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Abstract Recently, the local binary patterns (LBP) have

been widely used in the texture classification. The LBP

methods obtain the binary pattern by comparing the gray

scales of pixels on a small circular region with the gray scale

of their central pixel. The conventional LBP methods only

describe microstructures of texture images, such as edges,

corners, spots and so on, although many of them show good

performances on the texture classification. This situation

still could not be changed, even though the multi-resolution

analysis technique is adopted by LBP methods. Moreover,

the circular sampling region limits the ability of the con-

ventional LBP methods in describing anisotropic features.

In this paper, we change the shape of sampling region and

get an extended LBP operator. And a multi-structure local

binary pattern (Ms-LBP) operator is achieved by executing

the extended LBP operator on different layers of an image

pyramid. Thus, the proposed method is simple yet efficient

to describe four types of structures: isotropic microstructure,

isotropic macrostructure, anisotropic microstructure and

anisotropic macrostructure. We demonstrate the perfor-

mance of our method on two public texture databases: the

Outex and the CUReT. The experimental results show the

advantages of the proposed method.

Keywords Local binary pattern � Image pyramid �
Texture classification � Isotropic � Anisotropic

1 Introduction

With the abundance of textures in the natural world, texture

analysis is regarded as one of the major parts of the

machine vision, and plays an important role in many

applications such as surface inspection [1], content-based

image retrieval [2], medical imaging [3], etc. Texture

classification has been extensively investigated during the

last several decades, especially the textures that are cap-

tured under different conditions.

The early representative methods for texture classifica-

tion include the co-occurrence matrix method [4] and fil-

tering-based approaches [5–7]. These methods are sensitive

to the illumination and the rotation change of textures.

Recently, many filtering methods build textons to extract

robust texture features. Leung and Malik [8] create 3D

textons from a stack of texture images under different

captured conditions for the texture classification. Schmid

[9] uses isotropic ‘‘Gabor-liker’’ filters to build textons

from a single image for rotation-invariant texture classifi-

cation. Varma and Zisserman [10] present a good statistical

algorithm, MR8, which uses 38 filters to build a rotation-

invariant texton library from a training set for classifying

an unknown texture image. Unlike the texton-based

method, the local binary pattern (LBP) [11] extracts feature

by comparing the gray scales of pixels in a small local

region. It has been successfully applied to many computer

fields, such as texture analysis [12, 13], description of

salient regions [14], face recognition [15–18] and so on.

For texture classification, Mäenpää et al. [19] introduce the

uniform patterns to boost the texture description by
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selecting a subset of patterns encoded in LBP forms. With

this technique, they propose a rotation-invariant uniform

pattern (LBPriu2) operator [20] to describe rotational tex-

tures. Liao et al. [21] use the 80% dominant local binary

patterns (DLBP) to classify rotational textures, but it needs

the SVM to enhance the performance. Ahonen et al. [22]

transform the uniform LBP histogram into the frequency

domain and propose the local binary pattern histogram

Fourier features (LBP-HF) to describe textures. Guo et al.

[23] take local variances as weights of uniform patterns and

propose the LBPV operator. Reordering the bins of LBPV

histogram, they create the feature histograms in all possible

orientations for classifying rotational textures. Later, they

[24] propose a completed modeling of the LBP operator

(CLBP_S/M/C) that combines three pieces of local infor-

mation: center grays (CLBP_C), local signs (CLBP_S) and

local magnitudes (CLBP_M). By utilizing the temporal

domain information, Zhao and Pietikäinen [25] propose the

volume local binary patterns (VLBP) and extract local

binary patterns from three orthogonal planes (LBP–TOP)

for dynamic texture classification.

Although these LBP methods perform well, most of

them consider binary patterns in very small regions and

only extract microstructures of images. These microstruc-

tures are not enough to describe the texture information.

The problem still exists when the multi-resolution tech-

nique [20] is employed. The multi-resolution technique just

combines the limited neighbor sampling points and radii.

These sampling radii are very small, because the stability

of LBP values deteriorates rapidly with the increase in

neighbor radii. Mäenpää and Pietikäinen [26] propose

the LBPF operator and try to extract larger structures

under thebasic frame of the LBP method. The LBPF

employs exponentially growing circular neighborhoods

with Gaussian low-pass filtering to extract binary patterns

for texture analysis. The LBPF also shows isotropic

microstructures of images, because the size of circular

neighborhood is limited by the sampling radii. Turtinen and

Pietikäinen [27] extract the LBP feature with three scales

for the sense classification. Their features are limited to

different non-overlapping blocks. Qian et al. [28] introduce

the PLBP operator which executes the basic LBP on an

image pyramid. The PLBP only considers the isotropic

information. Moreover, the performance of the PLBP is

limited by patterns on the high levels of the image pyramid.

The patterns of the PLBP in the high levels of the image

pyramid could bring a negative effect, when a large num-

ber of sampling points are available. In this paper, the

image pyramid is also employed to ensure the generation of

sampling regions with different sizes. Two kinds of LBP

are used to describe isotropic and anisotropic structures:

one gets the sampling points on a circular region and the

other obtains the sampling points on elliptical regions with

four different rotational angles. The LBP with the elliptical

sampling is sensitive to rotational angles of samples. The

literature [16, 29] also extracts the LBP on elliptical

regions, but the rotation-variant problem of the extracted

features is not considered. Here, we adjust the orders of the

extracted feature histograms to build the feature in possible

orientations. The corresponding orientation of two samples

is obtained by matching the extracted feature in all the

possible orientations. We carry out the two kinds of LBP in

the image pyramid to extract both micro and macrostruc-

tures of texture images. In our work, four types of struc-

tures are described: isotropic microstructure, isotropic

macrostructure, anisotropic microstructure sand anisotropic

macrostructure. Later, the histograms of different extracted

information are given proper weights to enhance the per-

formance of the proposed method. The results of experi-

ments on the Outex database and the CUReT database

show the superiority of our method.

