
INDUSTRIAL AND COMMERCIAL APPLICATION

Gaussian kernel width exploration and cone cluster labeling
for support vector clustering

Sei-Hyung Lee • Karen M. Daniels

Received: 21 April 2010 / Accepted: 16 September 2011 / Published online: 4 October 2011

� Springer-Verlag London Limited 2011

Abstract The process of clustering groups together data

points so that intra-cluster similarity is maximized while

inter-cluster similarity is minimized. Support vector clus-

tering (SVC) is a clustering approach that can identify

arbitrarily shaped cluster boundaries. The execution time of

SVC depends heavily on several factors: choice of the

width of a kernel function that determines a nonlinear

transformation of the input data, solution of a quadratic

program, and the way that the output of the quadratic

program is used to produce clusters. This paper builds on

our prior SVC research in two ways. First, we propose a

method for identifying a kernel width value in a region

where our experiments suggest that clustering structure is

changing significantly. This can form the starting point for

efficient exploration of the space of kernel width values.

Second, we offer a technique, called cone cluster labeling,

that uses the output of the quadratic program to build

clusters in a novel way that avoids an important deficiency

present in previous methods. Our experimental results use

both two-dimensional and high-dimensional data sets.

Keywords Cluster analysis � Support vector clustering

1 Introduction

1.1 Clustering overview

Clustering is an unsupervised classification of data into

natural groups [17]. It has applications in fields such as

bioinformatics, where the data tends to have high dimen-

sionality. Many different types of clustering criteria and

algorithms exist (see [5, 9, 10, 11, 17] for clustering sur-

veys). However, it is generally agreed that good clustering

maximizes intra-cluster similarity and minimizes inter-

cluster similarity.

Clustering algorithms typically employ one or more of

the following approaches: graph-based [12, 14, 16, 28],

density-based [8], model-based methods using either a

statistical approach or a neural network approach, or

optimization of a clustering criterion function. Efficient

clustering algorithms tend to rely heavily on parameter

selection. For example, the K-means algorithm [3] is faster

than some other methods but requires the number of

clusters and each cluster center’s starting location as an

input. If no prior information about the data set is available,

argument-free clustering algorithms like that of [7] can be

used. Since those algorithms use proximity graphs such as

Delaunay diagrams, they are not appropriate for high-

dimensional data sets.

Constructing cluster boundaries is another popular

technique [6, 12]. Support vector clustering (SVC) is

similar to a boundary-finding clustering method except

that it only identifies certain points on the boundary of

each cluster; these points are support vectors. SVC does

not require prior knowledge about the data. It is based on

concepts from support vector machines. A support vector

machine is a classifier that is used widely in many

machine learning applications [2, 27]. It constructs a

S.-H. Lee (&)

EMC, Hopkinton, MA 01748, USA

e-mail: SeiHyung.Lee@emc.com

K. M. Daniels

Department of Computer Science, University of Massachusetts

Lowell, Lowell, MA 01854, USA

e-mail: kdaniels@cs.uml.edu

123

Pattern Anal Applic (2012) 15:327–344

DOI 10.1007/s10044-011-0244-8

nonlinear classification boundary by creating a linear

boundary in a high-dimensional space that is a transfor-

mation of the original data space [15]. This paper is based

on SVC, whose foundation is summarized below in

Sect. 1.2.

1.2 Support vector clustering

The basic idea of SVC is similar to that of a support

vector machine. In fact, one can view SVC as a one-

class support vector machine classifier. In both SVC and

support vector machines, data are transformed by a

nonlinear mapping into a high-dimensional feature space.

This space is a Hilbert space for which a kernel function

defines an inner product. The kernel function allows

certain operations on data point images to be carried out

in the feature space. The operations are executed without

explicit knowledge of the nonlinear mapping or direct

calculations on the data point images in feature space.

Support vector machines use a linear separator in fea-

ture space in order to separate and classify points. In

contrast, SVC uses a minimal hypersphere surrounding

feature space images of data points. The minimal hyper-

sphere yields contours in the data space that form cluster

boundaries [1, 13]. The cluster labeling task associates

each data point with a cluster, using only the available

operations, without explicitly constructing the contours in

data space. An important advantage of SVC over other

clustering methods is its ability to produce irregularly

shaped clusters. Another advantage is its ability to handle

outliers by allowing the minimal hypersphere to exclude

some data point images.

Given a finite set X � R
d of N distinct data points, the

radius R of the minimal hypersphere enclosing all data points’

images in the feature space is governed by Eq. 1, as in [1]:

UðxÞ � ak k2�R2 8x 2 X ; ð1Þ

where U is a nonlinear mapping from data space to feature

space, UðxÞ is the feature space image of data point x; �k k is

the Euclidean norm, and a is the center of the sphere. A

slack variable nx can be added to the right-hand side of

Eq. 1, combined with a multiplicative penalty constant

C, to form a soft constraint. Images on the surface of the

sphere correspond to points on contour boundaries in data

space, and images inside the sphere map to points within

contours. Data points can be categorized into three groups

based on the location of their feature space images: (1)

points whose images are on the surface of the minimal

hypersphere are Support Vectors (SVs), (2) points whose

images are outside of the minimal hypersphere are Boun-

ded Support Vectors (BSVs, controlled by penalty constant

C), and (3) points whose images are inside the minimal

hypersphere.

The mapping from data space to feature space is spec-

ified by a kernel function, K : X � X ! R; that defines the

inner product of image points. We use a Gaussian kernel

given by Eq. 2 below [1, 13, 22]:

Kðxi; xjÞ ¼ e�qkxi�xjk2 ¼ hUðxiÞ � UðxjÞi; ð2Þ

where q is the width parameter of the Gaussian kernel.

From Eq. 2, it follows that,

Kðxi; xiÞ ¼ 1: ð3Þ

All data point images are therefore on the surface of the

unit ball in feature space [2]. From Eqs. 1 to 3, the

Lagrangian W in Eq. 4 below can be derived. It must be

maximized in order to find the minimal hypersphere.

max W ¼
X

j

Kðxj; xjÞbj �
X

i;j

bibjKðxi; xjÞ

¼ 1�
X

i;j

bibjKðxi; xjÞ
ð4Þ

where bi is a Lagrange multiplier, 1 B i B N, andP
ibi = 1. A soft margin constraint bi B C, where C is the

penalty constant, controls the number of BSVs and there-

fore allows exclusion of some outliers. When C C 1 no

BSVs can exist. Note that Eq. 4 is quadratic in the b val-

ues. Solving Eq. 4 using quadratic programming yields b
values corresponding to the minimal hypersphere in feature

space. These b values are used for cluster labeling.

The high-level SVC strategy is outlined below:

SVC(X ; q;C)

K computeKernel(X ; q) using Eq. 2

b solveLagrangian(K, C) using Eq. 4

return clusterLabeling(X ; b)

1.3 Parameter selection

SVC’s running time depends directly on the number of q

and C combinations explored. Since clustering is sub-

jective, multiple (q, C) pairs might be required in order to

provide an acceptable result. Minimum and maximum q

values qmin and qmax can be easily established by forcing

all off-diagonal kernel values to be close to 1 or 0,

respectively. The minimum q value typically produces a

single cluster, while the number of support vectors Nsv is

328 Pattern Anal Applic (2012) 15:327–344

123

expected to be N at the maximum q value. The former case

yields

1� e�q�maxf xi�xjk k2g � �min;

where 0� �min� 1) qmin ¼
lnð 1

1��min
Þ

maxf xi � xj

�� ��2g
: ð5Þ

In the latter case we obtain

e�q�minf xi�xjk k2g � �max;

where 0� �max� 1) qmax ¼
lnð 1

�max
Þ

minf xi � xj

�� ��2g
: ð6Þ

The value of qmin can be chosen such that lnð 1
1��min

Þ ¼ 1;

thus qmin ¼ 1

maxf xi�xjk k2g
: This is used as an initial q value

in [1]. Similarly, qmax can be selected such that lnð 1
�max
Þ ¼ 1;

this produces qmax ¼ 1

minf xi�xjk k2g
:

A procedure is needed to select intervening q values. An

ideal sequence would produce only critical q values where

the clustering structure changes. Furthermore, these q

values would be sorted by their clustering quality. That is,

values corresponding to the most natural clustering results

would appear early in the sequence.

The SVC literature has not yet offered a procedure for

generating such a sequence. Grid sampling can produce a

list of q values, but it suffers from the need to guess an

appropriate Dq value. Also, it does not necessarily yield a

good ordering of the q values. Our secant-like algorithm,

introduced in [18, 19, 21], behaves similar to successive

doubling of the initial q value. Like a secant method, this

algorithm starts with two initial values and finds sub-

sequent values by using secant lines but stops when the

slope of the line is close to flat. Experiments with q values

generated in this fashion suggest that critical q values often

occur in the sequence and the length of the sequence

depends only on spatial characteristics of the data set rather

than the dimensionality of the data set or the number of

data points. However, this approach still does not produce

the most desirable q values early in the sequence.

