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Abstract In this paper potential active contours are pre-

sented as a new method of image segmentation. The concept

of potential contour is a result of the relationship between

active contour techniques and the methods of classifiers’

construction. The proposed method can be extended by the

adaptation mechanism that allows changing the available

class of the shapes dynamically. An original contribution is

also the method of evaluation of segmentation results

and methodology used for the parameters selection. The

described method is illustrated by two examples.

Keywords Active contour � Image segmentation �
Classification

1 Introduction

Image segmentation is a crucial element of every image

recognition system. There exist numerous methods of low-

level segmentation. Most of them, however, possess limi-

tations when more complicated images are considered.

Those limitations are a result of the fact that the informa-

tion contained in the image is usually insufficient for

proper understanding of its content and additional knowl-

edge-based constraints must be added during the segmen-

tation process. The problem is overcome in a natural way

by active contour techniques where knowledge can be

encoded in energy function that heuristically evaluates the

whole labeling of the pixels. In this paper, a relationship

between active contours and classification methods is

described, its consequences are discussed and on that basis

the new potential active contour technique is introduced.

The paper is organized as follows: in Sect. 2 the rela-

tionship between active contour techniques and construc-

tion of the classifiers is discussed. Section 3 describes

potential active contour method as a consequence of that

relationship. Section 4 presents the example usage of the

introduced method for segmentation of artificially gener-

ated images whereas Sect. 5 is devoted to application of that

method to heart ventricle segmentation. Finally, the last

section focuses on the summary of the presented results.

2 Relationship

Segmentation of set O can be defined as its division into the

finite set of L 2 N subsets O1; . . .;OL that do not have

common elements and together constitute the whole set

O. Set O can be segmented in many different ways and the

choice of proper segmentation constitutes a very important

task in pattern recognition where the semantic meaning is

assigned to those segments. The segmentation can be

supervised or unsupervised. In the first case, the correct

labeling of segments is expected. In the second, only the

division must be correct. The issues presented further in

this paper are relevant to both supervised and unsupervised

segmentation.

There exist typical tasks where segmentation takes place

such as: classification, which is usually independent of the

type of elements in the set O, and image segmentation

where set O is composed of image elements. Further, both

those tasks are shortly described with special attention paid

to active contour methods and the relationship between

them is presented.
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2.1 Classification

Classifiers are pattern recognition methods where the set of

Lð1; LÞ recognition results of objects O is finite. Naturally,

none of the classification algorithms can operate on the

objects directly. They are able to operate on data extracted

from objects (i.e. sensed, measured etc.). Extraction can be

defined as a function e : O! X that transforms the prob-

lem of classifying objects from set O into classification of

their descriptors from set X. It allows to prepare classifi-

cation methods regardless of the type of classified objects.

Thus, classifiers can be considered as functions

k : X ! Lð1; LÞ that assign proper labels to the object

descriptors. It is worth mentioning that the choice of

descriptors is not a trivial task as it determines the ability of

objects discrimination, but this problem is beyond the

scope of this paper.

The actual problem is the construction of classification

functions. There are many classifiers k 2 K that map X into

Lð1; LÞ, where K denotes a set of all possible classifiers. In

practice, some classifier model is assumed. It usually limits

the space of possible classifiers Kmodel � K and is param-

etrized. This allows to reduce the problem of classifier

construction to the search of the best parameters. To enable

the selection of those parameters additional knowledge

must be used for evaluation of the quality of the corre-

sponding classifier:

Q : K ! R ð1Þ

This objective function allows to find, in an optimization

process, the best parameters and, consequently, the best

classifier within the assumed model.

The scheme presented above requires a number of

decisions to be made which in general are not obvious:

• The choice of the model is crucial as it must possess

proper discriminative power for the considered classi-

fication problem. If the model is wrong, even with the

best quality function and optimization method, the

classifier construction may fail as the optimal classifier

may not belong to Kmodel.

• The choice of quality function Q determines classifiers’

comparison method and should express knowledge

about the problem. Usually, that knowledge is limited

to the set of objects with known labels, which, as it will

be shown further, not always allows to find a proper

classifier.

• The choice of optimization method specifies the method

of search of the best classifier. However, optimization

problems are not trivial tasks especially when objective

function Q is complicated and there are additional

constraints imposed by the model Kmodel, which leads to

finding local minima instead of global ones.

There are many practical methods of classifier con-

struction that differ especially in classifier model definition

and in the method of learning. In the supervised case one

has: k-NN classifiers, potential function classifiers, Fisher

discriminant analysis, Bayes classifiers, support vector

machines, decision trees, rule-based classifiers, neural-

based classifiers, etc. [2, 6, 23, 24, 26, 31, 38, 39, 40, 41],

whereas in the unsupervised case: c-means clustering,

single-link, complete-link, average-link clustering, neural-

based clustering, etc. [2, 26, 32, 34, 40].

As it was mentioned, classification is a method of seg-

mentation of set O since for a given classifier k and a

method of extraction e segments can be defined as:

Ol ¼ fo 2 O : kðeðoÞÞ ¼ lg ð2Þ

where l 2 Lð1;LÞ. An opposite relationship is also true as

each segmentation defines straightforwardly some classifier.

