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Abstract This paper addresses the subject of liveness

detection, which is a test that ensures that biometric cues

are acquired from a live person who is actually present at

the time of capture. The liveness check is performed by

measuring the degree of synchrony between the lips and

the voice extracted from a video sequence. Three new

methods for asynchrony detection based on co-inertia

analysis (CoIA) and a fourth based on coupled hidden

Markov models (CHMMs) are derived. Experimental

comparisons are made with several methods previously

used in the literature for asynchrony detection and speaker

location. The reported results demonstrate the effectiveness

and superiority of the proposed new methods based on both

CoIA and CHMMs as asynchrony detection methods.

Keywords Biometrics � Video analysis � Statistics �
Coupled hidden Markov models � Coinertia analysis �
Video tracking

1 Originality and contribution

This paper addressed the subject of liveness detection in

frontal faces videos. The liveness check is performed by

measuring the degree of synchrony between the lips and

the voice extracted from a video sequence. Four different

original methods are derived for that purpose: three

methods based on co-inertia analysis and a fourth based on

coupled hidden Markov models. The main contributions of

this work are a full theoretical description of these methods

and an experimental comparison of the main asynchrony

detection algorithms in a publicly available database,

allowing for future performance comparisons.

2 Introduction

Oral communication between people is a means of com-

munication which is intrinsically multimodal. Not only

does it include acoustic information but it also conveys

complementary visual information. Acoustic information is

classically used for state-of-the-art automatic speech pro-

cessing applications such as automatic speech transcription

or speaker authentication, while visual information is of

great help in adverse environments where acoustic infor-

mation is degraded (background noise, channel distortion,

etc.). It provides complementary clues that can help in the

analysis of the acoustic signal [1]. In extreme cases, visual

information can even be used on its own. For instance, it is

well known that deaf people can learn how to lip read. The

joint analysis of acoustic and visual speech improves the

robustness of automatic speech recognition systems [2, 3].

In the framework of identity verification based on talking-

faces, most systems in the literature fuse scores from speaker

verification and face recognition tests. Nevertheless, a
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number of systems have attempted to make use of visual

speech information to improve overall authentication per-

formance [4–6].

One major weakness of these systems is that they do not

take into account realistic impostor attack scenarios. Most

existing systems, for example, could easily be fooled by

simple attacks such as recording the voice of the target in

advance and replaying it in front of the microphone, or

simply placing a picture of the target’s face in front of the

camera. Another problem emerges in audio–visual speaker

recognition when several faces appear in the video and the

true speaker must be selected before identification or

verification can take place. Systems such as the one

described in [5] jointly model acoustic and visual speech in

order to improve speaker verification performance with

respect to independent modeling. The audio–visual

biometric system described in [6] performs better when the

visual stream is incorporated for both identification and

verification. The robustness of these systems against non-

synchronized video attacks or complex scenes with several

face candidates, however, has not been tested.

One solution that has been proposed in the recent lite-

rature is to test liveness by studying the degree of

synchrony between the acoustic signal and lip motion

[7, 8]. Synchrony detection is not a new problem in audio–

visual analysis. It is a major issue in fields such as speaker

location [9] and speaker association [10–12]. Studies in the

area used measures such as canonical correlation (CAN-

COR) [10] and mutual information (MI) [9, 11, 12] to

distinguish the true speaker from a set of candidates.

Synchrony detection in video-based biometrics would

solve the problem of complex scenes where several faces

are present in the image. Furthermore, it would allow the

detection of attacks that cause audio–visual inconsistency.

A number of studies in the biometrics field have already

dealt with asynchrony detection. For instance, the method

introduced in [7] fuses the speech and lip parameters in a

single audiovisual feature vector stream, and then models it

within a Gaussian mixture model (GMM) for each client.

The results obtained with this method are impressive (1%

equal error rate) for easy replay attacks constructed with a

voice recording and a still photograph, although it has not

been tested using a voice recording and an image sequence

taken from another video. The method described in [8] uses

co-inertia analysis (CoIA) correlation evolution to create

liveness scores based on different delays between audio

and image sequences.

The main aim of this paper is to describe a series of new

asynchrony detection techniques and compare them to

existing ones. The techniques presented increase the

robustness of audio–visual biometric systems against spoof

attacks. In addition to their application in the biometrics

field, these techniques can also be applied to any generic

audio–visual consistency assessment or monologue detec-

tion task. Two new approaches for measuring synchrony

between audio and visual speech and detecting possible

asynchrony are proposed. The first approach is based on co-

inertia analysis (CoIA), and three new, different algorithms

for detecting liveness are derived. The second one is a

Bayesian approach based on coupled hidden Markov

models (CHMMs). CANCOR, MI and the method proposed

by Eveno et al. and based on CoIA are also tested in the

same experimental framework for comparison purposes.

The rest of the paper is organized as follows. Section 2

introduces the acoustic and visual features that will be used

in the experiments. The first approach (based on CoIA) is

described in Sect. 3 and the second (based on CHMMs) in

Sect. 4. A third method based on the fusion of the two

previous approaches is investigated in Sect. 5. The meth-

ods used for comparison are introduced in Sect. 6. Finally,

the performance of each of the methods is evaluated using

real data from the BANCA audiovisual database. Evalua-

tion protocols and results are discussed in Sect. 7.

3 Audiovisual speech features

3.1 Acoustic speech features

Mel-frequency cepstral coefficients (MFCC) are classical

acoustic speech features in automatic speech processing.

They are state-of-the-art features in many applications,

including automatic speech recognition and speaker veri-

fication systems.