Indeed, identifying critical q values and determining a

good ordering of them is a very challenging problem.

While we do not completely solve this problem here, we

offer some progress using fresh insight into the behavior of

R2 as a function of q. This builds on our earlier observa-

tions in [18, 19, 21] about conditions in which this function

is monotonic. Monotonicity, convexity, and appropriate

scaling allow the function to have a unique radius of cur-

vature [23] minimum that tends to correspond to a q value

at which clustering structure changes are the most signifi-

cant. This serves as a starting point for our q sequence.

Successive doubling produces the remaining q values. The

radius of curvature technique is new and its new clustering

results are presented in this paper.

For each (q, C) pair, computing the kernel matrix fol-

lowed by solving the Lagrangian together require O(N2)

space and O(N3) running time in the worst case. Our

method is efficient because it uses information that is

already needed by SVC. In this paper, we set C to 1 so that

no data point images are outside the minimal hypersphere.

Systematically identifying a sequence of critical C values is

beyond the scope of this paper. This is also a difficult

problem for which little guidance appears in the SVC

literature.

1.4 Cluster labeling

Cluster labeling, the second focus of this paper, has a goal

of grouping together data points that are in the same con-

tour associated with the minimal hypersphere. Recall that

the grouping must be done without the ability to explicitly

construct the contour boundaries; this greatly complicates

the task.

Prior cluster labeling work is summarized in [21, 20]

and discussed below. In the literature, cluster labeling has

been an SVC performance bottleneck. Dominant SVC

cluster labeling algorithms are Complete Graph (CG) [1],

Support Vector Graph (SVG) [1], Proximity Graph (PG)

[28], and Gradient Descent (GD) [22]. These algorithms

group together data points by representing pairs of data

points using an adjacency structure, which is usually a

matrix. Each element signifies whether there is adequate

justification to decide that the associated pair of data points

is in the same contour and therefore in the same cluster.

Each connected component of the associated graph is a

cluster. CG needs a O(N2) sized adjacency structure

because it represents all data point pairs. SVG represents

pairs in which one point is a support vector, so its adja-

cency structure only uses O(NsvN) space where Nsv is the

number of support vectors. Once the support vectors are

clustered, SVG clusters the remaining data points in a

second phase. PG forms an adjacency structure from a

proximity graph that has only O(N) edges. The GD method

finds Stable Equilibrium Points (SEPs) that are the nearest

minimum point of Eq. 7 below for each data point and

then tests pairs of SEPs. Consequently, GD’s adjacency

structure uses O(Nsep
2) space, where Nsep is the number of

SEPs.

Because data space contours cannot be explicitly

constructed, the algorithms mentioned above use an

indirect method to determine if a pair of data points xi

and xj are in the same contour. The strategy is a sam-

pling approach based on the fact that each possible path

connecting two data points in distinct data space

Pattern Anal Applic (2012) 15:327–344 329

123

contours leaves the contours in data space and the image

of the path in feature space exits the minimal hyper-

sphere. The aforementioned algorithms use the straight

line segment xixj connecting xi and xj as a path. This

path is sampled. For sample point x in data space, UðxÞ
is outside the minimal hypersphere if R2(x) [R2, where

R2(x) is defined by Eq. 7 below. If the image of each

sample point along xixj is inside the minimal hyper-

sphere, then xi and xj are put into the same cluster.

R2ðxÞ ¼ UðxÞ � ak k2

¼ 1� 2
X

j

bjKðxj; xÞ þ
X

i;j

bibjKðxi; xjÞ; ð7Þ

where x 2 R
d and a ¼

P
i biUðxiÞ is the center of the

minimal hypersphere [1]. (Note that since support vectors

are on the boundary of the minimal hypersphere,

R2(x) = R2 in their case.)

The sampling approach induces a problematic running

time versus accuracy tradeoff. If m is the number of sample

points along a line segment, then solving Eq. 7 for each

sample point generates a multiplicative factor of mNsv

beyond the time proportional to the size of the adjacency

data structure. The algorithms restrict m to be a small

constant in order to limit running time; this is typically

10–20. However, small values of m can cause false positive

and false negative errors, as depicted in Fig. 1.

The problem illustrated in Fig. 1a can be partially

solved if we base the number of sample points along the

line segment on the distance between data points. How-

ever, this method may still suffer from the same problem.

The disadvantage shown in Fig. 1b can be ameliorated by

enhancing connectivity among data points. However, as the

number of data points to be checked increases, the time

complexity of cluster labeling becomes more expensive.

Different cluster labeling algorithms use line segments

between different numbers of data points and therefore

suffer from the above problems to varying degrees. For

example, CG uses line segments for all data pairs while

SVG only uses line segments for all data pairs in which one

data point is a support vector. SVG’s smaller number of

pairs exacerbates the problem depicted in Fig. 1b, causing

the probability of breaking a cluster into several clusters to

be higher. Thus SVG, PG, and GD have weaker cluster

connectivity than CG.

This paper takes a very different approach to cluster

labeling that does not sample a line segment between a pair

of data points. Our strategy approximates the contours in

data space using the union of a set of hyperspheres centered

on the support vectors. All of the hyperspheres have the

same radius, which is derived from cones in the feature

space. The radius is based on the b values obtained from

the quadratic programming model in Eq. 4. The cones are

designed with the goal of approximating part of the feature

space associated with the intersection of the surface of the

unit ball with the minimal hypersphere surrounding the

images of the data points. This cone cluster labeling (CCL)

scheme is fast and provides excellent clustering results for

our data sets.

1.5 Overview

Section 2 describes the data sets used in this paper. In

Sect. 3, we offer a new heuristic for exploring SVC

Gaussian kernel widths for a fixed value of the outlier

parameter C. Kernel width values are ordered using the

radius of curvature of the function that specifies the radius

of the minimal hypersphere in feature space in terms of

kernel width. Values close to the critical curvature point

appear to often correspond to critical changes in clustering

structure. An estimate is provided for the number of kernel

width values generated by the strategy.

This paper circumvents the cluster labeling problems

listed in Sect. 1.4 by using a novel approach that decides if

two data points are in the same cluster without sampling a

path between them. The main idea is to cover an important

portion of the minimal hypersphere in feature space using

cones that correspond to hyperspheres in data space. Each

support vector is associated with one feature space cone

and one data space hypersphere. The radius of the hyper-

sphere is based on the output of the quadratic programming

model of Eq. 4. The union of the hyperspheres in data

space need not be explicitly constructed. Pairs of support

vectors can be quickly tested during the cluster labeling

process and then the remaining data points can be easily

clustered. Our CCL algorithm, presented in Sect. 4, does

not use sample points. An earlier version of this work

appears in [20, 21]. Lee and Daniels [20] states our CCL

claims and briefly outlines the main ideas of the proofs.

Lee [21] provides additional detail for the proofs. In the

current paper, we provide final versions of the preliminary

drafts of proofs from [21]. CCL is able to efficiently

recover known clustering structure in our data sets. Its

clustering results are similar in quality to the best results

xi xj

(a)

xi
xj

(b)

Fig. 1 Problems in using line segment xixj; illustrated in two-

dimensional data space: a all sample points on xixj are inside the

minimal hypersphere, while xi and xj are in different contours; b some

sample points are outside the minimal hypersphere although xi and xj

are in the same contour

330 Pattern Anal Applic (2012) 15:327–344

123

we have seen using CG. (Recall from Sect. 1.4 that CG has

the strongest clustering connectivity of the existing sam-

pling-based SVC cluster labeling techniques.) Furthermore,

our new algorithm is faster than traditional cluster labeling

algorithms and appears to work well even in high dimen-

sions. Section 4’s comparison with existing cluster labeling

algorithms contains our new CCL results using our new

kernel width selection process. Section 5 concludes the

paper.

2 Data sets

This section describes data sets that are used in this paper.

(Additional data sets are discussed in [21].) In each case 1

and N are extreme values for the number of possible

clusters. We identify the most natural number(s) of clusters

in between these values, where appropriate. This provides

known clustering structure that is used in our paper for

assessing the quality of our clustering approach.

2.1 Two-dimensional data

Table 1 depicts eight illustrative two-dimensional data sets.

In Table 1, (a) shows five clusters with clear separation.

We created (b) to test data with no specific clustering

structure. Data set (c) has two blocks (upper and lower) of

the same non-convex shape; 2 is therefore a reasonable

number of clusters for this case. It can also be construed as

having four clusters, with two clusters inside each block.

Data set (d) shows two interleaved, highly non-convex

clusters. This is a subset of data from the authors of [12].