This paper is an extension of our previous work [30]. In

this current paper, we have extended the Ms-LBP and

added the anisotropic microstructure into the original

framework. We also provide a more in-depth analysis and

more extensive evaluations on the Ms-LBP. The rest of this

paper is organized as follows. Section 2 gives a brief

overview of the basic LBP method and discusses the

missing information of the conventional LBP. Section 3 is

devoted to the details of the proposed method. Section 4

presents the implementation of our experiments and reports

the results. Section 5 concludes this paper.

2 Local binary patterns

In this section, we review the LBP methods and point out

the structures of texture images that are neglected by most

of the LBP methods. This is necessary for understanding

the advantage of our method.

2.1 The LBP methods

The LBP method [20] characterizes the local structure of

the texture image. The basic LBP method considers a small

circularly symmetric neighborhood that has P equally

spaced pixels on a circle of radius R. Figure 1 shows an

example of the local regions with different numbers of

sampling points (P) and radii (R).

The LBP value of the center pixel is computed by

thresholding the gray scales of P sampling points with the

gray scale of their center pixel, and summing the thres-

holded values weighted by powers of two. Thus, the LBP

label for the center pixel (x, y) is computed by
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LBPP;Rðx; yÞ ¼
XP�1

p¼0

sðgp � gcÞ2p ð1Þ

sðxÞ ¼ 1; x� 0

0; x\0

�
ð2Þ

where gc is the gray value of the center pixel; gp

(p = 0,…, P - 1) corresponds to the gray value of the pth

sampling points. If the coordinates of gc are (0, 0), then the

coordinates of gp are given by (-Rsin(2pp/P), Rcos(2pp/P)).

The gray values of sampling points that do not fall

exactly at the center of the grids are estimated by the

interpolation.

The basic LBP is sensitive to the orientation of an

image. Ojala et al. [20] designate the patterns whose 0/1

transition are 2 at most as the uniform patterns and propose

the rotation-invariant uniform pattern operator LBPP,R
riu2:

LBPriu2
P;R
¼

PP�1

p¼0

sðgp � gcÞ if UðLBPP;RÞ� 2

Pþ 1 otherwise

8
<

: ð3Þ

where

UðLBPP;RÞ ¼ sðgP�1 � gcÞ � sðg0 � gcÞj j

þ
XP�1

p¼1

sðgp � gcÞ � sðgp�1 � gcÞ
�� �� ð4Þ

According to the definition of ‘uniform’, there are P?1

‘uniform’ binary patterns in a circularly symmetric neighbor

set of P pixels. Equation (3) assigns a unique label to each of

them. The assigned labels correspond to the number of ‘1’

bits in the pattern (0, 1,…, P) and all the ‘non-uniform’

patterns are grouped with label (P ? 1). Thus, the LBPP,R
riu2

has P ? 2 distinct output values. Combining with the local

variance (VARP,R), the LBPP,R
riu2/VARP,R operator usually gets

a good performance in the texture classification.

2.2 Drawback of the conventional LBP

The LBP methods just compute patterns on small local

regions. The extracted patterns describe the small struc-

tures of images, such as flat area, spot, corner, edge and so

on. The LBP histogram of an image is the occurrence

frequencies of these small structures. The performance of

the conventional LBP methods is limited, because these

methods merely depend on microstructures of images. The

weakness is quite clear when different texture images have

the same microstructures. We give an extreme example in

Fig. 2 to show the drawback. The uniform LBP features are

selected to describe the problem. In fact, other conven-

tional LBP methods have similar conclusion. In the first

column of Fig. 2, two texture images that have the same

microstructures but different macrostructures are given.

The second column presents uniform LBP (P = 8, R = 1)

histograms of the two textures in the first column. It is clear

that the uniform LBP method has no contribution to clas-

sifying the two textures, because they have similar LBP

feature histograms (the Euclidian distance is 0.0029). In the

third column, the uniform LBP (P = 8, R = 1) histograms

are extracted on the second level of the pyramid of texture

images in the first column. Some differences of the two

histograms can be seen in the third column (the Euclidian

distance is 0.0454). The details of the image pyramid will

be described in the next section. The results show that

some importation information is lost by the conventional

LBP methods that just extract microstructures of images.

3 Multi-structure local binary patterns

The basic LBP only considers the isotropic microstructures

of images. In this section, the shape of the sampling region

is changed to extract both isotropic and anisotropic LBP.

We execute them on an image pyramid to describe four

different types of structures: (1) isotropic microstructure;

(2) isotropic macrostructure; (3) anisotropic microstruc-

ture; (4) anisotropic macrostructure.

3.1 Extended LBP

The conventional LBP methods get the sampling points in a

circular region, which is good for capturing the isotropic

information. Here, we alter the shape of sampling regions to

Fig. 1 Circularly symmetric

neighbor sets for different (P, R)
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describe both isotropic and anisotropic structures. The

sampling points are obtained not only in the circular region,

but also in four elliptical regions. Four ellipses are the same

ellipse, but in four different rotational angles h: 0�, 45�, 90�
and 135�. For each ellipse, the ratio of its major and minor

axis is limited to 2:1 and we let the length of the minor axis

of the elliptical region be equal to the radius of the circular

region. Thus, we can still use the radius R to express the size

of the ellipse. Suppose the coordinates of the central pixel in

the elliptical region are (0, 0). Then the x-coordinate of

the pth sampling point equals 2Rcos(2pp/P?h)cos(h)?

