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Abstract At the present, Indirect Immunofluorescence

(IIF) is the recommended method for the detection of

antinuclear autoantibodies (ANA). IIF diagnosis requires

both the estimation of the fluorescent intensity and the

description of the staining pattern, but resources and ade-

quately trained personnel are not always available for these

tasks. In this respect, an evident medical demand is the

development of computer-aided diagnosis (CAD) tools that

can offer a support to physician decision. In this paper we

first propose a strategy to reliably label the image data set

by using the diagnoses performed by different physicians,

and then we present a system to classify the fluorescent

intensity. Such a system adopts a multiple expert system

architecture (MES), based on the classifier selection para-

digm. Two different selection rules are presented and,

given the application domain, the convenience of using one

of them is analyzed. Different sets of operating points are

determined, making the recognition system suited to

application in daily practice and in a wide spectrum of

scenarios. The measured performance on an annotated

database of IIF images shows a low overall miss rate

(\1.5%, 0.00% of false negative).
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1 Originality and contribution

Indirect immunofluorescence (IIF), a technique that

detects the presence of antinuclear antibodies (ANA) in

patient serum, is nowadays the recommended method for

the diagnosis of autoimmune diseases. Currently, the

highest level of automation in IIF tests is the preparation

of slides with robotic devices performing dilution, dis-

pensation and washing operations. In this paper, we

present a system that classifies the fluorescence intensity

of IIF images, that is, it automatically discriminates

positive, negative and intermediate tests. The system may

be the basis for developing a computer-aided diagnosis

(CAD) system, which may support the physician’s deci-

sion and overcome some limitations of the current

methods (e.g., the photo-bleaching effect, the interob-

server variability, low level of standardization). The

recognition system is based on a multiple expert system

(MES) paradigm and employs a classifier selection

approach. Two different selection rules are presented and

the convenience of using either of them in different

application domains is analyzed. Different sets of oper-

ating points are determined, making the recognition

system suited for application in daily practice and in a

wide spectrum of scenarios. The measured performance

on an annotated database of IIF images shows a low

overall miss rate (\1.5%, 0.00% of false negative). The

specialists can test the tool through a web-based interface

at http://slideimaging.unicampus.it.
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2 Introduction

Connective tissue diseases (CTD) are autoimmune disor-

ders characterized by a chronic inflammatory process

involving connective tissues. Detection of ANA is a com-

mon marker in patients with suspected CTD. ANA directed

against a variety of nuclear antigens have been detected in

the serum of patients with many rheumatic and non-rheu-

matic diseases [1]. The recommended method for ANA

testing is Immunofluorescence microscopy, particularly the

IIF [2, 3]. In IIF, a serum sample is tested with a substrate

containing a specific antigen, and the antigen antibody

reaction is revealed by fluorochrome conjugated anti-

human immunoglobulin antibodies through examination

with fluorescence microscope.

In autoimmune diseases, the availability of accurately

performed and correctly reported laboratory determinations

is crucial for the clinicians. The relevance of the issue is

emphasized by the increase in the incidence of autoimmune

diseases observed over the last years, partly attributable to

both improved diagnostic capabilities and growing aware-

ness of this clinical problem in general medicine. A

growing number of health-care structures need laboratories

to perform these tests, but the major disadvantages of the

IIF method are:

– the lack of resources and adequately trained personnel

[3];

– the low level of standardization [4];

– the photobleaching effect, which bleaches significantly

in a few seconds biological tissues stained with

fluorescent dyes [5];

– interobserver variability, which limits the reproducibil-

ity of IIF readings [6];

– the lack of automatized procedures.

To date, the highest level of automation in IIF tests is the

preparation of slides with robotic devices performing

dilution, dispensation and washing operations [7, 8]. Being

able to automatically determine the presence of autoanti-

bodies in IIF would enable easier, faster and more reliable

tests. Hence, an evident medical demand is the develop-

ment of a CAD system, which may support the physician’s

decision and overcome the limitations of the current

methods. In response to this medical demand, some recent

works on both the automated HEp-2 pattern description [9–

11] and the fluorescent intensity classification [12, 13] may

be found in the literature.