Even though these data do not have outliers, it is not easy

to obtain two clusters. Data set (e) has one cluster with 28

outliers. We consider each outlier to be a distinct cluster;

this results in 29 clusters. Data set (f) can be viewed as two

or three clusters as in [12]. Data set (g) is the same data as

used in [1]; it has four clusters. Data set (h) shows three

nested clusters.

2.2 High-dimensional data

As described in [21], we first generated some high-

dimensional test data sets with different dimensions and

known clustering structure. For d dimensions and Ncl

clusters, we created Ncl linearly independent vectors, each

containing d/Ncl consecutive 10s: We then created d addi-

tional vectors using small perturbations of each vector.

This yielded data sets HD1(dim = 9, N = 12),

HD2(dim = 25, N = 30), and HD5(dim = 200, N = 205),

with 3, 5, and 5 clusters, respectively, where dim represents

dimensions. Points in these data sets were shuffled by

random.

Other high-dimensional data sets were obtained from the

block-type data set that is introduced in Table 1(c). We

appended additional dimensions to the block data by add-

ing a new attribute for each dimension that has similar

variation to its first two dimensions. We created a 3D

nonconvex data set HD3 containing 81 data points using

one block with two clusters. We also used some data sets

from the UCI Repository [24]. The Iris data set contains

150 points in 4-dimensional space (except cluster label)

and 33.3% of the points are in each of the three classes. We

used 147 points after removing three duplicated points and

we call that data set HD4.

3 Automatic generation of Gaussian kernel widths

In this section we suggest a natural method to automati-

cally generate SVC parameter values using the way that the

radius of the minimal hypersphere in feature space changes

as q (Gaussian kernel width) increases. Section 3.1 intro-

duces characteristics of the minimal hypersphere in feature

space. We provide a heuristic in Sect. 3.2 to generate

q values automatically for a given outlier parameter value

C. The q values are generated in an order that is more

consistent with the goals of Sect. 1.3 than methods in the

existing SVC literature. Section 3.3 assesses our new

Table 1 Two-dimensional data

Pattern Anal Applic (2012) 15:327–344 331

123

strategy. The length of the q list is analyzed and is shown to

be independent of the dimensionality of the data and number

of data points. We show that, when used with the CCL

scheme of Sect. 4, excellent clustering results are achieved

that recover the known clustering structure of the data.

3.1 Characteristics of minimal hypersphere radius

This section provides background for our work on a heu-

ristic that generates an increasing sequence of kernel width

values that supports the goals stated in Sect. 1.3. The

Gaussian kernel of Eq. 2 is used throughout this section.

The main idea is to locate a q value, denoted by q*, that

minimizes the radius of curvature of the graph of R2(q).

Our approximation q̂� to this q* value is used as the starting

point for a sequence of q values. Studying our previous

experimental work in [18, 19, 21] on generating q values

provided the inspiration for our new observation that sig-

nificant changes in clustering structure occur at a critical

point in the R2(q) function.

From [18, 19, 21], we know some characteristics of the

behavior of the R2(q) function. To characterize the func-

tion, we first recall that, as R is the radius of the minimal

hypersphere enclosing data point images, R2(q) C 0 for

0� q�1: Furthermore, since the kernel is Gaussian, the

entire data space is embedded onto the surface of the unit

ball in feature space [2]. Therefore, R2(q) B 1 for

0� q�1 and hence 0 B R2(q) B 1 for 0� q�1:
The results of [18, 19, 21] establish that R2(q) = 0 for

q = 0, 0 B R2(q) B 1 - 1/N for 0� q�1;R2ðqÞ ¼ 1�
1=N if and only if q ¼ 1; and provide a condition under

which R2(q) is a monotonically increasing function of

q. Under the condition the horizontal line R2(q) = 1 - 1/N

is an asymptote for the function. In our experiments in

[18, 19, 21], the condition was satisfied, providing mono-

tonicity. Furthermore, the slope was monotonically

decreasing, implying convexity of the R2(q) function in

those cases. Convexity together with monotonicity imply at

most one critical point (minimum) for the radius of cur-

vature of the R2(q) function; let this q value be q*. See

Fig. 2 for an example.

3.2 Curvature-based heuristic for kernel width list

Our heuristic to generate an increasing sequence of q val-

ues, starting with an approximation q̂� to q*, requires a

small amount of preprocessing to scale the data. We scale

the data so that the largest coordinate value is equal to N. In

practice, this usually makes the initial slope of our

approximation to the R2(q) curve at least equal to one,

which makes the radius of curvature achieve a minimum

over the range of q values generated.

We use the origin and qmin ¼ 1

maxf xi�xjk k2g
as the first

two q values in our search for q̂� (see the derivation of qmin

in Sect. 1.3). Since R2(q) C 0 for q C 0 and R2 = 0 for

q = 0, the origin is an appropriate starting q value for the

search in the heuristic. The next q value in the search is

from [1] and is expected to yield one cluster. For each

additional value of q that is searched, the associated R2(q)

value is calculated using the SVC steps of updating a

kernel matrix, solving the Lagrangian, and computing the

radius of the minimal hypersphere. To generate each sub-

sequent q search value, the current q value is doubled. Our

experiments show that successive doubling approximates

the behavior of our successful secant-like q generation

algorithm from [18, 19, 21]. The radius of curvature of the

R2(q) function is approximated as the q values are gener-

ated. The q value minimizing the radius of curvature of the

function’s approximation becomes our approximation q̂� to

q*. It is important to note that q̂� is generated without

q

2R

N

1
1−

*q

Curve is convex
and

monotonically increasing.

Fig. 2 Example of convex and monotonic R2(q) curve for two-

dimensional data set (g) of Table 1 with interval containing q*

identified

Table 2 Heuristic for q generation

332 Pattern Anal Applic (2012) 15:327–344

123

performing any SVC cluster labeling. This is a significant

efficiency consideration.

We output q̂� as the most significant q value. Each

additional q value in the output is produced using repeated

doubling. The stopping condition can be chosen in various

ways. The simplest condition is q = qmax, as derived in

Sect. 1.3. This often produces N clusters, beyond which

there is no change in clustering structure. However, we

have achieved better results by checking the b values for

the data points and stopping when either every data point is

a support vector or the slope of the R2(q) curve falls below

a small tolerance value.

The pseudocode for our new qListGenerator() procedure

is given in Tables 2 through 5. The slope tolerance ter-

mination test is omitted for clarity. Procedure checkBet-

as(), whose pseudocode is omitted, returns the number of

data points whose b values are greater than 1; this is the

number of support vectors Nsv. Procedure append(), whose

pseudocode is also omitted, appends its second argument to

the end of the list given by the first argument. Procedure

findQStar() is listed separately below in Table 3. It sear-

ches for the approximate minimum radius of curvature of

the R2(q) curve using successive q doubling. It uses the

procedure computeRadiusOfCurvature(), which approxi-

mates the first and second derivatives of the R2(q) function

at the most recent q value and uses them within a standard

radius of curvature formula. We omit the pseudocode for

this procedure. If we denote R2(q) by f(q), then the cur-

vature formula is (assuming f 00ðqÞ 6¼ 0):

½1þ ðf 0ðqÞÞ2�3=2

f 00ðqÞ ð8Þ

The worst-case running time of qListGenerator() is in

O(|Q|N3), where |Q| is the set of q values produced and the

factor of O(N3) is due to Eq. 4. To derive a rough estimate

of |Q|, we use qmin from Eq. 5 and qmax from Eq. 6 in

Sect. 1.3. Successive doubling of q values yields:

jQj 	 lgðmaxf xi � xj

�� ��2gÞ � lgðminf xi � xj

�� ��2gÞ: ð9Þ

Note that Eq. 9 depends only on spatial characteristics of

the data set and not on the dimensionality of the data set or

the number of data points. This is the same q list length

estimate that was obtained for the secant-like procedure of

[19, 18, 21]. See Sect. 3.3.1 for results on how well this

estimates the actual length of the q list for our data.

3.3 Quality assessment

Our implementations use MATLABTM1 and Java and are

run on an Intel Core 2 Duo T5200, 1.6GHz processor with

2GB of RAM. We use SMO [25] to solve the Lagrangian

(Eq. 4). To address the floating point precision problems of

determining positive b values, we use an epsilon of 10-6.

The outlier parameter C is set equal to 1 throughout the

experiment.

Data sets from Sect. 2 are used. For all of our data

sets the slope of the R2(q) curve is monotonically

decreasing and the curve approximation is convex. With

our scaling, the radius of curvature of the R2(q) curve

attains a single minimum. The q̂� value often corre-

sponds to the most natural clustering of the data. In our

experiments, values of q less than q̂� frequently produce

only one cluster and can therefore safely be omitted

from the q list.