Rsin(2pp/P?h)sin(h), while its y-coordinate equals -2Rcos

(2pp/P?h)sin(h)?Rsin(2pp/P?h)cos(h). Figure 3 gives the

five sampling types with eight sampling points. We modify

the operator LBPP,R
riu2 as the LBPT,P,R

riu2 :

LBPriu2
T ;P;R
¼

PP�1

p¼0

sðgp � gcÞ if UðLBPT ;P;RÞ� 2

Pþ 1 otherwise

8
<

: ð5Þ

where the subscript ‘T’ stands for the sampling type and

T e {0, 1, 2, 3, 4}. T = 0 indicates the circular sampling

region used, while T = 1, 2, 3, 4 select elliptical sampling

with rotational angles 0�, 45�, 90� and 135�, respectively.

3.2 Image pyramid

An image pyramid can be created from the original image.

We use the sign Il to indicate sub-images of the image

pyramid. The subscript l stands for the level of the image

pyramid. In the process of building the image pyramid, the

Gaussian function G(x, y, r) is used to smooth the image.

Referring to the SIFT operator [31], we select the variance

r = 1.5.

Gðx; y; rÞ ¼ 1

2pr2
e�ðx

2þy2Þ=2r2 ð6Þ

Suppose the original image is I0. The sub-image Il

(l [ 0) is created from the image Il-1 by the following

formula:

Il ¼ ðIl�1 � GÞ # 2 ð7Þ

where * is the convolution operation; ;2 means the down

sample by 2. Figure 4 gives a three-level image pyramid

for extracting different structures.

3.3 Multi-structure local binary pattern feature

The multi-structure local binary pattern (Ms-LBP) can be

achieved by executing the LBPT,P,R
riu2 operator on the image

pyramid. The isotropic microstructures are obtained by

executing the LBPT,P,R
riu2 (T = 0) operator on the original

image, while the anisotropic microstructures are obtained

by executing the LBPT,P,R
riu2 (T = 1, 2, 3, 4) operators on the

same image. Similarly, the isotropic macrostructures are

created by executing the LBPT,P,R
riu2 (T = 0) operator on the

sub-images Il (l [ 0), while the anisotropic macrostructures

are created by executing the LBPT,P,R
riu2 (T = 1, 2, 3, 4)

operators on the sub-images Il (l [ 0). For consistency, our

method is written as Ms-LBPP,R
riu2, where signs ‘P’, ‘R’ and

‘riu2’ have the same meaning with the operator LBPP,R
riu2.

The final feature of the Ms-LBPP,R
riu2 is composed of the

LBPT,P,R
riu2 histograms in every single sub-image of the

image pyramid:

Hl;TðkÞ ¼
XN

i¼1

XM

j¼1

f ðLBPriu2
l;T ;P;Rði; jÞ; kÞ; k 2 ½0;K� ð8Þ

Fig. 2 First column: two

texture images have the same

microstructures. Second

column: uniform LBP (P = 8,

R = 1) histograms of left

textures. Third column: uniform

LBP (P = 8, R = 1) histograms

on the second level of the

pyramid of left textures. All the

histograms are normalized. The

Euclidian distances of

histograms in sub-images

(b) and (c) are 0.0029 and

0.0454, respectively
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f ðx; yÞ ¼ 1 x ¼ y

0 otherwise

�
ð9Þ

where LBPriu2
l;T ;P;Rði; jÞ is the LBPriu2

T ;P;R value of the pixel Il

(i, j); K is the maximal LBPriu2
T ;P;R pattern; Hl,T is the

LBPriu2
T ;P;R histogram of the sub-image Il; M and N are the

sizes of the sub-image of the image pyramid.

3.4 Classification principle

There are many principles to evaluate the dissimilarity of a

sample and a model. One of the useful measures is the Chi-

square distance, which is employed by many studies [8, 10,

23, 24, 32] in the texture classification. The Chi-square

distance between a model M and a sample S is computed as

follows:

DðS;MÞ ¼
XB

b¼1

Sb �Mbð Þ2

Sb þMb

ð10Þ

where B is the number of bins; Sb and Mb correspond to the

values of the sample and the model at the bth bin,

respectively.

The final dissimilarity contains the distances of four

kinds of different structure features. The anisotropic part of

the proposed method is not rotation invariant. Therefore, the

rotational problem should be first solved. The anisotropic

features are extracted by the LBPriu2
T ;P;R (T = 1, 2, 3, 4)

operators that correspond to the elliptical samplings with

four rotational angles (0�, 45�, 90� and 135�). The LBPriu2
T ;P;R

(T = 1, 2, 3, 4) values are the same when the image is

rotated by the angle 180�. Therefore, the anisotropic fea-

tures would be rotationally invariant in eight orientations

(0�, 45�, 90�, 135�, 180�, 225�, 270� and 315�), if we

controlled the rotational change of the elliptical sampling in

four orientations (0�, 45�, 90� and 135�). Suppose the

[Hl,1 Hl,2 Hl,3 Hl,4] are the four anisotropic feature histo-

grams in the lth level of the image pyramid. Circularly

adjusting the sequence of the four histograms has the same

results as extracting anisotropic feature histograms on the

rotational image. For instance, the histograms [Hl,2 Hl,3

Hl,4 Hl,1] equal to executing the LBPriu2
T ;P;R (T = 1, 2, 3, 4)

operators by turns on the image that has been anticlockwise

rotated by the angle 45� or 225�. Other orders of the four

histograms have a similar situation. Hence, by circularly

adjusting the sequence of the four histograms four times, the

anisotropic feature histograms of an image in eight possible

orientations can be obtained (0�, 45�, 90�, 135�, 180�, 225�,

270� and 315�). We take the anisotropic feature histograms

in all the levels of the image pyramid as a whole. The

corresponding angle between a testing sample and a training

sample can be obtained by searching the minimum dis-

similarity distance between the extracted anisotropic his-

tograms of the training sample and the anisotropic

histograms in all possible orientations of the testing sample.