Every 10 ms, a 20 ms window is extracted from the

acoustic signal and 12 MFCCs and the signal energy are

computed to produce 13-dimensional acoustic speech fea-

tures. First- and second-order time-derivatives are then

appended, and finally a 39-dimensional feature vector is

extracted every 10 ms.

3.2 Visual speech features

Visual speech features can be classified into two categories,

depending on whether they are based on the shape or the

appearance of the mouth [13]. The first category includes

features that are directly related to the shape of the lip, such

as the openness of the mouth, the location of particular lip

landmarks, etc. The second category, in contrast, considers

the mouth area as a whole and includes features that have

been extracted directly from the pixels corresponding to a

region of interest (ROI) around the mouth area.

Shape-based features Robust tracking of lip landmarks is

a mandatory preliminary step towards extracting shape-

based features. A Lucas–Kanade-based tracker [14] is used

to track the location of a collection of facial landmarks
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(including lip landmarks) throughout the video sequence,

as shown in the example in Fig. 1. Shape features corre-

sponding to three separate dimensions (height, width and

area of the mouth) are then straightforwardly extracted

from the location of these lip landmarks.

Appearance-based features The mouth detection algo-

rithm described in [15] was used to locate the lip area, as

shown in Fig. 2. A discrete cosine transform (DCT) was

then applied to the grey level size-normalized ROI, and the

first 30 DCT coefficients (in a zig-zag manner, corre-

sponding to the low spatial frequency) were kept as the

visual speech features.

Sample rate The visual speech sample rate is dependent

on the frame rate of the audiovisual sequence. Whereas

current video cameras work at a frame rate of 25 or 29.97

frames/s (depending on the codec), the acoustic speech

features presented in Sect. 2.1 are extracted at a sample

rate of 100 Hz.

The algorithms presented here make use of acoustic and

visual features that have equal sample rates. Therefore, the

chosen solution was to linearly interpolate the visual

features to obtain a sample rate of 100 Hz for both acoustic

and visual features.

Visual dynamic features As with acoustic features, first-

and second-order derivatives are also appended to static

visual features. In the end, nine-dimensional shape-based

features and 90-dimensional appearance-based features are

available every 10 ms.

4 Coinertial approach: CoIA

4.1 Theoretical aspects

CoIA was first introduced by Dolédec and Chessel [16] in the

field of biology to uncover the hidden relationships between

species and their environment. Because, however, we did not

find any demonstration of the co-inertia analysis in the lit-

erature, we have included the following demonstration:

Given two multivariate random variables X ¼
X1; . . .;Xnð Þt2 R

n and Y ¼ Y1; . . .; Ymð Þt2 R
m of covari-

ance matrix CXY ¼ cov X; Yð Þ ¼ EfXYtg 2Mn�m; where

E{�} denotes the expectation operator, CoIA allows to find

a 2 U
n and b 2 U

m; with U
l ¼ z 2 R

ljkzk ¼ 1
� �

; so that

the projections of X and Y on these two vectors have

maximum covariance:

a; bð Þ ¼ argmax
a;bð Þ2Un�Um

cov atX; btYð Þ

¼ argmax
a;bð Þ2Un�Um

EfðatXÞðYtbÞg

¼ argmax
a;bð Þ2Un�Um

atCXYb:

ð1Þ

Proposition 1 (CoIA) a is the eigenvector corresponding

to the highest eigenvalue k of matrix CXYCt
XY and b is

proportional to CXY
t a.

Fig. 1 Shape-based features

extraction

Fig. 2 Appearance-based features extraction
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Proof of Proposition 1 Let us denote

q ¼ atCXY b ð2Þ

In the process of maximizing q, one can assume that q[ 0

(change a into -a if q\ 0): it is therefore equivalent to

maximize q and q2.

q2 ¼ atCXY bð Þt atCXY bð Þ ð3Þ

q2 ¼ Ct
XYa

� �t
b

h it

Ct
XYa

� �t
b

h i
: ð4Þ

According to the Cauchy–Schwarz inequality,

q2�kCt
XY ak � kbk with equality if and only if b can be

written as lCXY
t a, with l 2 R: Therefore, Eq. 2 becomes:

q ¼ atCXY lCt
XY a

� �
ð5Þ

q ¼ lat CXY Ct
XY

� �
a: ð6Þ

Since kak ¼ 1; q is proportional to the Rayleigh quotient

R CXY Ct
XY ; a

� �
¼ ðatCXYCt

XYaÞ=ðataÞ; which is maximized

when a is the eigenvector of CXY CXY
t associated with the

biggest eigenvalue k1.(

Sorting the eigenvalues of CXY CXY
t in decreasing order

fk1; . . .; kdg; CoIA recursively finds the orthogonal vectors

a1; . . .; adf g and b1; . . .; bdf g which maximize the covari-

ance between the projections at
kX and bt

kY (d being the

rank of CXY). In other words, CoIA rotates X and Y into a

new coordinate system that maximizes their covariance.

In the following, A and B will denote n 9 d and m 9 d

matrices containing the directions of the new coordinate

systems:

A ¼ a1j. . .jad½ � and B ¼ b1j. . .jbd½ �:

4.2 Application of CoIA

4.2.1 Extracting correlated acoustic and visual speech

features

Given synchronized acoustic and visual features X 2 R
n

and Y 2 R
m; CoIA can be used to compute matrices A and

B, which, in turn, can be used to extract correlated acoustic

and visual features X ¼ AtX and Y ¼ BtY of dimension d

as follows:

8k 2 f1; . . .; dg; X k ¼ at
kX ¼

Xn

i¼1

aki
Xi

Yk ¼ bt
kY ¼

Xm

i¼1

bki
Yi:

ð7Þ

The effect of CoIA on real data is shown in Fig. 3, which

contains features extracted from the audiovisual sequen-

ce‘‘1002_f_g1_s02_1002_en.avi’’ from the BANCA

database [17].