2.2 Image segmentation

In the image analysis, segmentation means division of the

set of image pixels into L subsets representing visible

logical entities. Those entities can have different semantic

levels of interpretation ranging from spots of uniform color

or texture to objects of real world. For convenience, it will

be assumed that for image segmentation O ¼ R
2. This is

not a limitation as each pixel is unambiguously defined by

its coordinates and, if necessary, there can be defined

additional segments for points lying outside the image.

Further, image width will be denoted as W 2 N and image

height as H 2 N.

Since, as it was presented in the previous section, seg-

mentation can be performed using classifiers, image seg-

mentation can be carried out in that way if only a proper

extraction method e is defined. What differentiates image

segmentation from other typical classification tasks is that

for proper classification of the object information about

other objects is required. In practice, it means that for

extraction both information about a given pixel and the

information about pixels in the neighborhood are used, as

the information about coordinates and color of the single

image element is usually insufficient.

There exist also other than classification methods

specifically dedicated to segmentation such as: thres-

holding techniques, region-based techniques (merging and

splitting regions with pixels possessing the same or dif-

ferent features, respectively) and edge-based techniques

(detecting and reconstructing borders of regions with

pixels possessing different features) [12, 15, 36]. Separate

group of those methods are model-based techniques and

among them active contour methods presented in the next

section. The segmentation methods usually perform a
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binary segmentation of the image (for L = 2) where one

segment represents object and the other the rest of the

image (background). Further, labels lo and lb will be used

for discrimination of those segments, respectively.

2.3 Active contours

The ‘active contour’ term was first proposed by Kass,

Witkin and Terzopoulos in [19] where contour, defined as a

parametrized curve and called snake, evolves in the images

in order to localize the objects visible. The aim of the

evolution was defined as an energy function capable of

contour evaluation. As in this case the contour was repre-

sented as a function, the energy was in fact a functional and

the calculus of variations had to be used to find the opti-

mum. It led to the problem of solving of partial differential

equation set which, when solved numerically, led to con-

tour evolution. This basic concept has many modifications.

Cohen in [7] introduced additional pressure forces

squeezing or stretching the contour. That concept was

further developed by Ivins and Porrill in [17] where region

energy and forces were proposed. Both those modifications

were introduced to avoid problems with getting stuck in

local minima of energy functions, which otherwise had to

be solved by proper contour initialization. The other

solution of that problem was suggested by Cohen and

Cohen in [8] (distance potential) and by Xu and Prince in

[49] (gradient vector flow) where image energy and force

components were modified to give better values even for

contours staying far from the sought object. There exist

also numerous other modifications: Amini, Weymouth and

Jain in [1] proposed the dynamic programming approach,

whereas Williams and Shah in [48] used the greedy algo-

rithm for finding the optimum contour, which in some

problems made the optimization more efficient, McInerney

and Terzopoulos in [28] as well as Delingette and

Montagnat [13] proposed algorithms allowing the changes

in topology of the regions described by the contour, etc.

The second group of active contour methods constitute

geometric active contours. They differ from snakes, which

belong to the group of parametric active contours, in that

they do not use the information about parametrization of

curves while evaluating contours. Those methods were

proposed simultaneously by Malladi, Sethian and Vemuri

in [27] and by Caselles, Catte, Coll and Dibos in [5].

During optimization, those methods used the level-set

approach proposed by Osher and Sethian in [30] as a

solution of front propagation problem. Such an imple-

mentation allowed to change easily the topology of the

regions described by the contour without any additional

steps as it was in the case of snakes. The extension of those

methods were geodesic active contours which were intro-

duced in two different ways by Caselles, Kimmel and

Sapiro in [3, 4] and by Yezzi, Kichenassamy, Kumar,

Olver and Tannenbaum in [20, 52]. In both cases, the

motivation was to present the geometric contour evolution

as a problem of energy functional optimization as it was in

other active contour techniques. The relationship between

geometric and parametric active contours were presented

by Xu, Yezzi, Prince and Hopkins in [50, 51], which

allowed to exchange energy formulation methods between

those groups of active contours.

There are also other variants of active contours in

literature. The most important are:

• Cootes and Taylor in [9–11] introduced active shape

models where contour is described by a set of landmark

points characterizing object and where the point

distribution model is trained using sample shapes to

impose additional constraints on contour during

evolution.

• Grzeszczuk and Levin in [16] proposed the linguistic

description of the contour and suggested the statistical

training of the image energy component. In this work

also simulated annealing was used as a contour

evolution method.

• Jacob, Blu and Unser in [18] as well as Schnabel and

Arridge in [35] used splines for contour definition.

• Staib and Duncan in [37] as well as Leroy, Herlin and

Cohen in [25] modeled contour using Fourier descriptors.

• Denzler and Niemann in [14] introduced active rays

where contour was described using distances from the

given center point.

Most of the methods described above have also extensions

that allow to apply them for segmentation image sequen-

ces—both video sequences (tracking) and 3D sequences

(active surfaces).