Once the corresponding angle has been found, these

anisotropic feature distances under different levels of the

image pyramid can be separately calculated. Another factor

should be considered is the contributions of different parts

of the Ms-LBP operator. Compared with the microstruc-

tures, the macrostructures located at the top of the image

pyramid show less statistics because of the small sizes of

sub-images at high levels. Intuitively, the higher levels of

the image pyramid supplies less information of the texture

than the lower levels of the image pyramid. Moreover, the

Fig. 3 Five sampling types with P = 8 and R = 1

Fig. 4 Extraction of multi-structures from an image pyramid with

three levels

Pattern Anal Applic (2013) 16:595–607 599
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different structures should make different contributions to

classifying samples. Therefore, the final dissimilarity

(DF(S, M)) is the summation of all the distances of histo-

grams with different weights:

DFðS;MÞ ¼
XL

l¼0

wl;0DðSl;0;Ml;0Þ þ
XL

l¼0

wl;1DminðSan
l ;M

an
l Þ

DminðSan
l ;M

an
l Þ ¼ 1

4

P4

T¼1

DðSl;modðTþk�1;4Þþ1;Ml;TÞ

k ¼ arg min
j

PL

l¼0

P4

T¼1

DðSl;modðTþj�1;4Þþ1;Ml;TÞ
� �

; j ¼ 0; 1; 2; 3

8
>>><

>>>:

ð11Þ

where Sl,T and Ml,T stand for the LBPriu2
T ;P;R histogram in the

lth level of the image pyramid of the sample and the model,

respectively; wl,0 and wl,1 are the distant weights of the

isotropic part and the anisotropic part in the lth level of the

image pyramid, respectively; L is the maximum level of

the image pyramid; the k value points to the best order of

anisotropic histograms that corresponds to the appropri-

ate rotational angle of the testing sample relative to the

training sample; Dmin(Sl
an, Ml

an) is the summation of the

anisotropic distances between the adjusted Sl,T and

the original Ml,T.

The classification rate is a good candidate for the

weight. All the distant weights should be calculated from

the training set. One sample of each class is chosen by

turns. All of the selected samples group a new training set,

while other samples are used for testing. Suppose each

class has N samples. Thus, there will be N test groups. For

each test group, the isotropic and anisotropic features are

extracted in each level of the image pyramid. We use every

structure feature in each level of the image pyramid at a

time to achieve the texture classification in the created test

group. For the isotropic part, the basic Chi-square distance

is used to test the dissimilarity of the isotropic histograms

between a testing sample and a training sample. For the

anisotropic part, the best orientation of the testing sample is

only searched from the current level of the image pyramid.

Thus, the anisotropic dissimilar distance (D(Sl
an, Ml

an)) is

computed as:

DðSan
l ;M

an
l Þ ¼ min

k

1

4

X4

T¼1

DðSl;modðTþk�1;4Þþ1;Ml;TÞ
 !

;

k ¼ 0; 1; 2; 3 ð12Þ

Different structure features get different classification

rates. For each structure feature, the averaged classification

rate over the test groups is employed to build the

corresponding structure weight. For the image pyramid,

the sub-images on lower levels supply more details of a

texture. Here, we set a weight of 1/2l to the lth level of the

image pyramid so that the lower levels supply a great

contribution. The combinations of the structure weights

and the pyramid weights are selected as the distant weights.

Finally, all the distant weights are normalized to have a

sum of one. Algorithm 1 presents the pseudo code for

calculating the distant weights.

Algorithm 1. Calculating the distant weights of the different parts of the Ms-LBP

Input: Training set with N samples for each class, and the parameters P and R for 

Ms-LBPP,R
riu2, and maximum level L of the image pyramid

Output: The distant weights w of different parts of the Ms-LBP

1. Calculate the Hl,T histograms for all the samples according to Eq. (8)

2. FOR each level l of the image pyramid, l=0, 1… L

3.   FOR i=1 to N 

4.     Divide samples into two parts: (1) The ith sample of each class is 

selected as training sample; (2) Other samples are used for testing samples.

5.     Calculate the right classification rate ri,0 with features Hl,0 (isotropic 

part) according to Eq.(10)

6.     Calculate the right classification rate ri,1 with features Hl,T (T=1, 2, 3, 4) 

(anisotropic part) according to Eq.(12) 

7.   END FOR

8.   Calculate the mean classification rates ,l kr :

, ,
1

1
, 0,1

N

l k i k
i

r r k
N =

= =∑

9. Calculate the distant weights ,l kw′ by combining the classification 

rates ,l kr and pyramid weights 1
2l :

, ,

1
* , 0,1

2l k l k l
w r k′ = =

10.  END FOR

11.  Normalize the distant weights ,l kw′ (l=0,1…L, k=0,1):

,
, 1

,
0 0

l k
l k L

l k
l k

w
w

w
= =

′
=

′∑∑
12. Return the distant weights wl,k (l=0,1…L, k=0,1). 

4 Experiments

We demonstrate the performance of the proposed method

on two public texture databases: the Outex and the CUReT.

Two databases are selected because their texture images

are acquired under more varied conditions (viewing angle,

orientation and source of illumination) than the widely

used Brodatz database. Many studies [8, 10, 19–24, 28] use

the two databases to study the texture features.

4.1 The compared methods

As an LBP-based method, the proposed method has been

compared against six represent LBP algorithms: LBPP,R
riu2

[20], LBPP,R
riu2/VARP,R [20], LBPP,R-HF [22], LBPVP,R

u2 GMES

[23], CLBP_SP,R
riu2/MP,R

riu2/C [24] and PLBPP,R
riu2 [28]. The MR8

[10] as a powerful texton-based method is also compared.