Remark CoIA can be used to reduce the dimension of

acoustic and visual features without losing those that

contain the most information regarding correlation. This is

particularly important when working with CHMMs such as

those described in Sect. 4. The curse of dimensionality is a

major issue for these models because the small size of the

BANCA database does not permit accurate training with

high-dimensional features. The only requirement in our

case was that all the acoustic and visual features X and Y

had to be transformed using the same matrices AX and BX.

Synchronized acoustic and visual features XX and YX can

be extracted from a training set X (BANCA world model

part wm, in our case). CoIA transformation matrices AX ¼
aX

1 j. . .jaX
d

� �
and BX ¼ bX

1 j. . .jbX
d

� �
are then obtained by

applying CoIA to X, and the transformed acoustic and

visual features XX and YX are computed using Eq. 8

8k 2 f1; . . .; dg; XX
k ¼ at

kXX ¼
Xn

i¼1

aX
ki

Xi

YX
k ¼ bt

kXY ¼
Xm

i¼1

bX
ki

Yi:

ð8Þ

The dimensions of the transformed acoustic and visual

features XX and YX can then be conveniently reduced by

keeping only the D most informative ones with respect to

correlation.

Fig. 3 Original acoustic and

visual features (top left: X1, X2

and X3 bottom left Y1, Y2 and Y3)

and first correlated acoustic and

visual features (top right: X1

bottom right Y1Þ: The

correlation between X and Y is

much more evident if we look at

X1 and Y1
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4.2.2 Measuring audiovisual speech synchrony

In this section, we introduce a method involving the use of

correlated acoustic and visual features to measure how

well voice X and lips Y correspond to each other. We

distinguish between three different methods (world-, self-

or piecewise self-training), though they all share a common

framework:

1. The transformation matrices AX and BX are derived by

means of CoIA from a training set X composed of

acoustic and visual features XX and YX.

2. Acoustic and visual features XC and YC from a test

utterance C are then transformed into XX and YX using

the previously computed matrixes AX and BX:

XX ¼ AXt

XC

YX ¼ BXt

YC:
ð9Þ

3. Direct correlation is computed between each dimension

of XX and YX and used as a measure s XC; YCð Þ of

synchronization between XC and YC, whereby the

higher the correlation, the greater the synchronization:

s XC;YC
� �

¼ 1

D

XD

k¼1

XX
k

tYX
kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XX
k

tXX
k

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
YX

k

tYX
k

q

¼ 1

D

XD

k¼1

aXt

k XC
� �t

bXt

k YC
� 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aXt

k XC
� �t

aXt

k XC
� �q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bXt

k YC
� 	t

bXt

k YC
� 	r :

ð10Þ

The three methods mostly differ in how the training set X
and the test set C are built.

World training method As proposed in the previous par-

agraph, one can use a large set of synchronized audiovisual

sequences (the world model part wm of BANCA, in our

case) to get XX and YX. CoIA can then be used to compute

matrices AX and BX, modeling the average best corres-

pondence between voice and lips. Using a given test

utterance C, all the features in C are transformed using

Eq. 9 to obtain XX and YX: A synchronization score s

(XC, YC ) for test utterance C is then obtained using Eq. 10.

Self training method This method differs from the above

in that a different training set is used to obtain matrices AX

and BX. Using a given test utterance C, CoIA is directly

performed on data XC and YC. In other words, the training

and the test sets are the same: C = X.

Piecewise self training method Bearing in mind that the

purpose of this measure of synchronization is to discrimi-

nate between synchronized and non-synchronized

audiovisual sequences, this third method is slightly

different to the previous method. The intuition is the fol-

lowing (where a sub-sequence K is a sequence extracted

from the original utterance sequence C by keeping only

some of the samples, that is K � CÞ :

• if sequence C is synchronized, then every sub-sequence

should follow the same synchronization model: a model

AX;BX
� �

which is optimal with respect to a sub-

sequence X � C would also be optimal with respect to

any other sub-sequence H � C;

• if the sequence is not synchronized, then a model

(AX,BX) which is optimal with respect to a sub-

sequence X would not make sense for another sub-

sequence H � C with X \H ¼£:

Let us introduce some notations:

• N is the number of samples in the sequence C : XC ¼
fx1; . . .; xNg and YC ¼ fy1; . . .; yNg:

• PC is the collection of all subsets of C of cardinal

bN=2c:
CoIA is applied to each training subsequence X 2 PC to

produce transformation matrices AX and BX. The remain-

ing features in the sequence (H = C-X) are then

transformed using the transformation matrices: XX ¼
AXt

XH and YX ¼ BXt

YH: The synchronization measure

s(XH, YH) is computed as in Eq. 10, for every subsequence

X 2 PC: The final synchronization measure for sequence C
is obtained via Eq. 11:

sðXC; YCÞ ¼ 1

cardPC

X

X2PC

s XH; YH
� �

: ð11Þ

In practice, because it is not computationally feasible to use

every X 2 P; only a few are drawn randomly (50, in our

case) to compute the final synchronization measure.

5 Dynamic approach: CHMMs

5.1 Theoretical aspects

A CHMM can be seen as a collection of HMM in which the

state at time t for every HMM in the collection is condi-

tioned by the states of all the HMM in the collection at time

t-1. This is illustrated in Fig. 4. The fact that the next state

of every HMM depends on the states of all the HMMs is

useful for capturing interactions between the acoustic and

visual streams.

