neural network-based

pattern recognizer for control chart pattern analysis. Rele-

vant features of the control chart patterns were extracted

from the raw process data using statistical correlation

analysis. The experimental results demonstrate that the

recognition performance is markedly improved after using

the proposed pattern features. The proposed features can

retain the shape characteristics even when pattern dis-

placement occurs. That is, the features proposed in this

paper are robust to time-varying nature of control chart

patterns. When adopting a machine learning-based pattern

recognition approach, one advantage of the proposed fea-

tures extraction is that it does not require a set of reference

patterns. The proposed method computes the correlation

coefficient between the input vector and its variants with

the intention to retain the shape characteristics of a specific

nonrandom pattern. More importantly, the performance of

the proposed approach is robust against the effect of pattern

displacement.

The approach proposed in the paper contributes to pro-

cess monitoring and interpretation. It can be used as a

diagnostic supplement to the traditional control charts. The

performance of the recognizer can still be improved by the

identification of discriminative features that will be more

useful in separating trend from shift patterns. Further work

can also include defining and extracting features suitable

for those patterns not addressed in this paper.
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