All the active contour methods use contour term though

none of them defines it straightforwardly. To describe the

relationship between active contours and classification

techniques it will be useful, however, to define this term

more formally. Intuitively, the contour is a set of lines and

points in the image that unambiguously localizes the object

in that image. The set of lines and points suffice for

description of all image parts as each region can be cir-

cumscribed by the line. Yet, this set alone is not enough to

point out the object in the image as to each part a label

should be assigned indicating whether it is a part of the

object or not. Consequently, contour c can be defined a set

of lines and points in the image together with information

about labels of parts of the image which are defined by that

set. Those considerations can be described precisely but for

the purposes of this paper a simplified formalism will be

used. The simplification reduces only the set of contours

C possible to describe.
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Let C : R2 ! R be an implicit contour function. If this

is a continuous function with continuous first partial

derivatives and if there exists only a finite number of sin-

gularity points ðx; yÞ 2 R
2 such that C(x,y) = 0, then, as a

result of implicit function theorem, the set fðx; yÞ 2 R
2 :

Cðx; yÞ ¼ 0g defines a finite set of points and regular

curves and, thus, defines the contour c where labels of the

image parts can be assigned in the following way:

Olo ¼ fðx; yÞ 2 R
2 : Cðx; yÞ� 0g � R

2 ð3Þ

and

Olb ¼ fðx; yÞ 2 R
2 : Cðx; yÞ\0g � R

2 ð4Þ

Having defined the contour, it is also worth noticing that

all the active contour methods have the same scheme. All

of them search for the optimal contour c, which, at the

beginning, requires assumption of some contour model.

That model usually limits the space of possible contours

Cmodel � C and is parametrized, which allows to reduce

the problem of segmentation to the problem of search of

the best parameters. To enable the selection of those

parameters additional knowledge must be used to evaluate

the quality of the corresponding contour:

E : C ! R ð5Þ

This energy function allows to find, in an evolution pro-

cess, the best parameters and, consequently, the best con-

tour within the assumed model.

This scheme requires a number of decisions to be made,

which, in general, are not obvious:

• The choice of the model is crucial as it must allow to

find contours able to describe shapes of the searched

objects. If the model is wrong even with the best energy

function and evolution method, the search of the

contour may fail as the optimal one may not belong

to Cmodel.

• The choice of energy function E determines the way of

comparison of contours and it must express knowledge

about the problem.

• The choice of evolution method specifies the search

method of the best contour. Yet, optimization problems

are not trivial tasks especially when objective function

E is complicated and there are additional constraints

imposed by the model Cmodel. In those situations

evolution can lead to finding local minima instead of

global ones.

2.4 Relationship

The relationship between active contour methods and

techniques of classifiers construction has been described

for the first time in [45]. It is quite evident from the con-

siderations presented above since both of those groups of

methods use the same scheme: they define the parametrized

model of the searched object, they choose a function able

to evaluate the objects within that model and, finally, they

define the method of optimization that looks for the opti-

mum parameters and, thus, for the best object. Therefore, if

the problem of pixel set segmentation is considered, con-

tours can be treated as if they were classifiers. If so, the

question arises why the active contour techniques were

introduced since, as it was presented in Sect. 2.2, tradi-

tional classifiers can also be of use during image segmen-

tation. The answer to this question is hidden in the

knowledge that is used to prepare the energy function. In

traditional classification techniques this knowledge is

usually limited to the training set of correctly labeled

objects that, during the learning of the classifier, is used

to evaluate separately the objects classification results.

Nevertheless, as it was mentioned in Sect. 2.3, that

approach to pixel classification is wrong since labels of

pixels should depend on the characteristic of other pixels in

the image. This problem can be partially solved by proper

definition of the descriptor extraction function e where

spatial relations between pixels can be considered. That,

however, will not solve the problem where the label of the

pixel depends on the labels of other pixels. For example, to

decide whether a pixel belongs to the object of a given

shape it must be known which pixels will be taken to

evaluate the shape. Such task can be accomplished only if

the quality function evaluates not the label of each object

separately but the whole labeling of objects. The energy

functions defined for active contours usually fulfill that

assumption (especially their components imposing addi-

tional constraints on objects localization, shape, etc.).

The presented relationship has many interesting conse-

quences. First of all, classifier models can be adapted to

create new contour models able to classify pixels using the

traditional energy formulations used in active contour

approach. That consequence is presented in this paper

where model from potential function classifier is used to

introduce potential active contours. Secondly, contour

models can be used to prepare new models of classifiers

able to classify objects more complicated than pixels.

Those classifiers can use the quality function in similar way

to other classification techniques. An example of that

approach can be found in [43] where the extension of

potential contour approach is presented. The same can be

done easily with geometric active contours and Brownian

strings methods discussed in Sect. 2.3. Thirdly, the

advantage of active contour energy function that evaluates

the whole labeling can be used while classifying other

objects than pixels. It will allow to introduce some

knowledge-based constraints to the quality function. The
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examples of such approach were presented in [46] both for

supervised and unsupervised classification. In [44] other

than pixels image elements were used to introduce a

sample image understanding methodology. This idea is not

entirely new since currently knowledge-based classification

techniques are intensively developed.