A CHMM can be completely described by the para-

meters k ¼ fkig ¼ fpi
jg; fai;si

r g; fbi
si
ð�Þg

n o
; for every

stream i [ {1,…,Nh}, where Nh is the number of streams; si

[ {1,…,NSi}, where NSi is the number of states in stream i;

pi
si

is the initial probability of the state si for stream i; ai;si
r is

the state transition probability for stream i and state si of
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the composite state r ¼ fr1; . . .; rNh
g; and bi

si is the output

probability density function for stream i and state si. The

transition probabilities for stream i are defined as:

ai;si
r ¼ Pðqi

t ¼ sijq1
t�1 ¼ r1; . . .; qNh

t�1 ¼ rNh
Þ: ð12Þ

The output probability density function for every state si

and stream i is modelled as gaussian mixture model

(GMM) with Mi
si

mixtures. Let oi
t be the observation of the

stream i at time t (in this case, o1 ¼ XX and o2 ¼ YXÞ: The

output probability density function can be written as:

bi
si
ðoi

tÞ ¼ pðoi
tjqi

t ¼ siÞ ¼
XM

i
si

m¼1

wi
si;m
Nðoi

t; l
i
si;m
; ri

si;m
Þ: ð13Þ

The initial states for the training sequences are obtained

using the five internal states of an energy-based voice activity

detector (VAD) applied to the most correlated acoustic and

visual features X1 and Y1; as defined in Eq. 7. Figure 6

shows the architecture of the VAD state machine, and Fig. 5

shows the VAD internal state sequence for a given signal.

The VAD was chosen because it was believed that the system

would be able to distinguish between synchronized and non-

synchronized streams paying attention only to major signal

changes (when a word starts or ends, when the signal is at a

high energy interval, etc.) The state transition probabilities

ai;si
r are initially estimated from the state transitions obtained

from the VAD sequence for all the training sequences:

ai;si
r ¼

ni;si
r

ni
r

ð14Þ

where ni;si
r is the number of transitions to state si of stream i

from the composite state r ¼ fr1; . . .; rNh
g; and ni

r is the

total number of times that the CHMM visits the composite

state r ¼ fr1; . . .; rNh
g before the last sample for every

training sequence. The initial state probabilities pi
si

can be

estimated as pi
si
¼ ni

si
=ns; where ni

si
are the number of

training sequences in which the first state of stream i is state

si, and ns is the total number of training sequences (Fig. 6).

It should be noted that the stream states are calculated

independently for both streams in the training process. We

can expect the output distribution for each stream and state

to be the same (as if a HMM was trained on each stream

separately) because no relation with the other stream’s state

is used for the initial state estimation. Dynamic relation-

ships between the streams are then learnt from the

combined state sequence of both streams.

The Baum–Welch algorithm adapted to the CHMM

framework is iterated 20 times to train the CHMM. The

Viterbi algorithm is used to calculate the sequence of states

for every stream and the frame log-likelihoods. This

framework has been derived in previous studies such as [2].

5.2 Bayesian framework to detect audiovisual

asynchrony

In order to detect asynchrony between the acoustic and

visual streams X and Y, a hypothesis test can be performed

with the following hypothesis:

πNh

π1

π0

a Nh,sr

Nh

1o t−1

2o t−1

q1
1 q t−1

1 = r1

q t−1
2 = r2

q t−1
Nh = rNh

a
1,s 1

r

a2,s2
r

q t
1 = r1

q t
2 = r2

q t
Nh = rNh

q1
2

q1
Nh

Nh
t

...

1

0

1
t−1

2

r 1

2

Nh

r Nh

Nh
t−1

r

o ~ b (o )

(o

(o~ b

0

1

Nh

t

t

t

...

2

s1

2
t

s0

1
to

o

o
Nh

sNh

Nh
t~ b (o )

~ b (o )

)(o~ b~ b

t−1

)

)

1

Fig. 4 The CHMM next state of each HMM depends on the state of

all the HMM in the CHMM

frames

1

S
ou

nd
 p

ow
er th3

th2
th1

glitch silence voice

Q0

T1

Q1

T1

Q1

T2 T1

Q1

T2

Q0 Q2 Q4 Q0 Q2 Q3 Q4 Q0

0 1 0

Fig. 5 Energy signal, VAD internal state sequence used to estimate

the initial states for the training sequences and normal VAD output

(voice/nonvoice)

Possible
activity

t2<T2

E<th2

t2>T2

Postactivity

Silence
E>th1 t1<T1

Preactivity t1++

t1>T1

t1>T1

E<th2

t2=0
E>th3

E<th3
E>th2

t2=0Activity

E>th2

E<th1

t1=0

E<th1

t2++ E<th2

E>th1

E>th3
E>th2

Fig. 6 VAD state machine. The only input variable is represented by

E. Configurable timers T1 and T2 and thresholds th1, th2 and th3 can

be tuned to modify the VAD behaviour
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• H0 : Because streams are produced synchronously the

state sequences are dependent on each other. This

hypothesis is represented by CHMM k:

• H1 : Because streams are produced by independent

sources, sequences are independent of each other. This

hypothesis is represented by the two-stream HMM k0;
as described in [3].