In this paper, we propose a strategy to reliably label the

image data set by using the diagnoses performed by dif-

ferent physicians, and present a system to classify the

fluorescent intensity. With respect to [12, 13], we adopt

different features, different system architecture and dif-

ferent classifiers, improving the management of samples

that are intrinsically hard to classify (e.g., samples that are

borderline between different classes) and developing a

more flexible recognition system that should fit to different

working scenarios. The system proposed here is based on

an MES paradigm and uses a classifier selection approach;

two different selection rules are introduced and experi-

mentally evaluated. Starting from the widely accepted

result that an MES approach generally produces a better

performance than those obtained by individual experts, the

rationale is inspired by the results coming out from the

feature selection phase: the relatively small set of stable

and effective features obtained for each class enforced the

evidence that the classification could be reliably faced by

introducing one specialized expert for each class that the

system should recognize. By performing a convenience

analysis on the selection rules, we determine three different

sets of operating points that allow applying the classifier to

the main working scenarios of a CAD system. This feature

makes such innovative CAD suited for application in daily

practice.

The paper is organized as follows. After presenting the

state of art and motivations in Sect. 2, in Sect. 3 we describe

the peculiarities of the application domain. Section 4 pre-

sents features extraction and selection, Sect. 5 describes the

MES system architecture, whereas Sect. 6 introduces two

rules to select the expert, which is more likely to be correct

for each input sample. Section 7 reports the experimental

results and in Sect. 8 we conclude the paper.

3 Background

3.1 Application context

Humans are limited in their ability to detect and diagnose

disease during image interpretation due to their non-sys-

tematic search patterns and to the presence of noise. In

addition, the vast amount of image data that is generated by

some imaging devices makes the detection of potential

disease a burdensome task and may cause oversight errors.

Another problem is that similar characteristics of some

abnormal and normal structure may cause interpretational

errors. Developments in computer vision and artificial

intelligence in medical image interpretation have shown

that CAD system can pursue four major objectives: (1)

performing a pre-selection of the cases to be examined,

enabling the physician to focus his/her attention only on

relevant cases, making it easier to carry out mass screening

campaigns, (2) serving as a second reader, thus augmenting

the physician capabilities and reducing errors, (3) aiding

the physician while he/she carries out the diagnosis, (4)

working as a tool for training and education of specialized

medical personnel [14–18].
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Therefore, each of the previous working scenarios has

its requirements and the CAD is expected to apply to them.

In general, a classification system makes or does not make

a decision on all input samples. In the former case, the

CAD acts as a zero-reject system, whereas in the latter one

or some samples are rejected. Note that the introduction of

a reject option aims to reject the highest possible per-

centage of samples that would otherwise be misclassified.

However, it introduces a side effect whereby some samples

that otherwise would have been correctly classified are

rejected. The relationship between the error rate and the

reject rate is represented as an error–reject trade-off curve,

which can be used to set the desired operating point of the

classification system. This curve is monotonically non-

increasing, since rejecting more patterns either reduces the

error rate or keeps it the same.

Based on these considerations, for each working sce-

nario the CAD behavior can be further characterized.

In case (1), the CAD carries out mass screening cam-

paigns. In this respect, two opposite situations may occur.

In the first one (referred to as a1) the CAD acts as a full-

automated system that labels all input samples, that is, it

acts as a zero-reject system. In the second one (referred to

as a2), the physician must perform the pre-selection on

cases rejected by the CAD. Therefore, the recognition

system approaches a zero-error classifier whatever the

reject rate (although in a real application, it is almost

impossible to not have misclassification). Indeed, with

reference to a theoretical error–reject curve, more the error

approaches zero, greater is the reject rate (at limit 100%).

Case a1 on the one hand allows carrying out many tests,

since the CAD classifies all input samples thus increasing

the throughput. On the other hand, the physician a priori

knows that some samples will be misclassified, since the

error rate (false positive and false negative) of a given

recognition system should be evaluated. In this respect, it is

important to keep the false negative rate as low as possible.

In case a2, fewer even though more accurate tests are

performed, since the CAD approaches a zero-error system

and rejects doubtful samples.

This paper does not address the issue of proposing when

and which one of the two situations should be preferred,

but we would like to remark the following observation.

Regarding only the error rate, case a2 should appear pref-

erable to case a1, since more of the true ill patients are

identified and treated. However, more tests in the pre-

selection phase can be executed in case a1 than in a2.

Therefore, some potential sick patients could not be pro-

cessed in case a2, unless additional work was performed by

physicians to screen rejected samples. Hence, a dichotomy

arises between performing more tests with a known error

and performing less tests with less misclassifications, but

excluding some people.