Finally, the presented relationship allows to define new

methods of image segmentation evaluation. Since contour

can be treated as any other classifier, it can be evaluated

using techniques coming from classification tasks. In this

paper, precision P 2 ½0; 1� and recall R 2 ½0; 1� are used for

this purpose. If the reference segmentation of O is given by

Mlo and Mlb , they can be defined as:

P ¼ nðMlo \ OloÞ
nðMlo \ OloÞ þ nðMlb \ OloÞ

ð6Þ

and

R ¼ nðMlo \ OloÞ
nðMlo \ OloÞ þ nðMlo \ OlbÞ ð7Þ

where n : 2O ! R denotes the cardinality of a given set.

Precision indicates how many pixels inside the current

contour are in fact correctly classified as lo and recall how

many pixels that are expected to be classified as lo are in fact

inside the contour. The more P and R are closer to 1, the

more perfect segmentation results are. Smaller value of

precision means that the evaluated contour sticks out of the

reference contour drawn by an expert and smaller value of

recall means that reference contour sticks out of the con-

sidered contour. Those measures are not always well suited

for segmentation problem because they consider only the

number of pixels (contour area) and not their structure

(contour shape) but as rough quality measure they are useful.

3 Adaptive potential active contours

In this section the concept of adaptive potential active

contours is presented as a consequence of the relationship

between active contours and classifier construction

described above. The model of the contour bases on the

potential function classifier model, while its evolution is

controlled by general energy functions as it takes place in

other active contour techniques.

3.1 Potential function classifier

Potential function method [42] assumes that label of the

classified object should depend on the labels of currently

known similar objects. The similarity measure considered

in this case is a metric q : X � X ! R and, consequently,

the method can be applied in any metric space X.

Let Dl ¼ fxl
1; . . .; xl

Nlg denote a subset of X containing

Nl source objects corresponding to the label l 2 Lð1; LÞ and

let P : R! R denote the potential function. Examples of

the latter are exponential potential function:

Pexp
W;lðdÞ ¼ We�ld2 ð8Þ

and inverse potential function:

Pinv
W;lðdÞ ¼

W
1þ ld2

ð9Þ

where W and l are parameters controlling the maximum

strength of the potential field in its source and its

distribution, respectively (Fig. 1). The potential function

classifier kpot : X ! Lð1; LÞ is defined in the following

way:

kpotðxÞ ¼ arg maxl2Lð1;LÞS
potðx; lÞ ð10Þ

where Spot : X � Lð1; LÞ ! R and Spotðx; lÞ represents the

resulting summary potential generated by sources Dl

calculated for x 2 X:

Spotðx; lÞ ¼
XNl

i¼1

Pwl
i;l

l
i
ðqðxl

i; xÞÞ ð11Þ

To put it differently, label l 2 Lð1; LÞ is assigned to object

x 2 X if the summary potential of objects from Dl has the

maximum value (Fig. 2). Further, the inverse potential

function is considered.

3.2 Potential contour

Assuming, as it was before, that lo and lb represent labels of

object and background and that Dlo ¼ fðxlo

1 ; y
lo

1 Þ; . . .; ðxlo

Nlo ;

ylo

Nlo Þg and Dlb ¼ fðxlb

1 ; y
lb

1 Þ; . . .; ðxlb

Nlb
; ylb

Nlb
Þg represent object

and background sources, respectively, its implicit contour

function described in Sect. 2.3 can be defined as:

Cpotðx; yÞ ¼ Spotððx; yÞ; loÞ � Spotððx; yÞ; lbÞ ð12Þ

The shape of the contour depends on the parameters of

potential contour model i.e. on ðxlo

i ; y
lo

i Þ 2 R
2, Wlo

i 2 R,

llo

i 2 R for i 2 Lð1;NloÞ and ðxlb

i ; y
lb

i Þ 2 R
2, Wlb

i 2 R,

llb

i 2 R for i 2 Lð1;NlbÞ (Fig. 3). Those parameters are

sought during the contour evolution and, consequently, to

make that process effective, some additional, reasonable

assumptions about their values should be made:

• The potential sources should lie inside the image,

which means that: xmin = 0, xmax = W, ymin = 0,

ymax = H.

• The strength of the potential source should be positive.

Its maximum value, however, is irrelevant since

multiplying the contour function Cpot by a constant
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positive value does not change the contour shape. In

this paper it is assumed that: Wmin ¼ 0, Wmax ¼ 1.

• The value of the parameter controlling the distribution

of potential field should assure that potential source

influences significantly the summary potential inside

the image. Since, with the increase of its value the

distance, where potential begins to asymptotically

approach to 0, decreases, its maximum value can be

estimated assuming the minimum distance above which

the potential is close to 0 (Fig. 1). Let f psi 2 ð0; 1Þ
denote the fraction of the potential source strength and

the f dist 2 ð0; 1Þ denote the fraction of the maximum

distance in the image, the maximum value of the

discussed parameter can be found from:

W

1þ lmaxf dist2ðW2 þ H2Þ
¼ f psiW ð13Þ

which, after simple transformations, leads to:

lmax ¼ 1� f psi

f psif dist2ðW2 þ H2Þ
ð14Þ

In this paper it is assumed that: fdist = 0.01 and

fpsi = 0.01 since those parameters control how far from

the source the value of potential is sufficiently small to

be considered as insignificant. Of course: lmin = 0.

A separate problem is the choice of the number of

background Nlb and object Nlo sources as it determines the

class of possible contour shapes that can be achieved. In

real applications it is hard to predict their correct number

necessary to describe the object sought in the image. The

proposed solution of this problem will be described in

detail in Sect. 3.5.