Table 3 Heuristic for q̂� generation

Table 4 R2(q) calculation

findR(X0; q)

K / computeKernel(X0; q) using Eq. 2

b / solveLagrangian(X0;K) using Eq. 4

return computeRadius(K, b) using Eq. 7

Table 5 Nsv calculation

calculateNsv(X0; q)

K / computeKernel(X0; q) using Eq. 2

b / solveLagrangian(X0;K) using Eq. 4

Nsv / checkBetas(b)

return Nsv

1 MATLAB is a registered trademark of The MathWorks, Inc..

Pattern Anal Applic (2012) 15:327–344 333

123

Section 3.3.1 examines the length of the q list. Sections

3.3.2 and 3.3.3 discuss two and higher-dimensional data

sets, respectively. The cone cluster labeling method CCL,

described in Sect. 4 is used here for cluster labeling due to

its strong cluster connectivity. We compare these results

with the existing automatic q list generation algorithm,

which is our secant-like algorithm from [18, 19, 21]. This is

used with both CG and CCL.

3.3.1 List length

Table 6 shows Eq. 9 of Sect. 3.2 applied to our data sets.

For our two-dimensional data sets, the number of actual q

values is always smaller than the estimated number. In

most cases the difference is large; on average the actual

number is 32% of the estimated number. For our high-

dimensional datasets, the actual number is close to the

estimated one but sometimes exceeds it. The actual number

is, on average, 112% of the estimated one.

In order to provide a comparison with existing q

generation methods, we include the best results from a

combination of the research in [18, 19, 21]. This uses a

secant-like method whose behavior is similar to successive

doubling. For our two-dimensional data sets, the length of

our new q list is an average of 22% of the length of the

secant-like method’s list. For our high-dimensional data

sets, the average is 82%.

3.3.2 Two-dimensional clustering

Table 7 shows clustering results for q̂� for the two-

dimensional data sets of Sect. 2.1. In each case unclustered

data are shown on the left and clustered data appear on the

right, with clusters differentiated by color. See Table 8 for

the complete list of q values produced by qListGenerator()

for the two-dimensional data.

In most of the cases q̂� correctly recovers the known

clustering structure. Examples (c) and (d) are of particular

note due to the highly nonconvex nature of those data sets.

Example (e), containing outliers, is clustered by using

C = 1 and then considering each singleton cluster as an

outlier. While the correct answer of 29 clusters is not

produced by q̂�; the fourth value in the list is correct. For

example (h) the q̂� value does not produce the desired

result of three clusters. However, the second value in the

q list yields the correct result.

The secant-like method is also able to recover known

clustering structure, but the best q values do not appear

early in the sequence and no automatic identification of the

best q value is available. For example, when that method is

used with the CG cluster labeling technique, the best

q value yields excellent clustering quality for all but

example (d). That value appears in between the second and

tenth values and, on average, is the seventh q value in the

list. Similar behavior occurs when CCL is used with the

Table 6 Number of kernel

values output by

qListGenerator()

Estimated number from Eq. 9

and actual number is shown for

each data set of Sect. 2. The

length of the best list from

combined results of the secant-

like method of [18, 19, 21] is

shown for comparison

2D Data sets High-dimensional data sets

Data set Estimate Actual Secant actual Data set Estimate Actual Secant actual

(a) 4.4 1 5 HD1 6.5 8 6

(b) 2.9 1 4 HD2 7.0 9 9

(c) 6.2 1 10 HD3 4.9 4 9

(d) 6.1 1 9 HD4 8.5 8 15

(e) 9.5 4 13 HD5 9.0 12 15

(f) 7.5 1 11

(g) 10.5 3 16

(h) 9.6 8 15

Table 7 Cluster results for q̂� with C = 1 for data from Table 1

334 Pattern Anal Applic (2012) 15:327–344

123

secant-like method. Unlike CG, CCL is able to correctly

cluster example (d). However, CCL requires an average of

3.6 more q values in the secant-like list in order to achieve

good clustering results. (This average takes into account

high-dimensional as well as two-dimensional cases.)

3.3.3 High-dimensional clustering

Table 9 shows the result of clustering our high-dimensional

data sets from Sect. 2.2 using the q values generated from

qListGenerator(). As introduced in Sect. 2.2, we have four

synthetic data sets and the Iris data (HD4). In all but one

case (HD3) our q list includes at least one value that cor-

responds to a natural number of clusters. In the HD1, HD2,

and HD5 cases q̂� recovers the known clustering structure.

For the Iris data set, a reasonable result of 2 clusters is

associated with the third value in our q list. In the N = 81

three-dimensional block data case HD3, the q list termi-

nates when only one cluster has been found. In this

exceptional nonconvex case a different stopping condition

of R2(q) curvature equal to 0 achieves the correct clustering

result. This adds an extra three q values to the list.

While it is true that the ‘‘curse of dimensionality’’ poses

a challenge for high-dimensional clustering, we note that,

prior to our high-dimensional SVC clustering work, the

SVC literature did not contain reasonable clustering results

for high-dimensional data without using dimensionality

reduction techniques such as Principal Component

Analysis.

One intriguing observation is that Nsv is greater than or

equal to the dimension of the data for all q values. This

observation suggests that Nsv heavily depends on the

dimension of the data even for the initial q value.

As in Sect. 3.3.2, it is fruitful to compare our results

with the secant-like q generation method. Again, with CG

the first q value does not produce the best result. The best

value occurs between the third and ninth positions in the

list. It appears fifth on average. However, we note that CG

with the secant-like method has one quality advantage over

CCL with our new method for the Iris data set. In the CG

case the correct answer of three clusters was achieved,

whereas only two clusters were found by CCL.

4 Cone cluster labeling

4.1 High-level approach

We present a novel cluster labeling algorithm that is sig-

nificantly different from other SVC cluster labeling meth-

ods. An earlier version of this work appears in [20, 21],

which introduces our CCL approach and provides some

initial results. Here we summarize the strategy and include

final versions of proofs whose preliminary drafts appeared

in [21]. Experimental coverage is examined, convergence

is informally discussed, and clustering quality is assessed.

Furthermore, execution times are compared across cluster

labeling methods, and our new q list generator is used in

our experiments.

As described in Sect. 1.4, existing methods [1, 22, 28]

decide if two data points are in the same cluster by sam-

pling a path connecting the two data points. If every sample

point’s image is inside the minimal hypersphere in feature

space, then the two data points are put into the same

cluster. As noted in Sect. 1.4, this induces an execution

time versus clustering accuracy tradeoff.

For a given kernel width value, our algorithm does not

sample a path between two data points in order to decide if

they should be assigned to the same cluster. Rather, we use

the geometry of the feature space to identify clusters in the

data space. The key observation is that a hypersphere about

a point xi in data space corresponds to a cone in the feature

space. As explained below, the cone has the feature space

origin as its apex, and its axis is the vector through the

Table 8 Sequence of q values

produced by qListGenerator()

for two-dimensional data from

Table 1, with q̂� as the first

value in each case

For the data sets of (a), (b), (c),

(d), and (f), the final value of q
is obtained right away. CCL is

used as a cluster labeling

algorithm to obtain the number

of clusters Ncl. Nsv is the number

of support vectors

Data set N q Nsv Ncl Data set N q Nsv Ncl

(a) 15 .202 15 5 (h) 250 .039 230 1

(b) 16 .444 16 1 .079 246 3

(c) 54 .162 54 4 .158 249 5

(d) 98 .073 98 2 .316 249 71

(e) 100 .051 69 16 .631 249 181

.103 79 24 1.262 249 220

.206 96 28 2.524 249 239

.411 100 29 5.049 249 248

(f) 180 .055 180 3

(g) 198 .045 197 4

.091 197 28

.182 198 98

Pattern Anal Applic (2012) 15:327–344 335

123

origin and the point UðxiÞ (recall that UðxiÞ is the feature

space image of xi). We derive the cone’s base angle in

Sect. 4.2. This correspondence is the basis of our approach.

We call our algorithm Cone Cluster Labeling because of its

reliance on cones.

The algorithm first finds an approximate cover of part

of the minimal hypersphere in feature space using cones

associated with the images of support vectors. This is

described in Sect. 4.2. The cover is for part of the

intersection P of the surface of the unit ball with (the

interior and boundary of) the minimal hypersphere.

The approximate cover is part of a union of cone-

shaped regions. One region is associated with each

support vector’s feature space image. Let V ¼
fvijvi is a support vector; 1� i�Nsvg be the set of

SVs for a given q value. The region for support vector vi

is called a support vector cone and is denoted by Evi
:

Cone Evi
in feature space is associated with a hyper-

sphere Svi
centered on vi in the data space. Section 4.3

derives the radius of Svi
; which is the same for all support

vectors. The radius is based on the minimal hypersphere’s

radius R in feature space (obtained from Eq. 7, which

requires the b values from the quadratic programming

model of Eq. 4). Having only one radius contributes to the

speed of CCL. The union [iðSvi
Þ is an approximate cov-

ering of the data space contours P0; where UðP0Þ � P: This

union is not explicitly constructed. Instead, cluster labeling

is done in two phases, as described in Sect. 4.4. The first

phase clusters support vectors whereas the second clusters

the remaining data points. Two support vectors vi and vj are

put into the same cluster if their hyperspheres overlap:

ðSvi
\ Svj

Þ 6¼ ;: Forming the transitive closure of the con-

nected relation yields a set of support vector clusters. The

second step clusters data points that are not support vectors.