The test we performed in our study is a slight modifi-

cation of the classical Bayesian test:

H0 is accepted () pðX ;Y;QjkÞ
pðX ;Y;Q0jk0Þ [ h; ð15Þ

where Q and Q0 are the most likely state sequences. These

likelihoods are provided by the Viterbi algorithm. This test

approximates the classical Bayesian test when one state

sequence is much more likely than the others. If the two-

stream HMM k0 ¼ ffp0isi
g; fa0i;si

ri
g; fb0isi

ð�Þgg was an

independently trained model, then the slightest mismatch

in the learned output distributions would thwart the

effectiveness of the hypothesis test. In addition, dynamic

relationships between the streams are encoded in the

combined state sequences Q and Q0. The two-stream HMM

k0 used in this hypothesis test, therefore, is an uncoupled

version of the CHMM k; where the parameters for both the

output distributions and the initial state probabilities are

shared, and the state transition probabilities are computed

from the CHMM k parameters:

p0isi
¼ pi

si

b0isi
ð�Þ ¼ bi

si
ð�Þ



8 i 2 f1; . . .;Nhg; si 2 f1; . . .;NSig:

ð16Þ

This enhances the asynchrony discrimination because

random effects derived from the output probability

density functions training are removed and only

differences in the decoded state sequences are taken into

account: if H1 holds then it is likely that rare joint state

transitions in Q makes the ratio in Eq. 15 fall below h. The

state transition matrix of k0 is defined in such a way that the

next state si for every HMM i depends only on its previous

state ri. It is known that:

a0i;si
ri
¼ Pðqi

t ¼ sijqi
t�1 ¼ riÞ

¼
X

qt�1jqi
t�1
¼ri

Pðqi
t ¼ sijqt�1 ¼ rÞ

YNh

j¼1;j6¼i

Pðqj
t�1 ¼ rjÞ

¼
XNS1

r1¼1

. . .
XNSi�1

ri�1¼1

XNSiþ1

riþ1¼1

. . .
XNSNh

rNh
¼1

ai;si
r

YNh

j¼1;j6¼i

Pðqj
t�1 ¼ rjÞ:

ð17Þ

The probability P(qi
t = ri) can be calculated. It depends on

time, however, and it is not desirable to work with time-

dependent state transition probabilities. Therefore, since

the quantity limt!inf Pðqi
t ¼ riÞ converges quickly for

ergodic HMMs, it is computed following this iterative

procedure:

1. Initialization: for t = 1,

Pðqi
1 ¼ siÞ ¼ pi

si
: ð18Þ

2. Induction:

Pðqi
t¼siÞ ¼

X

r

ai;si
r

YNh

j¼1

Pðqj
t�1¼rjÞ ð19Þ

3. Stop condition:

Pðqi
t ¼ siÞ � Pðqi

t�1 ¼ siÞ
Pðqi

t ¼ siÞ

����

����\10�6: ð20Þ

An example of the uncoupled transition matrices

obtained by this uncoupling procedure is illustrated in

Fig. 7. It should be noted that the original CHMM from

which the uncoupled transition matrices are obtained has

250 different fai;si
r g parameters.

6 Bayesian fusion using GMM as a probability density

function estimator

CoIA and CHMM are different approaches to asynchrony

detection. While CoIA uses linear correlation as a measure

of synchrony between acoustic and visual features, CHMM

uses dynamic statistics to determine whether acoustic and

visual features are synchronous. Because they use com-

plementary information, fusing them could lead to

improved performance. Statistical fusion techniques such

as GMM fusion [18] can be used for this purpose. In our

framework, the joint probability density function f of the

CoIA and CHMM scores s1 and s2 for both the synchro-

nized S and non-synchronized N acoustic and visual

features is modeled using two GMMs:

fSðsðX; YÞÞ ¼ PðsðX; YÞjX and Y are synchronizedÞ ð21Þ

34

1

2

Audio stream HMM after the
uncoupling procedure

Video stream HMM after the
uncoupling procedure

34

1

2
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0.85030.8938
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32
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Fig. 7 Uncoupled HMMs obtained with the uncoupling procedure

described in Sect. 4.2
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fNðsðX; YÞÞ ¼ PðsðX; YÞjX and Yare not synchronizedÞ;
ð22Þ

where sðX; YÞ ¼ ðs1ðX; YÞ; s2ðX; YÞÞt and fS and fN can

both be expressed as follows:

fqðsÞ¼
XN

i¼1

wq
i

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞd Cq

ik k
q exp �1

2
ðs�lq

i Þ
TCq

i
�1ðs�lq

i Þ
� 


ð23Þ

fS and fN are initialized using the LBG algorithm and

trained using the EM algorithm. To discriminate between

synchronized and not synchronized acoustic and visual

streams, the following hypothesis test is performed:

X and Y are synchronized () fSðsðX; YÞÞ
fNðsðX; YÞÞ

[ h: ð24Þ

We used the above method in our fusion experiments

described below. Additional results using the sum rule are

reported as a baseline for fusion [19].

7 Other methods for asynchrony detection

Several asynchrony detection techniques have already been

studied in the literature, as indicated in the introduction.

We performed the same experiments with CHMM, CoIA

approaches (including Eveno and Besacier’s approach),

CANCOR and MI to compare performance. Although

descriptions of these approaches can be found in the lite-

rature [8–12], some implementation issues must be

discussed in order to facilitate understanding of the results

presented later in this paper.

Eveno’s measure In a similar liveness test framework

[8], Eveno and Besacier apply CANCOR analysis and

CoIA to the tested sequence, in order to obtain the first

projection vectors a1 and b1. The design of their synchrony

measure M(X,Y) (summarized by Eq. 27) results from the

observation of the value of the correlation q between a1
t X

and b1
t Y, as a function of the shift d between audio and

visual features: its maximum value qref is often obtained

for a small negative shift:

qref ¼ max
�80 ms� d� 0

corr a1
tXd;b1

tY
� �� �

ð25Þ

qavg ¼ mean corr a1
tXd; b1

tY
� �� �

ð26Þ

where Xd is the d-shifted X.