The LBPP,R
riu2 and the local variance (VARP,R) are two

classical rotation-invariant texture descriptors. The two

600 Pattern Anal Applic (2013) 16:595–607
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descriptors express the local information in different ways.

Their joint distribution LBPP,R
riu2/VARP,R usually performs

better than the LBPP,R
riu2 operator. The output values of the

VARP,R are continuous. In the following experiments, the

feature distribution of the VARP,R is quantized into 16 bins

according to [20].

To avoid the quantization of the values in the VARP,R,

the LBPVP,R
u2 GMES [23] takes the local variances as

weights of the corresponding uniform patterns. A rotational

texture is classified by exhaustively searching the uniform

patterns in all possible orientations. The LBPP,R-HF [22] is

also built on the basis of the uniform patterns. The LBPP,R-

HF method transforms the histogram of uniform patterns

into Fourier space to describe rotational textures. The

CLBP_SP,R
riu2/MP,R

riu2/C [24] operator combines three piece of

information to enhance the performance of the classifica-

tion. For LBPVP,R
u2 GMES and CLBP_SP,R

riu2/MP,R
riu2/C, all the

textures are normalized to have an average intensity of 128

and a standard deviation of 20 [23, 24].

The MR8 [10] is a texton learning algorithm. For the

MR8, all the texture samples are normalized into an average

intensity of zero with standard deviation of one [10]. Ten

textons are learned from the training samples of each class.

The PLBPP,R
riu2 [28] executes the basic LBPP,R

riu2 operators

on an image pyramid. Because both the PLBPP,R
riu2 and the

proposed method employ the image pyramid as their frames,

the image pyramid of PLBPP,R
riu2 is created the same as the

proposed method. The number of levels of the image pyr-

amid is selected according to the sizes of the images. In the

following databases, the image pyramid with four levels is

used. To analyze the differences between the PLBPP,R
riu2 and

the proposed method, the Ms-LBPP,R
riu2 without weights is

also executed in the following experiments. For conve-

nience, the Ms-LBPP,R
riu2 without weights is denoted by

Ms-LBPP,R,nw
riu2 . For the Ms-LBPP,R

riu2, the weights are first

calculated from the training samples according to Algorithm

1. Once the weights have been obtained, the Ms-LBP fea-

tures are extracted on training samples and testing samples,

respectively. A testing sample is classified according to the

nearest neighbor principle with Chi-square distance. For the

Ms-LBPP,R,nw
riu2 , the weights are ignored when the dissimi-

larity between modes and tests are calculated. In other

words, each weight in the Ms-LBPP,R,nw
riu2 equals to one. The

percentages of the correctly classified samples are used

to characterize the performances of the algorithms. The

best result for each test suite is marked in the bold font.

4.2 Results on the Outex database

There are 24 classes of textures in the Outex database.

These textures are collected under three illuminations and

at nine angles. Our experiments were performed on two

public test suites of the Outex (http://www.outex.oulu.fi/

temp/): Outex_TC_00010 (TC10) and Outex_TC_00012

(TC12). TC10 is used for studying rotation-invariant tex-

ture classification and TC12 is used for researching illu-

minant and rotation-invariant texture classification. The

two test suites contain the same 24 classes of textures as

shown in Fig. 5. Each texture class is collected under three

different illuminants (‘inca’, ‘t184’ and ‘horizon’) and nine

different angles of rotation (0�, 5�, 10�, 15�, 30�, 45�, 60�,

75� and 90�). All the images in the two test suites are gray

scales. There are 20 non-overlapping 128 9 128 texture

samples for each class under each setting. The experi-

mental setups were as follows:

1. For TC10, the classifier was trained with the reference

textures of the illuminant ‘inca’ (20 samples of angle

0� in each texture class), while the 160 (8 9 20)

samples of the other eight rotational angles in each

texture class were used for testing the classifier. Hence,

there were 480 (24 9 1 9 20) models and 3,840

(24 9 8 9 20) testing samples in total.

2. For TC12, the classifier was trained with the same

training sample in the TC10 test suites. All samples

captured under illuminant ‘tl84’ or ‘horizon’ were used

for testing the classifier. Hence, in both the illuminant

experiments, there are 480 (24 9 20) models and 4,320

(24 9 20 9 9) validated samples in total for each

illuminant. To simplify the name, ‘TC12t’ is shortened

for TC12 ‘tl84’, and ‘TC12h’ for TC12 ‘horizon’.

The test suites TC10 and TC12 have the same training set

that contains 480 samples of illuminant ‘inca’ in total.

Therefore, they have the same distant weights. Table 1

presents the correct classification rates of the different parts

of the proposed method with different sampling points

P and radius R. An image pyramid with four levels was

used. For each Ms-LBPP,R
riu2 operator, the distant weights

were computed by normalizing the combination of the

correct classification rates and the corresponding pyramid

weights. Taking the Ms-LBP8,1
riu2 operator for example, the

weights of different parts of the Ms-LBP8,1
riu2 from level 0 to

level 3 are: 0.273, 0.306, 0.126, 0.148, 0.045, 0.064, 0.017

and 0.022, respectively. Similarly, the weights of the pro-

posed method with other parameters can also be calculated

according to the Algorithm 1. The parts of the proposed

method in the lower levels have been set higher weights

than those in the high levels. The reason lies in the image

pyramid. The lower levels of the image pyramid supply the

details of a texture. These details contain a lot of informa-

tion of the texture. In addition, the proposed method uses the

distribution of patterns to describe the texture. The distri-

butions at high levels are unstable, because the number of

pixels at high levels is very small. Therefore, the high levels

are set low weights. The stability of the distribution can be
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seen from the results of different levels in Table 1. Results

in Table 1 show that the correct classification rates deteri-

orate rapidly with the increase of levels, because the sizes of

sub-images at high levels are too small to supply enough

statistics of structures. Four elliptical sampling regions

cause more anisotropic information to be extracted and give

a good performance to the anisotropic parts in the image

pyramid. Therefore, it can be found that the classification

rates of anisotropic parts are usually higher than the results

of isotropic parts at the same levels of the image pyramid.