Fig. 1 Potential functions for different values of l and W ¼ 1 (the bigger value of l, faster the decrease of potential value that can be observed

when the distance d from the potential source increases): a exponential potential function, b inverse potential function

Fig. 2 The summary potential for sources in R. There are 2 sources on the left and 3 sources on the right
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3.3 Energy function

Energy is an objective function during contour evolution.

To show the properties of the described technique, in this

paper a specific type of tasks is considered where the

information about the expected feature of pixels repre-

senting objects in the image, e.g. their color or texture, is

available (Figs. 4, 9). The aim of those tasks is to find the

image segment with pixels possessing that feature. Those

tasks become complicated when there is noise in the image

making the proper localization of the objects difficult. The

choice of that type of tasks is not a limitation of potential

active contour method since for other tasks the proper

energy functions can be defined as well.

To consider tasks described above the following nota-

tion will be used further:

• Let Ffeat : R2 ! f0; 1g be a function describing the

distribution of a given feature such that Ffeat(x, y) = 1

if ðx; yÞ 2 R
2 possesses that feature and Ffeat(x, y) = 0

otherwise.

• Let Fdist
m : R2 ! R for m 2 f0; 1g denote the distance

function which for a given metric calculates the

distance to the closest point ðx; yÞ 2 R
2 such that

Ffeat(x, y) = m.

• Let Fpot
m : R2 ! ½0; 1� where:

Fpot
m ðx; yÞ ¼

1

1þ 1
W2þH2 Fdist

m
2ðx; yÞ

ð15Þ

for m 2 f0; 1g. Function Fpot
m plays a similar role as a

distance potential function used in the snakes method

mentioned in Sect. 2.3 and allows the contour to have

proper energy values even when the contour is far from

the sought object.

Sample energy functions based on that notation are

presented in Sects. 4 and 5 where examples of tasks of the

considered type are presented. Those functions consider

only image information, which is not sufficient if there is

noise in the image. In such situations, additional constraints

using external knowledge about the searched object must

be used. An example of such energy component is pre-

sented in Sect. 4.

3.4 Evolution method

The simulated annealing algorithm was chosen as the

evolution method of potential contour. This probabilistic

optimization algorithm was first proposed by Kirkpatrick in

[22]. That work was based on the earlier results of

Metropolis in [29] and Pincus in [33]. A major advantage

of this method is its ability to avoid getting stuck in a local

optima of the objective function, which, at the same time,

reduces the problem of the correct initialization near the

global optimum.

The basic idea of this algorithm is to generate the

sequence of solutions and accept or reject them depending

on the values of energy function. For the given iteration

t 2 N if Eðctþ1Þ�EðctÞ, then contour ct?1 is accepted,

otherwise the contour ct?1 is taken with probability:

pt ¼ e�
Eðctþ1Þ�Eðct Þ

Tt ð16Þ

Fig. 3 Sample contours with Nlo ¼ 1 and Nlb ¼ 2 sources: a–c contours, d normalized radius angle characteristic for the contour a
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where Tt represents an additional parameter, called tem-

perature, which decreases with the progress of the algo-

rithm. The probability of acceptance of worse solution is

greater at the beginning of the algorithm (as the tempera-

ture has larger values) and when energy difference

Eðctþ1Þ � EðctÞ is small. In theory, if the annealing is

sufficiently slow and solution generator possesses specific

properties, that algorithm guarantees localization of global

optima. In practice, however, those assumptions cannot be

fulfilled and heuristics implementation are used.

To utilize the simulated annealing, the solution repre-

sentation must be defined, the solution and temperature

generators must be prepared, the initial temperature must

be chosen and some stop criteria must be assumed. In this

paper, potential contour is represented by its 4ðNlo þ NlbÞ
parameters. Temperature is decreased using the exponen-

tial annealing schedule proposed by Kirkpatrick:

Ttþ1 ¼ aTt ð17Þ

where a = 0.95, though the decrease is not performed at

each iteration. For every temperature value Ltemp solutions

are considered. That sequence of solutions is usually called

a Markov chain. This heuristic is further modified in this

paper as in the same temperature there are allowed Nmar

Markov chains of length Lmar and after each chain the best

solution found so far is assumed for further calculations. In

consequence, Ltemp ¼ NmarLmar. The next element of the

algorithm is a solution generator. In theory, it should

introduce small modifications and should allow to explore

the whole space of the solutions. For the purposes of

potential active contours, the solution generator performs

randomly one of the following modifications:

ðxtþ1; ytþ1Þ ¼ ðxt; ytÞ þ ðGðf rangeðxmax � xminÞÞ;
Gðf rangeðymax � yminÞÞÞ ð18Þ

or:

Wtþ1 ¼ Wt þ Gðf rangeðWmax �WminÞÞ ð19Þ

or:

ltþ1 ¼ lt þ Gðf rangeðlmax � lminÞÞ ð20Þ

where G : R! R for argument d 2 R generates a random

value from between -d and d using normal distribution

with 0 mean and frange controls the range of those

modifications and is a fraction of the maximum range of

values available for the given parameter. If the resulting

value is out of the parameter range, it is clipped to the

correct range. Having the solution generator defined, the

length Lmar of Markov chain can also be estimated as

follows:

Lmar ¼ 4ðNlo þ NlbÞ 1

f range
ð21Þ

It depends on the number of parameters that are optimized

and on the minimal number of their modifications

necessary to explore the ranges of those parameters. Such

a formulation to a certain extent guarantees that during one

Markov chain a proper number of solutions will be

generated to explore the solutions’ space. In this paper

frange = 0.1 since on the one hand the generated solutions

Fig. 4 Sample results for two

chosen images from training set:

a, d insufficient number of

sources (Nlo ¼ 1, Nlb ¼ 1,

Eexample), b, e no shape

constraints (Nlo ¼ 1, Nlb ¼ 2,

Eimage), c, f correct results

(Nlo ¼ 1, Nlb ¼ 2, Eexample)
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should be chosen from the neighborhood of the current

solution and, on the other hand, too small value of this

parameter would make the exploration of contour space

very slow. To choose the initial temperature the method

proposed by Kirkpatrick in [21] is used. It assumes that

before the start of the algorithm a sequence of random

solutions is generated, which allows to estimate an average

absolute change of energy function DE. This estimation

allows to calculate the initial temperature if the initial

probability pinit of worse solution acceptance is given from

the following equation:

pinit ¼ e
� DE

Tinit ð22Þ

which after transformations gives:

T init ¼ � DE

lnðpinitÞ ð23Þ

Here, pinit = 0.8. Finally, as a stop criterion the maximum

number Niter of iterations can be used. It can be estimated

as after Ntemp changes of temperature the probability of

worse solution acceptance is very low, which in practice

makes the escape from the local minimum impossible.

Assuming the final probability pfinal and since:

T final ¼ aN temp

T init ð24Þ

and

pfinal ¼ e
� DE

Tfinal ð25Þ

it can be found that:

N temp ¼ loga
lnðpinitÞ
lnðpfinalÞ

� �
ð26Þ

Here, it is assumed that pfinal = 0.0001 since for this

probability only better solutions are accepted in practice

and simulated annealing becomes a greedy algorithm. Of

course, then N iter ¼ N tempLtemp.

The reasoning presented above, though heuristic, allows

to achieve the satisfactory results of evolution and reduces

the number of decisions that must be made while working

with potential active contours as only Nmar value must be

chosen arbitrarily or during the experiments. In this paper,

it is set arbitrarily to Nmar = 2 which is a compromise

between the ability to explore the contour space and

the length of the evolution. As it was mentioned at the

beginning of this section also the initialization of the

contour is not a problem as it can be any feasible contour.

In the experiments presented further, the initial potential

sources lie at the center of the image (W/2, H/2) and have

the same values of remaining parameters equal to 0

and lmax/2, respectively. Sample evolution process is pre-

sented in Fig. 5.

3.5 Adaptation

As it was mentioned in Sect. 3.5 the actual problem while

working with potential active contours is also the choice of

proper values of number Nlo of objects sources and Nlb of

background sources. It is crucial as it determines the class

shapes that can be achieved during evolution. If that

number is too small, some of the shapes can be unreach-

able, e.g. if only 1 object source or 1 background source is

chosen only simple circular shapes can be found if the

whole contour lies inside the image (Fig. 4). If that number

is too large, it can significantly slow the optimization

process as well as it can cause that the global optimum will

be difficult to reach as the dimension of search space

grows. The problem is that it is hard to predict the proper

number of sources. The first solution is to choose them

Fig. 5 Sample evolution

process for the image from

testing set: a–c evolving

contour, d energy chart
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arbitrarily or after a series of initial experiments, which is

done in this paper. The other solution presented in [42] is to

introduce the adaptation algorithm where the evolution

starts with a small number of sources and after each opti-

mization phase additional sources are introduced until the

satisfactory energy value is not reached. That adaptation

may depend on the character of the energy function and the

new sources can be introduced in the area where the best

improvement is expected. Such an approach can allow to

reduce the number Niter used in each optimization phase as

at the beginning only general localization of the object is

searched and further only the shape of the contour is

improved where the intensive exploration of search space

is not necessary. Those aspects of this method are under

research.

4 Example

In this section a simple example of segmentation of arti-

ficially generated image data is presented. The used data

set allows to illustrate the problem with noised images

where the necessity of additional shape constraints is evi-

dent as well as to present the possible methodology that can

be used to choose proper parameters of evolution.

4.1 Problem

As it was mentioned above, the data set used in this section

was generated artificially. Each image contains the same

object translated and rotated. To make sure that this object

can be found using the assumed number of potential

sources it was chosen based on the existing contour where

Nlo ¼ 1 and Nlb ¼ 2 (Fig. 3). 100 images were generated

and to each of them the noise in form of spots was added

(Fig. 4). The problem was to find the object regardless of

the existing noise.