In case (2), referred to as b, the CAD serves as a second

reader, supplying an opinion to the physician. Now, the

CAD acts as a zero-reject system, providing also a reli-

ability measure of its decision.

In case (3), referred to as c, the recognition system aids

the physician during the diagnosis, performing as a zero-

reject system.

Finally in case (4), referred to as d, the CAD acts dif-

ferently on the basis of both training purpose and people

skills.

It is worth noting that between these two extreme per-

formances (i.e., the zero-error and the zero-reject) several

intermediate operating points can be set on the basis of the

error–reject curve.

3.2 Related work

IIF is the recommended method for ANA determination,

but up to now, the physicians rarely made use of quanti-

tative information. The development of a CAD in this field

would improve medical practice, achieving the advantages

mentioned above.

Since IIF diagnosis requires the classification of both

fluorescent intensity and staining pattern, some previous

works on these topics are reported in [9–13]. In [9] and

[10], the authors present some results on mining staining

pattern of fluorescent cells. The used image data set con-

sists of 321 fluorescent samples with clear patterns, diluted

at 1:160. Hence, the samples can be ascribed either to the

4+ class (see CDC criteria, in Sect. 3) or to the negative

case. Each image is segmented to locate the cells, and then

132 texture-based features are computed. These features

are given to a decision tree induction program to find out

the most relevant subset and to construct the classification

knowledge. These systems exhibit an error rate of 25.6%

[9] and 16.9% [10], acting only as a zero-reject system

without providing a reliability measure of final classifica-

tion. With reference to the previous observations on

working scenarios, it is therefore evident that such systems

can operate only in case a1, b, c and d, respectively.

With regard to fluorescent intensity classification, a

system based on a multi-layer perceptrons (MLP) and a

radial basis network has been proposed in [12, 13]. That

system, which makes use of features inspired by medical

practice shows low error rates (false positive plus false

negative) up to 1%, but it uses a reject option and it does

not produce a result in about 50% of cases. It uses two

features related to the mean of the fluorescent intensity

among the cells of the image. The small set of features is

chosen with reference to the number of samples in the data

set in order to avoid the course of dimensionality. The

critical point of this approach is the cell segmentation

algorithm, since it does not get to deal effectively with the
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great difference in appearance between the fluorescent

images and the very low contrast of the negative samples

(Fig. 1). Moreover, the adopted classification rule does not

allow a flexible management of samples that are intrinsi-

cally hard to classify. This justifies the high reject rate

required to obtain low error rates, making the CAD suited

for application in case a2.

All previous observations show that a CAD should be

able to work in different situations to be effectively used by

the medical community. The analysis of the literature in the

field of ANA detection reveals that a CAD with this feature

has not been developed yet. Therefore, we present an

innovative recognition system devoted to classify the

fluorescent intensity, which can work in several situations

and that improves the present performance.

4 Domain application

IIF diagnosis consists of fluorescent intensity and staining

pattern classification. With regard to the classification of

fluorescent intensity, the guidelines suggest scoring it semi-

quantitatively and independently by two physician experts

of IIF. The scoring ranges from 0 up to 4+ relative to the

intensity of a negative and a positive (4+) control, fol-

lowing the guidelines established by the Centers for

Disease Control and Prevention, Atlanta, Georgia (CDC)

[19]:

– 4+ brilliant green (maximal fluorescence);

– 3+ less brilliant green fluorescence;

– 2+ defined pattern, but diminished fluorescence;

– 1+ very subdued fluorescence;

– 0 negative.

Since technical problems can affect test sensitivity and

specificity, the same guidelines suggest using both positive

and negative controls. The former allows the physician to

check the correctness of the preparation process; the latter

represents the auto-fluorescence level of the slide under

examination. Therefore, the physician has to compare the

sample with the corresponding positive and negative con-

trol. This comparison is a very problematic task, and it

affects the reliability of sample diagnosis. For instance,

Fig. 1 shows a sample and two different negative controls,

referred to as a, b and c, respectively. Note that the same

sample, whose fluorescent intensity is given by the fluo-

rescent dots inside the cells, can be labeled as 2+ with

respect to the more fluorescent negative control (b),

whereas it is labeled as 4+ with respect to the less fluo-

rescent negative control (c).

Since IIF is a subjective, semi-quantitative method, in

[10] an objective independent criteria (e.g., ELISA, which

permits verification of autoantibodies entities) is used to

assess the human expert diagnosis on staining patterns.