Table 2 gives the results of different methods on the

TC10 and TC12 test suites. The results of all the LBP-based

methods with the multi-resolution technique are also pre-

sented in Table 2. The multi-resolution technique [20] is an

effective tool to enhance the performance of LBP methods.

The LBP methods with the multi-resolution technique

combine the features provided by multiple LBP operators of

varying parameters (P, R). The high scores 98.89 and

98.52% are obtained by the Ms-LBP16,2
riu2 operator on TC12t

and TC12h, respectively. For TC10, the combination of

Fig. 5 128 9 128 samples of the 24 textures from the Outex database

Table 1 Correct classification rates of different parts of the Ms-LBPP,R
riu2 operators on the training set of the TC10 and TC12 test suites

P, R Isotropic parts Anisotropic parts

Level 0 Level 1 Level 2 Level 3 Level 0 Level 1 Level 2 Level 3

8, 1 76.83 70.69 51.03 39.16 85.91 82.97 71.36 48.53

16, 2 81.50 74.78 56.66 35.73 85.77 85.09 62.88 23.15

24, 3 82.12 77.31 56.52 20.01 87.98 85.56 56.92 10.07

8, 1 ? 16, 2 84.29 80.87 73.48 51.52 88.59 88.43 78.08 49.18

8, 1 ? 24, 3 86.36 84.96 74.41 44.77 91.67 89.93 78.03 45.83

16, 2 ? 24, 3 84.46 83.80 67.81 39.90 88.65 88.64 67.76 22.92

8, 1 ? 16, 2 ? 24, 3 86.61 85.94 77.87 52.05 90.45 90.34 78.31 47.35
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Ms-LBP16,2,nw
riu2 and Ms-LBP24,3,nw

riu2 provides the best score,

99.64%. The superiority of our method is obvious on the

test suite TC12, which contains both illuminant and rota-

tion-variant textures. Textures captured under different

illuminant usually have different microstructures, but their

macrostructures are very similar. Thus, compared with

other operators, our method works well on testing sets

TC12.

The Ms-LBPP,R
riu2 method usually excels its counterparts

under the same parameters (P, R) in the same testing sets.

This situation is particularly clear when the parameter

(P, R) equals to (8, 1). In fact, the conventional LBP

methods with eight sampling points supply very limited

patterns to express the texture. The Ms-LBP8,1
riu2 operator

extracts more information to describe the texture. On

comparing the operator with the single parameter (P, R),

better results of the proposed method are obtained with

parameter (16, 2) and the performance degrades a little

with the parameter (24, 3). Observing the results at high

levels in Table 1, this phenomenon also exists. The reason

lies in the small sizes of sub-images at the high levels of

the image pyramid. At the same time, the dimension of the

feature histogram increases with the number of sampling

points P. It is well known that a high-dimensional histo-

gram with few entries is not enough to support a stable

distribution of features in the statistical sense and the

Table 2 Correct classification rates (%) for the TC10 and TC12 test suites using different methods