4.2 Solution

To localize areas of the image where pixels possess the

desired feature (in this case it is black color) the following

energy function was used:

EimageðcÞ ¼
P
ðx;yÞ2Olo ð1� Fpot

1 ðx; yÞÞ
nðOloÞ

þ
P
ðx;yÞ2Olb ð1� Fpot

0 ðx; yÞÞ
nðOlbÞ

ð27Þ

It assigns small values to the contours with small number

of pixels lying inside the contour that do not possess the

given feature and with the small number of pixels lying

outside the contour that possess the given feature. Due to

the noise, however, that energy component is insufficient

(Fig. 4) and additional constraints must be added. Because

the shape of the searched object is in this case known and

the object is composed of one part its radius angle

characteristic can be found (Fig. 3). To find that

characteristic natural parametrization of the curve must

be considered and, then, the contour is traversed along and

in points equally distributed, the distance of the radius

connecting that point and the weight center is calculated as

well as the angle between that radius and horizontal axis.

Such characteristic unambiguously describes shape. The

additional energy term Eshape calculates the difference

between the known characteristic and the characteristic of

the currently evaluated contour (it is possible if the starting

point will be chosen in the same way for both contours). It

is worth mentioning that using that approach the evaluation

is translation invariant and after additional steps (contour

can be rotated so that the angle for the starting point was

equal to 0, the radii can be scaled using the maximum value

of the radius in a given contour), it can be also rotation and

scale invariant. In this paper, the rotation invariance was

considered and the final energy was defined as:

EexampleðcÞ ¼ EimageðcÞ þ wshapeEshapeðcÞ ð28Þ

where the weight wshape 2 R decides what is more impor-

tant—the shape of the contour or its fitting in the image.

To choose the proper value of wshape the generated set of

images can be divided into training and testing set. Next,

using the training set the contour evolution can be performed

for different values of wshape selecting the one that finds the

best precision and recall values described in Sect. 4.3. That

value can be further evaluated using testing set.

4.3 Results

In this paper the generated set of images was divided into

training set with 20 images and testing set with 80 images

and 5 different values of wshape were tested: 0.2, 0.5, 1, 2

and 5. The best average value of precision and recall was

achieved for wshape = 2.

Having found the value of wshape it was used to perform

the segmentation of the images in testing set. Summary

results are presented in the form of precision recall chart in

Fig. 6. Most of the P and R values are close to 0.9 or above,

which means that proposed methodology, though simple,

gave satisfactory results. There are, however, also the

isolated cases where precision or recall was below 0.7. It

can be explained as the chosen type of noise could be

significantly damaging for the objects in the image (the

used spots were relatively large in comparison with the size

of the sought objects) and in some cases it was not possible

to restore the proper shape and localization.
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5 Medical application

In this section the application of potential active contour

approach to the real problem of medical image segmenta-

tion is presented. The choice of the potential active contour

approach resulted from specific properties of potential

contour model that, in a natural way, allows to describe

smooth, medical shapes. Other traditional active contour

techniques such as snakes or geometric active contours

require special steps, e.g. definition of additional smooth-

ing internal energy components, in order to achieve similar

results.

5.1 Problem

Obstruction of pulmonary arteries by the emboli is one of

the most frequent cause of death among the population in

the most developed societies. In recent decades the

development of computed tomography (CT) allowed to

introduce new diagnostic methods of pulmonary embolism

(Fig. 7). Some of them were mentioned in [47]. This paper

focuses on a method for the right ventricle systolic pressure

assessment linked with shifts in interventricular septum

curvature that requires drawing of endocardial and epi-

cardial contours. Currently they are drawn manually, which

is time-consuming as well as prone to errors due to tech-

nical mistakes and tiredness (Fig. 8). The aim of this work

is to automate this process.

The analyzed image data are obtained using ECG-gated

computed tomography scanner in a standard chest protocol

after intravenous injection of contrast media. Next, heart

cycle is reconstructed in 10 phases and two chamber short

axis view is generated leading to 4D image sequence, i.e.

the set of 2D images for each reconstructed slice and for

each phase of heart cycle.

5.2 Solution

The proposed process of segmentation consists of two

phases which are to simulate the human top–down process

of image analysis. The first one aims at automatic separa-

tion of left and right ventricle. The second one represents

actual segmentation of left and right ventricles. Both pha-

ses utilize the potential active contour algorithm with dif-

ferent formulation of energy function in each phase. It

should be emphasized that the presented approach is cur-

rently not fully automatic because an expert must choose,

for each 4D image sequence, a proper threshold that allows

to distinguish those areas in the images that represent blood

with injected contrast from the rest of the image (Fig. 9). It

allows to define function Ffeat presented in Sect. 3.3. This

requirement, however, in comparison with manual contour

drawing is not a difficult task. Nevertheless, there are also

ongoing works that aim at solving that problem.

In the first phase, in order to separate left and right

ventricles automatically, first both of them are sought using

potential active contour method. The energy function was

defined as:

EbothðcÞ ¼ nðOloÞ
nðIÞ þ 4

P
ðx;yÞ2Olb Fpot

1 ðx; yÞ
nðOlbÞ

ð29Þ

where I denotes the set of all the pixels in the image. It

assigned a small value if the contour was relatively small

and all the pixels above a given threshold lay inside the

contour which should imitate the human way of reasoning

(the first component considers the number of pixels inside

the contour while the second one considers the number of

pixels representing blood with contrast outside the con-

tour). The potential contour model used here had Nlo ¼ 1

object source and Nlb ¼ 2 background sources. When the

contour was found, the line separating both ventricles was

searched. Identification of that line was performed by

simple testing each line starting at the top edge of the

image and ending at its bottom edge. That line was chosen

that had the longest part inside the previously found con-

tour and had, at that part, the lowest amount of points

above the given threshold (Fig. 9). In fact, the search of

this line can also be considered as an another active contour

algorithm where evolution method is a brute-force algo-

rithm evaluating every possible contour to find the optimal

one. Further, the segment of the image lying on the left side

of the line will be denoted as Lll and on the right side as Llr .