Each such data point inherits the closest support vector’s

cluster label.

Section 4.5 provides experimental CCL results. Sec-

tion 4.5.1 gives experimental coverage figures. Sec-

tion 4.5.2 discusses the clustering quality of CCL as

compared with that of CG, which is the most accurate of

the SVC techniques that sample line segments for cluster

labeling. Section 4.5.3 compares the execution time per-

formance of CCL with existing cluster labeling methods.

CCL is successful because it is fast and, without actually

constructing the data space contours, it tends to give a

clustering answer that is close to the actual number of

connected components of the contours.

4.2 Approximate covering in feature space

This section forms support vector cones that cover part of

P. Recall that P is the intersection of the surface of the unit

ball with the minimal hypersphere. As we introduce in [20,

21], let Hi ¼ \ðUðviÞOaÞ; where O is the origin of the

feature space and a is the center of the minimal hyper-

sphere enclosing all data point images. In feature space,

Table 9 Sequence of q values

produced by qListGenerator()

for high-dimensional data from

Sect. 2.2, with q̂� as the first

value in each case

CCL is used as a cluster labeling

algorithm to obtain the number

of clusters Ncl. Nsv is the number

of support vectors

Data set N dim q Nsv Ncl Data set N dim q Nsv Ncl

HD1 12 9 .623 9 3 HD4 147 4 .637 22 1

1.246 9 3 1.275 30 1

2.492 9 3 2.550 51 2

4.984 9 3 5.100 79 2

9.969 9 3 10.200 108 2

19.938 9 3 20.399 135 4

39.875 9 3 40.797 145 14

79.751 12 3 81.594 147 38

HD2 30 25 .768 25 5 HD5 205 200 .199 200 5

1.536 25 5 .398 200 5

3.071 25 5 .796 200 5

6.142 25 5 1.592 200 5

12.284 25 5 3.183 200 5

24.568 25 5 6.366 200 5

49.136 25 5 12.733 200 5

98.273 25 5 25.466 200 5

196.545 30 5 50.933 200 5

HD3 81 3 .481 36 1 101.865 200 5

.962 66 1 203.730 200 5

1.925 78 1 407.461 205 5

3.850 81 1

336 Pattern Anal Applic (2012) 15:327–344

123

each support vector has its own cone Evi
: Let Evi

be the

cone with axis UðviÞ
���!

and base angle Hi; so that the cone is

generated by rotation of vector Oa
�!

about the axis formed

by vector UðviÞ
���!

at an angle of Hi between vector Oa
�!

and

vector UðviÞ
���!

: Lemma 4.1 below shows that Hi ¼ Hj for all

vi; vj 2 V:

Lemma 4.1 \ðUðviÞOaÞ ¼ \ðUðvjÞOaÞ; 8vi; vj 2 V:

Proof For each support vector image UðviÞ; consider the

triangle with vertices UðviÞ;O; and a. We claim that there

is side-side-side congruence for the set of such triangles.

For, the line segment Oa is common to all the triangles.

Also, the definition of a support vector guarantees that all

the support vector images are equally distanced from the

center of the minimal hypersphere; thus all the line seg-

ments of the form UðviÞa have the same length. Finally,

because each support vector’s image is on the surface of

the unit ball in feature space, all the line segments of the

form UðviÞO have the same length. This establishes the

side-side-side congruence, which guarantees the equiva-

lence of angles \ðUðviÞOaÞ and \ðUðvjÞOaÞ for each pair

of support vectors UðviÞ and UðvjÞ: h

Due to Lemma 4.1, hereafter we denote Hi by H (see

Fig. 3a to illustrate a two-dimensional example). We also

denote by a0 the intersection of a! with the surface of the

unit ball (see Fig. 3b). The point a0 is a common point of

intersection for all the support vector cones. This com-

monality suggests to us that these cones might provide

good coverage of P. Mathematically, we do not have a

guarantee of complete coverage. However, we show

experimentally in Sect. 4.5.1 that all of the data points’

feature space images are contained within ð[iðEvi
ÞÞ \ P for

q values from our qListGenerator(). Thus, empirical data

suggest that the union of cones provides an approximate

cover in feature space.

It is instructive to consider what happens for the extreme

cases of q = 0 and q ¼ 1: For q = 0, the minimal

hypersphere in feature space is degenerate. It consists of a

single point, which is equal to UðXÞ and also equal to

ð[iðEvi
ÞÞ \ P: Thus, the cones perfectly cover P and also

the images of the data points. For q ¼ 1; every data point

is a support vector, the angle between each pair of support

vector images is equal to p/2, and the cones cover UðXÞ
completely. For q values greater than 0, it is possible for

the union of cones to cover parts of the unit ball outside of

P. It is also possible for some data point images to be

Θ

a

)(ivΦ

)(ivΦ)(ivΦ

)(ivΦ)(jvΦ

)(jvΦ)(jvΦ

)(jvΦ
a

Θ

0

(a)
'a

a

Θ

0

(b)

'a

a

')(avi •Φ

R

(c)

0

'a

')(av i •Φ

R

avi •Φ=Δ)(

(d)

0

. .
.

=|| ||a

R R

Θ Θ

Θ Θ

Γ

Θ

Fig. 3 Inner product between a or a0 and SV image (illustrated for two

dimensions): vi and vj are support vectors and UðviÞ and UðvjÞ are their

feature space images, respectively. a H ¼ \ðaOUðviÞÞ ¼ \ðaOUðvjÞÞ:

b a0 is projection of a onto the surface of the unit ball. c the length ak k is

hUðviÞ � a0i: d D ¼ hUðviÞ � ai ¼ 1� R2 ¼ ak k2:

Pattern Anal Applic (2012) 15:327–344 337

123

outside the union of cones. However, our experience shows

that these problems fade rapidly as q increases.

4.3 Approximate covering in data space

Our CCL algorithm places all data points whose images

have smaller base angle than H with respect to UðviÞ
���!

in the

same cluster as vi. The goal of this section is to find H and

then identify such data points in the data space. This task is

complicated by the lack of an inverse mapping for U: In

particular, there is not necessarily a single point in the data

space whose feature space image is the point of cone

commonality a0:
Our approach circumvents this issue using distances in

data space corresponding to constant angles in feature

space. That is, we rely on the fact that a cone with apex at

the feature space origin whose axis intersects a support

vector’s image corresponds to a hypersphere about the

support vector in the data space.

To approximately cover the contours P0 in data space

using information derived from support vector cones, we

associate ðEvi
\ PÞ with a hypersphere Svi

in data space.

Since Lemma 4.1 guarantees that all support vector cones

have the same base angle H; all Svi
have the same radius

and each Svi
is centered at vi. The radius of Svi

is based on

the results of Lemma 4.2 below. (Note that the Gaussian

kernel in Eq. 2 limits feature space angles:

0�\ðUðviÞOUðvjÞÞ� p=2:)

Lemma 4.2 Each data point whose image is inside

ðEvi
\ PÞ is at distance � vi � gik k from vi, where gi 2 R

d

is such that \ðUðviÞOUðgiÞÞ ¼ H:

Proof Consider u 2 R
d such that UðuÞ 2 ðEvi

\ PÞ: Point

UðuÞ in ðEvi
\ PÞ has an angle with respect to UðviÞ which

is at most equal to H: Since H ¼ \ðUðviÞOaÞ ¼
\ðUðviÞOa0Þ; this implies that:

\ðUðuÞOUðviÞÞ�\ðUðviÞOa0Þ
) cosð\ðUðuÞOUðviÞÞÞ
 cosð\ðUðviÞOa0ÞÞ
) hUðviÞ � UðuÞi
 hUðviÞ � a0i
) Kðvi; uÞ
Kðvi; giÞ

) e�q vi�uk k2

 e�q vi�gik k2

) vi � uk k2� vi � gik k2:

h

Lemma 4.2 implies that ðEvi
\ PÞ corresponds to a hy-

persphere Svi
in the data space centered at vi with radius

vi � gik k: We now must obtain vi � gik k in data space.

Because UðviÞk k ¼ 1 ¼ a0k k; we have

cosðHÞ ¼ cosð\ðUðviÞOa0ÞÞ ¼ hUðviÞ � a0i: ð10Þ

Thus, we solve for vi � gik k as follows:

vi � gik k ¼

ffi

� lnðcosðHÞÞ
q

s

: ð11Þ

All Svi
have the same radii because H ¼ \ðUðviÞOa0Þ is

the same for all vi 2 V : We therefore denote vi � gik k by Z.