P, R LBPriu2 LBPriu2/

VAR

LBP-HF LBPVu2GMES CLBP_Sriu2/

Mriu2/C

PLBPriu2 Ms-LBPnw
riu2 Ms-LBPriu2 MR8

TC10 8, 1 84.87 96.23 83.26 73.52 96.56 89.53 95.13 96.95 85.9

16, 2 89.40 97.92 93.93 93.75 98.72 93.59 99.32 99.32

24, 3 95.16 97.09 97.97 97.73 98.93 89.19 99.38 99.40

8, 1 ? 16, 2 93.31 98.10 92.37 91.48 98.57 95.63 98.57 98.91

8, 1 ? 24, 3 97.58 98.26 96.28 97.53 99.01 93.65 99.06 98.91

16, 2 ? 24, 3 96.38 98.05 97.81 97.86 99.22 95.18 99.64 99.35

8, 1 ? 16, 2 ? 24, 3 97.19 98.33 96.59 97.29 99.17 95.73 99.11 99.01

TC12t 8, 1 65.19 77.15 76.20 72.43 90.30 87.13 92.52 96.04 85.05

16, 2 82.48 83.36 88.15 90.14 93.54 92.38 97.01 98.89

24, 3 85.07 83.52 91.50 95.30 95.32 88.77 95.07 97.04

8, 1 ? 16, 2 84.47 84.14 89.40 88.08 93.40 94.00 95.81 98.06

8, 1 ? 24, 3 90.95 87.13 91.97 94.31 95.28 92.55 95.44 97.87

16, 2 ? 24, 3 87.99 85.44 92.45 94.68 95.30 94.44 96.90 98.59

8, 1 ? 16, 2 ? 24, 3 89.19 86.78 92.80 94.03 95.23 95.32 96.02 98.38

TC12h 8, 1 64.03 76.14 78.45 76.48 92.29 86.34 90.32 95.07 87.05

16, 2 75.32 83.52 86.46 94.28 93.91 92.99 95.79 98.52

24, 3 80.88 84.44 87.66 95.67 94.54 89.03 94.05 96.85

8, 1 ? 16, 2 79.35 83.29 89.31 92.45 94.56 94.10 94.35 97.69

8, 1 ? 24, 3 84.95 87.52 91.50 96.30 95.58 92.41 93.98 97.20

16, 2 ? 24, 3 83.10 86.39 90.46 96.27 94.77 94.75 95.81 98.08

8, 1 ? 16, 2 ? 24, 3 84.14 87.25 92.25 96.20 95.58 95.56 94.70 98.08

Table 3 The lengths of feature vectors of different methods

P, R LBPriu2 LBPriu2/VAR LBP-HF LBPVu2

GMES

CLBP_Sriu2/

Mriu2/C

PLBPriu2 Ms-LBPriu2 MR8

8, 1 10 26 38 59 200 40 200 240

16, 2 18 34 138 243 648 72 360

24, 3 26 42 302 555 1,352 104 520

8, 1 ? 16, 2 28 60 176 302 848 112 560

8, 1 ? 24, 3 36 68 340 614 1,552 144 720

16, 2 ? 24, 3 44 76 440 798 2,000 176 880

8, 1 ? 16, 2 ? 24, 3 54 102 478 857 2,200 216 1,080
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operator Ms-LBP24,3
riu2 belongs to this situation. As can be

seen from Table 2, the performance of Ms-LBPP,R
riu2

degrades a little with the large number of sampling points,

P = 24. Similarly, PLBP24,3
riu2 and Ms-LBP24,3,nw

riu2 have the

same situation. For Ms-LBPP,R
riu2, the weights are used to

constrain the negative effect of the patterns at high levels

of the image pyramid. Thus, the Ms-LBPP,R
riu2 usually per-

forms better than the Ms-LBPP,R,nw
riu2 .

Although our method performs better than others, the

proposed method needs more features to describe textures.

Table 3 shows the lengths of feature vectors that have been

extracted by different methods. The length of feature

vector of the proposed method is longer than the compared

methods except for the CLBP_SP,R
riu2/MP,R

riu2/C method.

4.3 Results on the CUReT database

There are 61 materials in the CUReT database. Each

material has 205 texture images with different viewpoints,

illumination and orientation. Figure 6 shows the materials.

In each material, 118 images were captured from a viewing

angle of less than 60�. Among the 118 images, 92 images

were selected. The selected images had sufficiently large

regions to be cropped into sizes of 200 9 200 and all the

cropped regions were converted into gray scales. Thus,

there were 5,612 images in total. The cropped samples

can be downloaded at (http://www.robots.ox.ac.uk/*vgg/

research/texclass/).

In our experiments, we had randomly selected N sam-

ples from each class as training samples and others were

used for testing. The number N was set as 6, 12, 23 and 46

by turn. For each number N, the randomly partitioned

process was repeated ten times for experiments. The mean

accuracy over the ten splits was used to evaluate the

algorithms. We learned the distant weights of the Ms-LBP

from the smallest training set that had been built in the first

time by randomly selecting six samples for each class. The

number of selected training samples for each class has little

Fig. 6 Samples of the 61 materials from the CUReT database
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effect to calculate the distant weights. The created training

set would be divided several times for computing the

performance of different parts of the Ms-LBP. Different

number N just alters the executing times of this process.

The results of the different parts are finally normalized into

relative results. Table 4 gives the correct classification

Table 4 Correct classification rates of different parts of the Ms-LBPP,R
riu2 operators on the training set that is built by selecting six samples from