MðX; YÞ ¼ 1

2Dþ 1

qref

qavg

� 1

 !
XD

d¼�D

f ðcorrðat
1Xd; bt

1YÞÞ

ð27Þ

where f (q) = 1 if q B qref and 0 otherwise, and D corres-

ponds to a time-shift of 400 ms (10 visual frames). M(X, Y)

can be seen as a measure of the peakiness of the maximum

found in the interval [-80, 0 ms]. Our implementation of

Eveno’s algorithm involves the use of slightly different

acoustic features to those described in [8] (MFCC instead of

LPC). The major difference between our self-training

method and Eveno’s approach is that we considered more

than just the first dimension, X 1 and Y1: Moreover, the

world-training method is also quite different in that it makes

use of a prior training step where universal transformation

matrices AX and BX are learned.

CANCOR CANCOR analysis is applied to synchrony

detection [10] in the same manner as CoIA is. All the

synchrony detection techniques described for CoIA can be

directly tested using the CANCOR approach. The same

training sets are used for the estimation of CoIA and

CANCOR transformation matrices.

MI Mutual information between visual and acoustic

parameters can be defined in several ways depending on

the probability density estimator used to model joint and

separate feature vectors. In our case we use GMMs as

parameter estimators for visual, acoustic and joint visual

and acoustic features in the CoIA-transformed space; the

MI measure is therefore defined as:

MIðX; YÞ ¼
XN

t¼1

fAVðX t;YtÞ log
fAVðX t;YtÞ

fAðX tÞfVðYtÞ

� 

; ð28Þ

where fAV, fA and fV are the GMM probability density func-

tions, as defined in Eq. 23, for the joint audio–visual features,

the audio features and the visual features, respectively.

8 Experiments

8.1 Experimental framework

BANCA database We conducted our experiments using

the English part of the BANCA database [17], which was

originally designed for biometric system evaluation pur-

poses only. Two disjoint groups of 26 people (13 male and

13 female) recorded 24 sequences of approximately 15 s,

in which they each pronounced a sequence of 10 digits and

either their name and address (client access) or the name

and address of another person (impostor access). The

recordings were performed under three different conditions

(controlled, degraded and adverse) as shown in Fig. 8.

Sixty additional sequences from 30 different people were

also recorded (under controlled, degraded and adverse

conditions) and used to create the world model.
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Evaluation protocols Because we are focusing on asyn-

chrony detection in this paper, the experimental protocols

described in [17]—designed for identity verification—are

not valid here. As a matter of fact, for each group, all the

312 (26 9 12) original client access sequences were syn-

chronized naturally. Therefore, for each group, 3,432 (26

9 12 9 11) asynchronous recordings were built artificially

using audio and video from two different recordings, in

which the name and address pronounced were the same,

both acoustically and visually. Two asynchrony detection

protocols were derived from these two sets of synchronized

and non-synchronized audiovisual sequences:

Controlled Only recordings from the controlled

conditions are used. This protocol can be

used to compare the suitability of both shape-

based and appearance-based visual speech

features for asynchrony detection. Only the

controlled part of the world model recordings

of BANCA can be used to train models. As a

result, for each group, 104 synchronized and

312 non-synchronized sequences were tested

using this protocol.

Pooled The 3 conditions (controlled, adverse and

degraded) were used. This protocol can be

used to estimate the robustness of CoIA and

CHMM asynchrony detection methods. All

the world model recordings of BANCA can

be used to train models. As a result, for each

group, 312 synchronized and 3,432 non-

synchronized sequences were tested using

this protocol.

Although it is very unlikely that an impostor would own

both an audio and a video recording of the client pro-

nouncing two different utterances, these protocols deal

with an extremely challenging, if not the most challenging,

synchrony detection task and therefore constitute a useful

framework in which to compare the performance of the

different synchrony measures we propose.

Performance measure and comparison Given a decision

threshold h, an asynchrony detection system can commit

two types of error: it can falsely accept a non-synchronized

sequence and classify it as a synchronized sequence (false

acceptance) or it can falsely reject a synchronized sequence

and classify it as a non-synchronized sequence (false

rejection). A low h value would tend to increase the

number of false acceptances (FA) and reciprocally a high h
value would tend to increase the number of false rejections

(FR). Consequently we defined the false acceptance rate

(FAR) and false rejection rate (FRR) as a function of h (one

objective being to find the best compromise between those

two error rates):

FARðhÞ ¼ FAðhÞ
NI

and FRRðhÞ ¼ FRðhÞ
NC

ð29Þ

where NI and NC are the numbers of non-synchronized and

synchronized sequences respectively. Detection error

tradeoff (DET) curves are usually plotted to compare such

detection algorithms [20]. The (FAR(h), FRR(h)) point is

plotted for every possible h value and the resulting curve

can be used to easily compare two systems: the closer the

target curve is to the origin, the better.

Depending on the application, we might want to place

more or less importance on false rejection or acceptance

errors. The weighted error rate (WER), presented in [21], is

therefore introduced:

WER rð Þ ¼ 1

1þ r
r � FARþ FRRð Þ: ð30Þ

Two possible applications where mentioned in the

introduction. Although the synchrony detection can be

performed using the same algorithms in both applications,

different compromises between FAR and FRR should be

assumed, and hence we should choose different values for

the weight r:

r = 10 This configuration corresponds to a biometric

authentication system with strict security

requirements, where the most important

constraint is to detect spoof attacks. It is

therefore ten times more costly to falsely accept

a non-synchronized sequence than to reject a

synchronized sequence (in that case, a genuine

client would have to repeat his/her access

attempt).