The next step is to obtain hUðviÞ � a0i in order to calculate

cosðHÞ: To do this, we first show in Lemma 4.3 below that

hUðviÞ � a0i ¼ ak k; 8vi 2 V (see Fig. 3c). We then show in

Lemma 4.4 that ak k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2
p

: The final result will be

that cosðHÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2
p

:

Lemma 4.3 hUðviÞ � a0i ¼ ak k; 8vi 2 V:

Proof Let z be the point obtained by orthogonally pro-

jecting UðviÞ onto Oa0
�!

: Thus, hUðviÞ � a0i ¼ zk k: All the

images of support vectors are projected to z because of

Lemma 4.1 and the fact that, since all UðviÞ are on the

surface of the unit ball in feature space, UðviÞk k ¼
UðvjÞ
�� �� ¼ 1: Since all other data images have smaller

angle between their vector and Oa0
�!

; the distances between

them and z is smaller than the distance between UðviÞ and

z. Therefore, a hypersphere centered at z with radius zUðviÞ
encloses all data images. Now, the distance between z and a

support vector image UðviÞ is the shortest between UðviÞ
and Oa0

�!
: Therefore, the hypersphere centered at z is the

minimal hypersphere enclosing all the data images. Thus, z

is a, the center of the minimal hypersphere. Consequently,

hUðviÞ � a0i ¼ zk k ¼ ak k: h

Corollary 4.1 below is used in the proof of Lemma 4.4

immediately after the corollary.

Corollary 4.1 hUðviÞ � ai ¼ ak k2; 8vi 2 V:

Proof From the definition of cosine, we obtain cosðHÞ ¼
hUðviÞ�ai
UðviÞk k ak k ¼

hUðviÞ�a0i
UðviÞk k a0k k : This results in hUðviÞ � ai ¼

ak khUðviÞ � a0i ¼ ak k2
by Lemma 4.3. h

Lemma 4.4 ak k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2
p

:

Proof Let D ¼ hUðviÞ � ai where vi 2 V (see Fig. 3d). Let

C denote the shortest distance between a and UðviÞ
���!

: Then

by the Pythagorean theorem2, we have R2 ¼ C2 þ ð1� DÞ2

and ak k2¼ C2 þ D2: Therefore, R2 ¼ C2 þ 1� 2Dþ D2 ¼
ak k2þ1� 2D: Now we have ak k2¼ R2 � 1þ 2D: Solving

for D yields D ¼ ak k2�R2þ1

2
: Now, applying Corollary 4.1

yields D ¼ ak k2
and ak k2¼ 1� R2 ¼ D: h

2 The feature space is a Hilbert space, so the Pythagorean theorem

holds.

338 Pattern Anal Applic (2012) 15:327–344

123

Equation 10 and Lemmas 4.3 and 4.4 together show that

cosðHÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2
p

: Consequently, Eq. 11 becomes

Z ¼

ffi
� lnð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2
p

Þ
q

s

: ð12Þ

As in Sect. 4.2, we consider the extremes of q = 0 and

q ¼ 1: Equation 12 fails at these extremes. For q = 0

division by 0 is problematic. However, Z tends toward 1
for small q values, where the entire data space is covered

by each Svi
: In this case, the cover of the data space

contours and UðXÞ is complete. Additionally, the number

of connected components of [iðSvi
Þ equals 1, which is the

same value as the number of connected components of the

data space contours. The number of clusters is therefore

equal to 1.

For q ¼ 1; lnð0Þ is undefined. Z tends towards 0 as q

approaches 1: In this case, the cover of X and P0 is per-

fect. That is, [iðSvi
Þ ¼ X ¼ P0: The number of connected

components of [iðSvi
Þ equals Nsv = N, which is the same

value as the number of connected components of the data

space contours. The number of clusters is therefore equal

to N.

In our experiments, Z is a monotonically decreasing

function of q; see Sect. 4.5.1. As with the question of

feature space coverage, for q values greater than 0, it is

possible for the union of hyperspheres to cover parts of the

data space outside of P0: It is also possible for some data

point images to be outside the union of hyperspheres.

However, our experience again shows that these problems

diminish quickly as q increases. In particular, for values at

least as large as q̂�; our experiments suggest that the

number of clusters found by CCL is close to the number of

data space contours. The success of the method is due to

the fact that Z is chosen based on characteristics of the

minimal hypersphere in feature space.

4.4 Assign cluster labels

Table 10 below shows the CCL algorithm. For the given

q value, it first computes Z using Eq. 12. Next, support

vectors are clustered using procedure ConstructConnec-

tivity() (see Table 11) followed by finding connected

components in the resulting adjacency structure. Connected

components can be efficiently found using a standard

algorithm such as Depth-First Search (DFS). Each con-

nected component corresponds to a cluster. Therefore, the

output of FindConnComponents() is an array of size N that

contains cluster labels. Finally, the remaining data points

are clustered by using the cluster label of the nearest sup-

port vector.

Figure 4 shows evolution of circles for some increasing

q values. Some data points may not be covered by the

circles when q is close to the initial q value. However, since

there is a small number of support vectors for those cases

and they are connected to each other, all data points are

clustered together. As q is increased, we get smaller

spheres and eventually we obtain some reasonable cluster

results for some q values.

The worst-case asymptotic running time complexity for

ConstructConnectivity() and FindConnComponents() is in

O(Nsv
2). The time complexity of the CCL for loop is in

O((N - Nsv)Nsv). Therefore, this algorithm uses time

in O(NNsv) for each q value. Unlike previous cluster

labeling algorithms, this time does not depend on a number

of line sample points which are along the line segment

connecting two data points. Detailed execution time com-

parisons are provided in Sect. 4.5.3.

4.5 Results

As in Sect. 3.3, our implementations use MATLABTB3 and

Java and are run on an Intel Core 2 Duo T5200, 1.6GHz

processor with 2GB of RAM.

In this section we first show that, for our data sets, the

SV hyperspheres in cone cluster labeling capture all of our

data points and they increasingly conform to the data points

Table 10 Main algorithm of CCL

Table 11 ConstructConnectivity(V, Z)

3 MATLAB is a registered trademark of The MathWorks, Inc.

Pattern Anal Applic (2012) 15:327–344 339

123

as q increases (Sect. 4.5.1). Next, we discuss CCL’s high-

quality clustering (Sect. 4.5.2) that uses less computation

time than existing SVC-based cluster labeling algorithms

(Sect. 4.5.3). The four algorithms for comparison are CG,

SVG, PG, and GD; these were introduced in Sect. 1.4.

4.5.1 Approximate cover

There is not yet a mathematical guarantee regarding con-

ditions under which the SV hyperspheres cover all the data

points in data space. Therefore, we present empirical data

on the number of covered data points for different q values

produced by our qListGenerator(). All of our data points

are covered, and this applies not only to the data space but

also to the covering in feature space of data points’ images

by the union of cones.

In our experiments, the radius Z of the data space

hyperspheres is a monotonically decreasing function of q.

Since lnð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2
p

Þ is negative, if we assume that R2 is a

monotonically nondecreasing function of q;� lnð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2
p

Þ
increases logarithmically as q is increased. Consequently,

the hyperspheres converge to the data points as

q approaches infinity. Figure 5 shows a typical graph of Z2

versus q. This new result uses q values beyond those

generated by our qListGenerator() in order to illustrate

behavior for extreme values of q.

4.5.2 Quality comparison

Sections 3.3.2 and 3.3.3 showed that CCL with qList-

Generator() recovers known clustering structure for most of

our data sets, with the best result typically occurring at the

first q value (q̂�). This provides some validation of CCL’s

results.

Sections 3.3.2 and 3.3.3 also compare CCL with CG. Of

all the cluster labeling algorithms that use some sample

points on a line segment joining two data points, CG cre-

ates the most consensus with the contours of the minimal

hypersphere mapping. Therefore, comparing cluster quality

results with CG is sufficient to validate CCL with respect to

existing cluster labeling algorithms.

As an example of the strength of CCL, Fig. 6 compares

our best CG clustering with that of CCL for the highly

interleaved data set of Table 1d of Sect. 2.1. CCL cor-

rectly separates the data into two clusters, whereas CG

does not.

(a) N = 15 with some q values (see (a) in Table 1)

(b) N = 198 with some q values (see (e) in Table 1)

Fig. 4 Cone Cluster Labeling

example for data sets (a) and

(e) in Table 1

340 Pattern Anal Applic (2012) 15:327–344

123

4.5.3 Execution time comparison

In this section we compare three different types of execu-

tion times as well as total time of CG, SVG, PG, GD, and

CCL: (1) constructing the adjacency matrix, (2) finding

connected components from the adjacency matrix (this

clusters some data points), and (3) clustering remaining

data points.