each class of the CUReT database

P, R Isotropic parts Anisotropic parts

Level 0 Level 1 Level 2 Level 3 Level 0 Level 1 Level 2 Level 3

8, 1 35.03 33.99 20.98 11.37 42.02 42.13 33.33 20.98

16, 2 38.25 35.36 23.11 13.33 45.46 38.74 29.89 18.03

24, 3 43.44 34.70 21.48 14.26 47.87 42.84 31.91 21.53

8, 1 ? 16, 2 42.73 42.51 30.66 19.24 46.78 44.75 40.87 27.60

8, 1 ? 24, 3 47.16 45.57 33.61 19.95 49.62 48.31 43.72 31.69

16, 2 ? 24, 3 43.66 41.09 27.98 18.91 49.07 44.48 36.45 25.46

8, 1 ? 16, 2 ? 24, 3 45.90 45.57 33.77 20.55 49.51 47.32 43.88 31.53

Table 5 Correct classification rate (%) on the CUReT using different methods

N P, R LBPriu2 LBPriu2/

VAR

LBP-HF LBPVu2

GMES

CLBP_Sriu2/

Mriu2/C

PLBPriu2 Ms-LBPnw
riu2 Ms-LBPriu2 MR8

46 8, 1 80.87 91.87 90.47 92.00 95.75 90.83 96.92 98.05 96.14

16, 2 84.81 91.51 92.60 94.09 95.70 87.30 95.35 98.47

24, 3 86.82 91.57 92.92 94.24 95.78 81.41 92.87 98.39

8, 1 ? 16, 2 91.25 94.29 93.69 94.27 96.69 93.35 97.72 98.71

8, 1 ? 24, 3 93.64 95.23 95.02 95.00 97.14 91.78 97.64 98.88

16, 2 ? 24, 3 90.56 92.84 94.42 94.96 96.51 90.27 96.84 98.73

8, 1 ? 16, 2 ? 24, 3 93.68 94.89 95.09 95.05 97.05 94.08 98.17 98.91

23 8, 1 74.61 85.46 84.84 86.89 91.04 87.01 93.84 95.12 92.29

16, 2 79.38 85.39 88.20 89.97 91.53 83.32 91.78 95.63

24, 3 81.68 85.14 88.29 89.98 91.98 76.99 88.93 95.82

8, 1 ? 16, 2 86.09 88.58 89.42 90.04 92.50 90.48 95.27 96.39

8, 1 ? 24, 3 89.17 89.88 90.81 91.01 93.64 88.65 95.27 96.79

16, 2 ? 24, 3 85.55 86.88 90.26 90.97 92.39 86.75 93.87 96.41

8, 1 ? 16, 2 ? 24, 3 89.28 89.43 90.94 91.13 93.35 91.11 95.79 96.77

12 8, 1 67.91 77.57 77.65 79.99 84.27 81.18 89.27 90.87 85.68

16, 2 72.16 77.95 82.04 84.04 85.17 77.29 86.69 91.53

24, 3 75.34 77.61 81.87 84.16 85.63 71.26 83.77 91.57

8, 1 ? 16, 2 79.35 80.84 83.15 83.82 86.27 84.85 90.99 92.61

8, 1 ? 24, 3 83.39 82.60 84.51 85.13 87.63 83.20 91.12 93.26

16, 2 ? 24, 3 79.04 79.32 84.05 85.23 86.31 81.08 89.27 92.53

8, 1 ? 16, 2 ? 24, 3 82.99 81.96 84.98 85.22 87.40 85.96 91.87 93.26

06 8, 1 58.41 67.54 68.18 71.48 74.87 74.00 82.50 83.47 76.50

16, 2 63.16 68.72 72.69 76.12 76.26 70.42 79.39 84.36

24, 3 67.16 67.79 73.63 75.97 76.87 64.36 75.95 84.38

8, 1 ? 16, 2 70.09 70.96 74.13 75.75 77.23 77.99 84.13 85.96

8, 1 ? 24, 3 74.46 72.45 76.03 77.03 78.79 76.37 84.60 86.79

16, 2 ? 24, 3 69.98 69.58 75.30 77.31 77.57 73.60 82.08 85.51

8, 1 ? 16, 2 ? 24, 3 73.97 72.03 76.48 77.26 78.39 78.91 85.26 86.73
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rates of the different parts of the Ms-LBP with different

sampling points P and radius R. With the classification

rates, the distant weights are easily obtained according to

Algorithm 1.

Table 5 shows the classification results in the CUReT

with four different divided schemes. The best scores 98.88,

96.79, 93.26 and 86.79% are obtained by the proposed

method when the selected number N equals 46, 23, 12 and

6, respectively. The classification accuracies of all the

algorithms increase with the increment of the number

N. More selected training samples supply more information

for all the algorithms to describe the textures under dif-

ferent captured conditions. In contrast, the proposed

method has a greater advantage when the number of

training samples is smaller. Taking N = 6, for example, the

proposed method greatly improves classification accuracy

by an average of 8.17% over the CLBP_SP,R
riu2/MP,R

riu2/C

method. Many materials in the CUReT database have 3D

structures. Thus, some small shades are created in the

images when these materials are captured under different

viewpoints. The small shades lead to some inaccurate

patterns for the conventional LBP methods, because these

methods only extract patterns by comparing pixels in a

small region. Using more training samples to learn the

classifier can reduce the effect of shades in a way, because

the training samples and the testing samples might have the

shades in the same captured viewpoints. For the proposed

method, macrostructures are also extracted from the high

levels of the image pyramid. Since each pixel in the high

levels is an ensemble of a large region in the original

image, these shades have little effect on patterns that stand

for macrostructures. Therefore, the proposed method per-

forms much better than its counterparts when the training

set has fewer samples. This is also the reason why the MR8

method performs well in the CUReT. The filter bank in the

MR8 can capture the information in large scales. The fil-

tering operation reduces the effect of small shades. On the

other hand, the filtering operation loses the ability to pre-

cisely describe the local information. Hence, the MR8

method does not give the expected results on the Outex

database. Textures in the Outex have no viewpoint change

and the local regions are relatively stable between the

training samples and the testing samples. Therefore, the

LBP methods usually have better results on the Outex

database than the MR8 method. Since both the micro and

macro information are extracted, the proposed method

performs well in the two databases.

All of the PLBPP,R
riu2, Ms-LBPP,R,nw

riu2 and Ms-LBPP,R
riu2 have

used the image pyramid to extract macro information of

textures. The macro information makes the PLBPP,R
riu2

algorithm perform better than the basic LBPP,R
riu2 method,

when a small quantity of sampling points is available. The

performance of the PLBP24,3
riu2 operator falls, because more

patterns are present. The high levels of an image pyramid

cannot supply enough pixels to support stable distributions

with a lot of patterns. Ms-LBPP,R,nw
riu2 gives better scores

than PLBPP,R
riu2 as a result of the extraction of extra aniso-

tropic information. The weights are also employed to bal-

ance the contributions of different parts of the proposed

method. Thus, Ms-LBPP,R
riu2 shows better scores than

Ms-LBPP,R,nw
riu2 and PLBPP,R

riu2.

5 Conclusions

In this paper, we proposed a multi-structure framework on

the basis of the LBP to describe textures. Both circular

sampling and elliptical sampling were used to extract the

rotation-invariant uniform LBP operator. Combined with

the image pyramid technique, we described four different

structures (isotropic microstructure, anisotropic micro-

structure, isotropic macrostructure and anisotropic macro-

structure). The weights of extracted features are also

defined according to their contributions to the images. The

experimental results on the Outex database and the CUReT

database demonstrate the advantages of our method. The

performance of the proposed method is limited by the size

of images, because small images are not enough to supply

large macrostructures. Fortunately, the texture images are

different from other images, because they are full of

repeating modes. So in the future, some texture synthesis

technique could be used to create texture image with large

sizes and more stable Ms-LBPs could be achieved on the

synthesized texture images. Moreover, the proposed

method can be combined with other local information (such

as VAR, LBPV) to improve the discriminative power.
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