Fig. 8 Three different

recording conditions. Left
controlled (DV camera), middle
degraded (webcam), right
adverse (background noise)
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r = 1 This configuration might be used in an application

where no strong binary decision (synchronized vs.

non-synchronized) is needed. It could be used, for

example, to select the true speaker form a large

group of people on a screen.

Are results generalizable and conclusive? Because the

BANCA database is divided into two disjoint groups,

namely G1 and G2, the WERs for one group (the test set)

are calculated using the thresholds that minimizes the

WERs for the other group (the training set). This prevents

the results from being biased by the choice of threshold.

Confidence intervals at 95% are then computed using the

method proposed in [22] with the following formula, where

a = 1.960 and WERðrÞ is the estimation obtained thanks to

the test set:

WERðrÞ 2WERðrÞ � a �
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1þ r2

r

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

NI
� FARð1� FARÞ þ 1

NC
� FRRð1� FRRÞ

r

:

ð31Þ

As a matter of fact, given the small number of tests that are

performed, it is important to make sure that the resulting

difference between the error rates of two methods is stas-

tically significant and capable of generating conclusive

results.

8.2 Experimental results

Table 1 shows the asynchrony detection performance of

the different methods compared in this paper in terms of

the WER (1.0) and WER (10). All the experiments were

performed using both shape-based (shp) and appearance-

based (app) visual features. Algorithms based on CAN-

COR, CHMM, MI and CoIA were used for the asynchrony

detection. The Method column indicates the audiovisual

synchrony measurement method used in the correlation-

based CANCOR and CoIA cases. This column indicates

the design parameters regarding stream dimension and

number of gaussians in the case of MI and CHMM

algorithms.

The DET curves for the different algorithms are shown

in Figs. 9 and 10 (controlled and pooled protocols,

respectively). It must be noted that parameters such as the

stream dimension or the number of gaussians per state (in

the case of the CHMM) may slightly alter the performance

of these methods for the same dataset. These parameters

have been empirically chosen to achieve a good compro-

mise in terms of performance. In the case of the CHMM

and MI approaches, the dimension of the streams used and

the number of gaussians are shown in Table 1. CoIA and

CANCOR methods use correlated acoustic and visual

streams of dimension 3. In other words, D = 3 in Eq. 10

(Fig. 11).

Shape-based versus appearance-based visual fea-

tures Performance was much better for appearance-based

visual features than shape-based visual features in all of the

methods (with no exceptions). This suggests that shape-

based visual features do not hold appropriate linear

dependencies with acoustic speech features or time evo-

lution information. As a matter of fact, only the outer lip

contours were modeled by the lip tracker: the area, height

and width of the mouth and their time derivatives do not

provide enough information for synchrony analysis.

Appearance-based features, in contrast, contain (in a hid-

den way) not only the shape of the mouth but also

additionnal information such as whether the mouth is really

open, the tongue or the teeth are visible, etc.

CANCOR versus CoIA While WT performed far better

than (P)ST for the CANCOR-based synchrony measure,

CoIA-based measures did not behave in the same way and

(P)ST methods yielded better results in all cases. This

observation coincides with the findings of [8]. CANCOR

needs much more training data to accurately estimate the

transformation matrices A and B: world-training (where a

lot of training data is available) therefore results in better

modeling than self-training does (where only the sequence

itself can be used for training). CoIA is much less depen-

dent on the amount of training data available and it is even

better at modeling and uncovering the intrinsical synchrony

of a given audiovisual sequence.

CHMM robustness against degraded conditions A quick

comparison of the performance of CoIA and CHMM using

the controlled and pooled protocols shows that CHMM

performs better than CoIA in degraded test conditions. The

WER (1.0) of ST appearance-based CoIA increased from

WER (1.0) = 8.25% for the controlled protocol to WER

(1.0) = 11.9% for the pooled protocol (statistically sig-

nificant degraded performance). Comparatively, we

observed a small, yet not statistically significant, degrada-

tion in the performance of appearance-based CHMM. This

observation was also made in the security-oriented per-

formance measure defined by WER (10). This CHMM

robustness against low quality features is highlighted when

observing the CHMM performance when using the less

informative shape-based features, where it gets the best

performance.

Piecewise self-training One of the contributions of this

paper is the introduction of the piecewise self-training

approach. It seems to be particularly effective for appli-

cations where more security is needed [defined by the error

rate WER (10)], and where conditions are controlled.

Indeed, in such circumstances, piecewise self-training
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always results in a small (yet not statistically significant)

improvement over the self-training approach.

MI This approach seems to be the least successful of all

those tested in this paper for asynchrony detection. How-

ever, this does not mean that MI should not be used for

monologue detection or speaker association. What it means

is that the technique may not be appropriate when a global

threshold is required, as in the case of a biometric appli-

cation or a synchrony quality assessment task.

Sum rule and GMM fusion Performance improved when

CoIA and CHMM were fused. The two systems encoded

different types of synchrony data, and hence, when fused,

resulted in improved performance, even though the two

systems were using the same audiovisual features.

9 Conclusion and future work

The results reported in Sect. 7 demonstrate the effective-

ness of both CoIA and CHMM as asynchrony detection

methods. They have been tested in a difficult framework

for asynchrony detection, where the video sequences and

voice are taken from the same user uttering the same

speech.

Asynchrony detection can be a useful anti-spoofing

technique for real-life impostor attacks in biometric iden-

tity verification systems, among other applications such as

speaker location and monologue detection.