Worst-case asymptotic time complexity is given in

Table 12 below. In the table, m denotes the number of

sample points tested along a line segment between two data

points (see Sect. 1.4). As usual, N is the number of data

points and Nsv is the number of support vectors. For GD,

Nsep is the number of SEPs and k is the number of iterations

to converge to a SEP. (Recall from Sect. 1.4 that a SEP is a

stable equilibrium point.)

Worst-case asymptotic time analysis is supplemented by

actual running time comparisons. The total of the three

actual execution times is measured and divided by the

length of the q list to compute average times. Since a

cluster labeling algorithm receives q as an input and pro-

duces a cluster result, the average time is appropriate as a

measurement for execution time comparison. Below we

compare running times of our implementations of the five

cluster labeling algorithms for the two-dimensional and

high-dimensional data sets of Sect. 2. Running times do

not include time to solve the Lagrangian of Eq. 4, which is

common to all the algorithms.

4.5.3.1 Comparisons for two-dimensional data This

section compares the three different running times listed at

the start of Sect. 4.5.3. Theoretical times are shown in

Table 12 and actual execution times are compared in

Fig. 7.

Preprocessing and constructing adjacency matrix

Each cluster labeling algorithm constructs an adjacency

matrix for cluster labeling. Preprocessing time is inclu-

ded in this discussion and in the actual running times of

Fig. 7. Three of the algorithms have preprocessing: PG,

GD, and CCL.

PG constructs a Delaunay Triangulation (DT) [26] by

calling delaunay() that is a function provided by MATLAB.

PG constructs an adjacency matrix by checking all edges in

the DT. GD [22] is the newest SVC cluster labeling algo-

rithm that we compare CCL with. GD obtains a SEP by

searching for a minimum of R2(x) (Eq. 7) for each data

point x 2 X : GD calls a gradient descent function fmin-

search() provided by MATLAB’s optimization toolbox. We

round the result to gather together SEPs that are close to

each other. By doing this, we can obtain fewer SEPs. It

makes GD faster without any observable loss of accuracy.

CCL computes the Z value (Eq. 12) and converts it to a

Gaussian kernel value to compare it with the kernel matrix

directly. By doing this, we can save memory space and

construct an adjacency matrix even faster.

CG, SVG, and GD require the most asymptotic running

time for preprocessing plus adjacency matrix construction.

Figure 7a shows actual running times when m is 20. The

vertical axis gives the time for preprocessing plus adja-

cency matrix construction. As expected from the asymp-

totic analysis, CG, SVG, and GD are the most expensive.

Both CG and GD are more expensive than SVG, PG, and

CCL. Since the time complexity of GD for this part of SVC

is O(mN2k ? mNsep
2 Nsv) versus O(mN2Nsv) for CG, GD is

more expensive in some cases for small values of N. As

expected from the analysis, PG shows better performance

than SVG, while CCL requires a very small amount of time

compared with the other algorithms.

Finding connected components Connected components

can be found using DFS in time proportional to the size of

the adjacency matrix (see Table 12). The actual running

times shown in Fig. 7b are consistent with the worst-case

asymptotic times, except for PG. Since PG’s matrix is

sparsely populated, its actual running time is significantly

smaller than CG or SVG.

0 0.5 1 1.5 2 2.5 3 3.5
0

1

2

3

4

5

6

7

8

9

q

Z
2

Fig. 5 Z2 versus q example with CCL for two-dimensional data set of

Table 3a

Fig. 6 CCL example for two-dimensional data set of Table 3d. Left CG result, Right CCL result

Pattern Anal Applic (2012) 15:327–344 341

123

Labeling remaining data points CG clusters all data

points during previous steps, so it is excluded from this

comparison. To assign cluster labels to unclustered data

points, SVG, PG, and CCL find the nearest SV and assign

its cluster label; this requires O((N - Nsv)Nsv) time. In GD

non-SV cluster labeling is done by taking the correspond-

ing SEP’s cluster label. This requires O(N - Nsep) time if

we keep a SEP index for each data point. Figure 7c shows a

comparison result for four cluster labeling algorithms.

Although the theoretical time of SVG, PG, and CCL is the

same for this task, we do see some variation in running

time. However, for all algorithms shown here, this task

requires only a very small amount of time compared with

the former two tasks. Note that the scale of this graph is in

units of 10-3 s.

Total execution time comparisons To show the total

performance of each cluster labeling algorithm, Table 12

shows asymptotic time while Fig. 7d sums the actual run-

ning time across the SVC tasks. As expected from Table 12,

CCL shows the best performance. SVG is more expensive

than PG. Although PG has reasonably small running time, it

has the worst accuracy of all of the cluster labeling algo-

rithms. CG’s expense prevents it from being practical for

large data sets, even for 250 data points. Although GD’s

worst-case asymptotic time exceeds CG, GD’s actual per-

formance relative to CG depends on the data set. It appears

15 16 54 98 100 180 198 250
0

20

40

60

80

100

120

140

160

180

Data Sets (N)

T
im

e
to

 C
on

st
ru

ct
 A

dj
ac

en
cy

M

at
rix

 (
se

cs
)

CG
SVG
PG
CCL
GD

15 16 54 98 100 180 198 250
0

1

2

3

4

5

6

7

8

Data Sets (N)

T
im

e
to

 F
in

d
C

on
ne

ct
ed

C

om
po

ne
nt

s
(s

ec
s)

CG
SVG
PG
CCL
GD

(b)(a)

15 16 54 98 100 180 198 250
0

1

2

3

4

5

6

7
x 10

−3

Data Sets (N)

T
im

e
fo

r
N

on
−

S
V

 C
lu

st
er

La

be
lin

g
(s

ec
s)

SVG
PG
CCL
GD

15 16 54 98 100 180 198 250
0

50

100

150

200

Data Sets (N)
T

ot
al

 C
lu

st
er

 L
ab

el
in

g
 T

im
e

(s
ec

s)

CG
SVG
PG
CCL
GD

(d)(c)

Fig. 7 Two-dimensional execution time: a Comparison of adjacency

matrix construction time (plus preprocessing). b Comparison of time

for finding connected components in adjacency matrix. c Comparison

of time for clustering of non-SV data points. d Comparison of total

time of cluster labeling (Note different scale in b, c)

12 30 81 147
0

5

10

15

20

25

30

35

40

Data Sets (N)

T
im

e
to

 C
on

st
ru

ct
 A

dj
ac

en
cy

M

at
rix

 (
se

cs
)

CG
SVG
CCL
GD

12 30 81 147
0

5

10

15

20

25

30

35

40

Data Sets (N)

T
ot

al
 C

lu
st

er
 L

ab
el

in
g

T
im

e
(s

ec
s)

CG
SVG
CCL
GD

(b)(a)

Fig. 8 High-dimensional data: a Comparison of total time to construct adjacency matrix (plus preprocessing). b Comparison of total time of

cluster labeling

342 Pattern Anal Applic (2012) 15:327–344

123

that the performance of GD depends on the shape of clus-

ters. This is suggested by the fact that the N = 180 data set

includes clusters that are very close to each other.

4.5.3.2 Comparisons for high-dimensional data PG

using Delaunay triangulation does not appear in this sec-

tion since it is not practical in high dimensions ([10).

Table 12 shows worst-case asymptotic running times for

the remaining four algorithms. These times contain an

implicit dimensionality factor due to distance calculations

in R
d: Figure 8 shows actual execution times for all of our

high-dimensional data sets except for the N = 205,

200-dimensional case when m is 20. The trends in the

graphs remain the same for that dataset.

Figure 8a represents CPU times to construct an adja-

cency matrix for high-dimensional data sets. CG shows the

worst performance of all, followed by GD. Dimensionality

highly affects GD’s performance, especially when finding

SEPs. This is because the gradient descent algorithm is

trying to find a minimum point in a high-dimensional space.

In fact, for our 200-dimensional data set GD exceeded the

maximum number of iterations for finding each SEP during

fminsearch(). We note that this example greatly exceeds the

maximum of 40 dimensions for the examples reported in

[22]. CCL shows the best performance.

The comparison for finding connected components is

omitted because, except for GD, the results are as expected

from Table 12. The asymptotic cluster labeling time of

non-SV data points is the same for both SVG and CCL.

Since there is no difference between them and CG is

excluded from this comparison, we omit the comparison.

Table 8(b) shows total execution time for cluster labeling.

CCL shows the best performance for high-dimensional data

while CG and GD show the worst performance.

5 Conclusion and future work

This paper provides two new advances in support vector

clustering for a constant outlier parameter value: (1) a

heuristic that explores Gaussian kernel width values, with

values that empirically correspond to significant changes in

clustering structure appearing early in the resulting list and

(2) a strong cluster labeling method, based on cones in the

feature space that correspond to hyperspheres in data space.