Fig. 6 The precision and recall charts for 80 images of testing set

(the value of wshape = 2 was chosen in the training phase)
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Having found the line representing interventricular

septum, it is possible, in the second phase, to find a left and

right ventricle using a similar approach to the described

above. In order to find those ventricles the following

energy functions were used:

ErightðcÞ ¼ 2
nðOloÞ
nðIÞ þ 4

P
ðx;yÞ2Olb\Lll Fpot

1 ðx; yÞ
nðOlb \ LllÞ ð30Þ

and

EleftðcÞ ¼ 2
nðOloÞ
nðIÞ þ 4

P
ðx;yÞ2Olb\Llr Fpot

1 ðx; yÞ
nðOlb \ LlrÞ

ð31Þ

Both of them utilize additional information about the line

separating ventricles as only pixels above the given

threshold on the proper side of the line are considered.

Here, also Nlo ¼ 1 object source and Nlb ¼ 2 background

sources were considered.

In both phases the weights of energy components were

chosen arbitrarily after initial series of experiments.

5.3 Results

The conducted experiments revealed that the first phase is

able to find a proper septum line if only a proper threshold

Fig. 7 Image preparation: a
four chamber long axis view

(original data), b two chamber

short axis view (reconstructed

data)

Fig. 8 Sample 4D image sequence (the first, sixth and tenth phase of

different slices). Each image contains manually drawn: contour of

right ventricle (on the left), contour of left ventricle (on the right,
inside), contour of myocardium (on the right, outside) Fig. 9 Sample

results of the proposed algorithm for chosen slices and phases of two

heart image sequences: a, b the result of thresholding; c, d potential

contour circumscribing both ventricles; e, f line separating left and

right ventricle; g, h contour of right ventricle; i, j contour of left

ventricle
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is chosen by an expert. The visual effects of the second

phase results also seem to be satisfactory (Figs. 9, 11). Yet,

the objective analysis of those results when compared to

the reference contours drawn by an expert reveals certain

shortcomings (Fig. 10). Though in most of the cases values

of precision and recall are above 0.8, the contours are still

too imprecise to be directly used in the diagnostic process.

It is especially noticeable in the second analyzed image

sequence where precision recall charts reveal that the

contour found for left ventricles is almost always too big

and the contour of right ventricle very often does not

localize the whole ventricle. Moreover, the differences

between the results of segmentations of the first and the

second image sequence suggests that characteristics of

Fig. 9 Sample results of the

proposed algorithm for chosen

slices and phases of two heart

image sequences: a, b the result

of thresholding; c, d potential

contour circumscribing both

ventricles; e, f line separating

left and right ventricle;

g, h contour of right ventricle;

i, j contour of left ventricle
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images may vary and better process than thresholding is

needed. To sum up, currently the resulting contours can

only constitute the basis for further manual segmentation

which, when hundreds of images are considered, is still a

significant simplification of contour drawing.

The imperfection of the presented results can be

explained by the fact that in the proposed approach only

visual information is considered, whereas an expert pos-

sesses additional medical knowledge that allows to draw a

better contour. However, it can also be used in the pre-

sented framework because any information can be encoded

in the energy function. For example, one can consider

conscious expert knowledge (e.g. the relationship between

shapes of both ventricles such as information that the

interventricular septum should have a constant thickness,

the information about the shape of heart or the information

contained in other slices of the same heart) as well as some

knowledge that is not conscious or is hard to express

directly using mathematical formula and that can be

obtained using machine learning techniques (e.g. neural

network trained to estimate the proper localization of the

contour in the given slice taking into account the image

information from other slices). These aspects are under

further investigation.

6 Summary

In the paper a new segmentation method, called adaptive

potential active contours, is proposed. It originates from the

relationship between active contour techniques and meth-

ods of optimal classifier construction. This relationship

allows the use of the classic potential function classifier to

define the new model of contour. The presented approach

has the same advantages as other active contour techniques,

which allows to define additional knowledge-based con-

straints, that should be imposed on the contour. Moreover,

an additional adaptation mechanism was suggested that can

improve segmentation results as it allows to change

dynamically the class of shapes that can be considered

during optimization. The proposed method is illustrated

using two different examples. First one, where the artifi-

cially generated images were used, revealed the necessity

of the shape constraints in the presence of noise in the

Fig. 10 The precision and

recall charts for 80 images

coming from two heart image

sequences: a first image

sequence, left ventricle; b first

image sequence, right ventricle;

c second image sequence, left

ventricle; d second image

sequence, right ventricle
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image as well as introduced the methodology of parameters

training. The second one, proved that the described method

can be of use in real medical applications. Further work

will involve development of adaptation mechanisms and

preparation of better energy functions especially in those

cases where analytical formula are not directly available

and machine learning algorithms might be useful.
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