The methods we presented can easily be adapted to

identity verification systems based on audiovisual speech

features. Client-dependent models can be derived, which

Table 1 WER (1), WER (10) and their 95% confidence intervals (in subscripts) for the different algorithms for the controlled (C) and pooled (P)

protocol using appearance (app) and shape-based (shp) visual parameters (VP)

Protocol VP Algorithm Method WER% (1.0) WER% (10.0)

C shp CANCOR WT 22.76(17.94, 27.58) 5.26(4.34, 6.18)

ST 25.72(20.69, 30.75) 7.24(5.90, 8.58)

PST 28.12(23.01, 33.24) 9.22(7.78, 10.66)

CoIA WT 23.48(18.56, 28.39) 5.67(4.87, 6.47)

ST 18.11(13.51, 22.70) 5.13(4.21, 6.05)

PST 22.92(18.08, 27.75) 6.66(5.47, 7.84)

Eveno 25.64(20.73, 30.55) 9.35(8.52, 10.19)

MI D3, ng256 41.91(36.50, 47.31) 9.15(8.81, 9.49)

CHMM D3, ng4 16.59(12.18, 20.99) 6.06(4.54, 7.58

app CANCOR WT 10.18(6.53, 13.82) 2.71(1.91, 3.51)

ST 13.14(9.24, 17.04) 6.91(5.27, 8.54)

PST 20.35(15.59, 25.11) 6.95(5.58, 8.32)

CoIA WT 13.22(9.12, 17.32) 3.12(2.25, 3.99)

ST 8.25(4.89, 11.61) 2.74(1.72, 3.76)

PST 8.81(5.25, 12.38) 2.32(1.55, 3.09)

Eveno 21.39(16.93, 25.85) 9.43(8.47, 10.39)

MI D4, ng256 40.71(35.23, 46.18) 9.02(8.64, 9.39)

CHMM D4, ng8 9.21(5.64, 12.79) 2.71(1.77, 3.65)

Fusion Sum rule 7.61(3.42, 9.24) 2.01(1.14, 2.18)

GMM 6.33(3.42, 9.24) 3.99(2.50, 5.48)

P app CANCOR WT 13.39(11.18, 15.61) 3.69(3.28, 4.10)

ST 20.16(17.77, 22.56) 7.82(7.36, 8.29)

PST 22.76(20.04, 25.48) 6.75(6.27, 7.22)

CoIA WT 16.43(13.99, 18.86) 4.89(4.43, 5.35)

ST 11.93(9.90, 13.95) 3.69(3.26, 4.13)

PST 14.77(12.40, 17.13) 3.67(3.25, 4.09)

Eveno 21.18(18.99, 23.38) 9.13(9.08, 9.18)

MI D4, ng256 38.87(36.07, 41.67) 9.14(9.03, 9.25)

CHMM D4, ng4 10.59(8.49, 12.69) 2.93(2.53, 3.32

Column Method indicates the synchrony measurement method (WT, ST or PST) for correlation-based algorithms (CoIA and CANCOR) or the

design parameters for the probabilistic algorithms (MI and CHMM), or the fusion algorithm used for fusion (sum rule or GMM fusion)
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would provide complementary information to speaker or

face verifiers working in a multimodal framework.

Synchrony evaluation could also be used in other fields

that are not directly related to biometrics, speaker location

or monologue detection. It could be used, for example, to

replace tasks that are currently done manually, such as the

alignment of video and soundtrack in movie post-produc-

tion, or the evaluation of the quality of dubbing into a

foreign language.

New directions of research in asynchrony detection

emerge from this paper. We have shown how fusing

CoIA and CHMM scores can lead to improved

Fig. 9 Controlled protocol DET curves for the best methods shown in Table 1 using appearance-based (left) and shape-based visual features

(right)
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Fig. 10 Pooled protocol DET curves for the best methods shown in

Table 1 using appearance-based and shape-based visual features
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Fig. 11 Controlled protocol DET curves for the best CoIA and

CHMM methods, sum rule and GMM fusion algorithms
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performance. Appearance- and shape-based systems can

also be fused at feature level. The two systems offer

different methods for integrating multiple information

sources: while CoIA can be applied to concatenated

appearance- and shape-based visual features, CHMM can

work with an acoustic stream, an appearance-based visual

feature stream and a shape-based visual feature stream.

Structural improvements to CHMM are also a possibility

in future studies given that CHMM families have already

been used successfully for audiovisual speech recognition

purposes [23, 24]. A large number of training audiovisual

utterances containing different phonetic units is required

if acceptable speech recognition accuracy is to be

achieved. The uncoupling procedure described in

Sect. 4.2 can be applied to such a CHMM audiovisual

speech recognizer to obtain an asynchrony detector. The

results would more than likely be much more accurate

than those described here. Our system suffered from

structural limitations due to insufficient training material

and this resulted in poor audiovisual speech unit model-

ing, which is mostly based on the evolution of the most

correlated components of both streams. Another promis-

ing research direction emerges from recently derived

tensor based classification frameworks [25, 26]. Tensors

encoding audio-visual speech features from several con-

secutive sampling periods can keep most of the dynamic

relationship between lips movement and speech dynamics,

while the use of tensors algebra can overcome the scarcity

of training data. Equivalent CoIA and CANCOR tensor

techniques should be derived in a future work and tested

in the audio-visual asynchrony detection problem pre-

sented in this paper.
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tique in Aix en Provence. In

1992, he participated to the

development of IDIAP, a new

research laboratory of the

‘‘Fondation Dalle Molle’’ in

Martigny, Switzerland. Since

1996, he is at ENST, managing research projects and supervising

doctoral work. His main research interests are in phonetics, automatic

speech processing, speech dialog systems, multimedia, pattern rec-

ognition, digital signal processing, speech pathology, speech training

aids,…

Daniel González Jiménez
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