Our estimate of the number of kernel width values depends

on spatial characteristics of the data but not on the number

of data points or the dimensionality of the data set. Future

work on this method would automatically generate varying

outlier parameter values.

Existing SVC cluster labeling algorithms, such as

Complete Graph [1], Support Vector Graph [1], Proximity

Graph [28], and Gradient Descent [22], sample a line

segment to decide whether a pair of data points are in the

same cluster. This creates a tradeoff between cluster

labeling time and clustering quality. Our CCL method uses

a novel covering approach that avoids sampling. Using the

geometry of the feature space, we employ cones to cover

part of the intersection of the minimal hypersphere with the

surface of the unit ball. This maps to a partial cover of the

contours in data space. The approximate cover uses

hyperspheres in data space, centered on support vectors.

Without constructing the union of these hyperspheres, data

points are clustered quickly and effectively. The radius of

the hyperspheres is generated using the results of the SVC

quadratic programming model.

Experiments with data sets of up to 200 dimensions

suggest that our new method generates clusterings whose

quality is at least that of the most accurate sampling-based

cluster labeling algorithm. All of our data points are cov-

ered by the union of support vector hyperspheres in data

space. This reflects strong coverage of feature space image

points by the union of cones. Furthermore, our approach is

efficient compared with existing SVC methods. The worst-

case asymptotic running time of our technique for a single

kernel width value is less than that of the aforementioned

algorithms. Our experiments support this by showing that

its actual running time is also faster than these methods for

our data sets. Our experiments suggest that it operates well

even in high dimensions. The Complete Graph algorithm is

Table 12 Worst-case asymptotic running times for a single q value

CG SVG PG GD CCL

Adjacency matrix size O(N2) O(NsvN) O(N2) O(Nsep
2) O(Nsv

2)

Preprocessing O(NlogN) O(mN2k) O(1)

Adjacency O(mN2Nsv) O(mNNsep
2) O(mNNsv) O(mNsep

2 Nsv) O(Nsv
2)

Connected component O(N2) O(NsvN) O(N2) O(Nsep
2) O(Nsv

2)

Remaining clustering O((N - Nsv)Nsv) O((N - Nsv)Nsv) O(N - Nsep) O((N - Nsv)Nsv)

Total time O(mN2Nsv) O(mNNsep
2) O(N2 ? mNNsv) O(mN2(k ? Nsv)) O(NNsv)

PG times are only valid for two dimensions. Adapted from [20, 21]. CG complete graph, SVG support vector graph, PG proximity graph, and GD
gradient descent

Pattern Anal Applic (2012) 15:327–344 343

123

expensive for large data sets. Neither Proximity Graph nor

Gradient Descent appears practical in high dimensions.

Solving the Lagrangian optimization problem to find the

radius of the minimal sphere is currently an SVC bottle-

neck that limits the number of data points for which SVC

can be efficiently applied. However, SVC bears resem-

blance to a one-class Support Vector Machine (SVM), and

the machine learning community has been working to

increase the efficiency of SVM methods for kernel matrix

handling and quadratic programming optimization. (See [4]

for a comprehensive treatment of recent approaches to

SVM for large datasets.) This similarity offers hope that

SVM advances will improve the efficiency of SVC

Lagrangian computation, thereby improving overall SVC

performance on large datasets.

References

1. Ben-Hur A, Horn D, Siegelmann HT, Vapnik V (2001) Support

vector clustering. J Mach Learning Res 2:125–137

2. Cristianini N, Shawe-Taylor J (2000) An introduction to support

vector machines. Cambridge University Press, New York

3. Duda RO, Hart PE, Stork DG (2001) Pattern classification, 2nd

edn. Wiley-Interscience, New York

4. Dong J, Krzyz ak A, Suen C (2005) Fast SVM training algorithm

with decomposition on very large data sets. IEEE Trans Pattern

Anal Mach Intell 27(4):603–618

5. Estivill-Castro V (2002) Why so many clustering algorithms—a

position paper. SIGKDD Explorations 4(1):65–75

6. Estivill-Castro V, Lee I (2000) Automatic clustering via bound-

ary extraction for mining massive point-data sets. In: Proceedings

of the 5th international conference on geocomputation

7. Estivill-Castro V, Lee I (2000) Hierarchical clustering based on

spatial proximity using delaunay diagram. In: Proceedings of 9th

international symposium on spatial data handling, pp 7a.26–7a.41

8. Ester M, Kriegel HP, Sander J, Xu X (1996) A density-based

algorithm for discovering clusters in large spatial databases with

noise. In: Proceedings of 2nd international conference on

knowledge discovery and data mining (KDD-96), Portland,

pp 226–231

9. Everitt BS, Landau S, Leese M (2001) Cluster analysis, 4th edn.

Oxford University Press, New York

10. Fasulo D (1999) An analysis of recent work on clustering algo-

rithms. Technical report 01-03-02, University of Washington

11. Han J, Kamber M (2001) Data mining: concepts and techniques.

Morgan Kaufmann, San Francisco

12. Harel D, Koren Y (2001) Clustering spatial data using random

walks. In: Proceedings of knowledge discovery and data mining

(KDD’01), pp 281–286

13. Horn D (2001) Clustering via Hilbert space. Physica A 302:70–79

14. Hartuv E, Shamir R (2000) A clustering algorithm based on graph

connectivity. Inf Process Lett 76(200):175–181

15. Hastie T, Tibshirani R, Friedman J (2001) The elements of sta-

tistical learning. Springer, New York

16. Jonyer I, Holder LB, Cook DJ (2001) Graph-based hierarchical

conceptual clustering. Int J Artif Intell Tools 10(1–2):107–135

17. Jain A, Murty M, Flynn P (1999) Data clustering: a review. ACM

Comput Surveys 31:264–323

18. Lee S, Daniels K (2004) Gaussian kernel width exploration in

support vector clustering. Technical report 2004-009, University

of Massachusetts Lowell, Department of Computer Science

19. Lee S, Daniels K (2005) Gaussian kernel width generator for

support vector clustering. In: He M, Narasimhan G, Petoukhov S

(eds) Proceedings, international conference on bioinformatics and

its applications and advances in bioinformatics and its applica-

tions. Advances in bioinformatics and its applications. Series in

mathematical biology and medicine, vol 8. World Scientific,

pp 151–162

20. Lee S, Daniels K (2006) Cone cluster labeling for support vector

clustering. In: Proceedings of 2006 SIAM conference on data

mining, pp 484–488

21. Lee S (2005) Gaussian kernel width selection and fast cluster

labeling for support vector clustering. Doctoral thesis and Tech-

nical report 2005-009, University of Massachusetts Lowell,

Department of Computer Science

22. Lee J, Lee D (2005) An improved cluster labeling method for

support vector clustering. IEEE Trans Pattern Anal Mach Intell

27:461–464

23. Mortenson M (2006) Geometric modeling, 3rd edn. Industrial

Press Inc, New York

24. Newman DJ, Hettich S, Blake CL, Merz CJ (1998) UCI repository

of machine learning databases. http://www.ics.uci.edu/*mlearn/

mlrepository.html

25. Platt J (1999) Fast training of support vector machines using

sequential minimal optimization. In: Scholkopf B, Burges CJC,

Smola AJ (eds) Advances in kernel methods—support vector

learning. MIT Press, Cambridge, pp 185–208

26. Preparata FP, Shamos MI (1985) Computational geometry.

Springer, New York

27. Vapnik VN (1995) The nature of statistical learning theory, 2nd

edn. Springer, New York

28. Yang J, Estivill-Castro V, Chalup SK (2002) Support vector

clustering through proximity graph modeling. In: Proceedings of

9th international conference on neural information processing

(ICONIP’02), pp 898–903

344 Pattern Anal Applic (2012) 15:327–344

123

http://www.ics.uci.edu/~mlearn/mlrepository.html
http://www.ics.uci.edu/~mlearn/mlrepository.html

	Gaussian kernel width exploration and cone cluster labeling for support vector clustering
	Abstract
	Introduction
	Clustering overview
	Support vector clustering
	Parameter selection
	Cluster labeling
	Overview

	Data sets
	Two-dimensional data
	High-dimensional data

	Automatic generation of Gaussian kernel widths
	Characteristics of minimal hypersphere radius
	Curvature-based heuristic for kernel width list
	Quality assessment
	List length
	Two-dimensional clustering
	High-dimensional clustering

	Cone cluster labeling
	High-level approach
	Approximate covering in feature space
	Approximate covering in data space
	Assign cluster labels
	Results
	Approximate cover
	Quality comparison
	Execution time comparison
	Comparisons for two-dimensional data
	Comparisons for high-dimensional data

	Conclusion and future work
	References