However, a correlation upon positivity and negativity

cannot be established between IIF and ELISA tests (e.g., a

sample that is negative at IIF should be positive at ELISA,

and vice versa). Furthermore, even if a correlation between

IIF patterns and autoantibodies entities has been estab-

lished [2], the same autoantibodies may be found in

different patterns making the correspondence not univocal.

Hence, in the general case, ELISA cannot be taken as a

golden standard for IIF classification.

For all these reasons, we made use of the physician’s

classification, although image annotation by human experts

suffers from variability; indeed, physicians report trouble

in interpreting the images, since they are relative in nature.

Another significant motivation is that both borderline and

Fig. 1 Examples of IIF images

and diagnosis complexity. On

the left is reported a sample (a),

whose fluorescent intensity is

given by dots inside the cells,

whereas on the right, two

different negative controls are

shown (b, c). The same sample

is labeled as 2+ with respect to

(b), whereas it is labeled as 4+

with respect to (c)
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negative samples exhibit low contrast. Furthermore, phy-

sicians act differently when the same sample is presented to

them: some are more conservative and others more liberal,

depending mostly on their skills and background. Hence,

we deem that an image annotation procedure performed

only by one physician is useless. In this respect, two dif-

ferent physicians independently and blindly diagnose each

sample to improve the reliability of the data set.

The variability between physician’s classifications has

been statistically evaluated, pointing out that it is quite

difficult to get substantial or perfect agreement, when each

sample can be labeled into one of the previous five sub-

groups. Data analysis suggests the following class revision:

the samples are classified into three classes, named nega-

tive, intermediate and positive (for detailed description and

motivation see Sect. 7.1). Briefly, a sample is assigned to

the negative class if both physicians classify it as negative,

whereas it is labeled positive if both physicians mark it

with two pluses or more. Finally, a sample is assigned to

the intermediate class when some disagreement happens or

when both physicians mark it as 1+. In the medical prac-

tice, this case usually corresponds to weak positive

patients, who should re-execute the tests within 6 months

to check disease development.

It is worth noting that, on the one hand, in the physi-

cians’ opinion these three classes maintain the clinical

significance of the IIF test and, on the other hand, this class

revision gets a more robust ground truth. Therefore, such a

revised classification protocol has been adopted by our

hospital and by the proposed CAD system. As a conse-

quence, it is used in the following to manage the data given

as input to the classifiers.

5 Feature extraction and selection

The choice of a suitable set of features is crucial for the

performance of the classification system. Initially, we

compute a set of statistical features, based on first and

second-order gray-level histograms. The rationale lies in

the meaning of these histograms: the former describes

gray-level distributions, whereas the latter generally pro-

vides a good representation of the overall nature of the

texture. For the definition of these features see [20]. Pre-

liminary tests were performed on this set. Specifically, such

a feature set was extracted from both the segmented ima-

ges, that is, the features were computed on the cells’ area

only, and the whole image. In this initial phase, the results

of the discriminant analysis suggest that features computed

on the whole image have better separation capability than

features extracted from the segmented cells. In our opinion,

the whole image contains as much information as the

segmented cells since:

– the background may be considered uniformly dark and

its contribution to the statistical features is negligible;

– the cells of the same image have similar texture; hence

all of them contribute the same to the extracted

features;

– artifacts possibly due to the limitations of the segmen-

tation algorithm (see Sect. 2) are avoided.

For all these motivations, the system described in the

following is based on features extracted from the whole

image.

To further increase the separation capability of these

features, we combine the features computed on each

sample with the same features extracted from the corre-

sponding positive and negative controls. Indeed, the

classification guidelines require comparing each sample

with the corresponding positive and negative controls, as

explained in Sect. 3. The combinations use both linear and

non-linear strategies. Specifically, in Table 1, the first row

corresponds to the value of ith feature of sample x (denoted

by Fx
i and referred to as absolute feature), whereas the

other entries correspond to four different combinations

with the positive and negative control. Applying this

strategy, we compute 95 features, 19 for each mode

reported in Table 1.

Discriminant analysis shows that all the above features

have limited discriminant strength over three classes (i.e.,

positive, intermediate and negative), but different feature

subsets discriminate very well each class from the other

two. For the sake of completeness, notice that the search of

the best discriminant subsets has been carried out, first by a

sequential forward selection and then it has been refined by

an exhaustive search, taking into account the dimension-

ality of the data set and of the feature space.

These observations suggest adopting a multi-expert

approach [21–24] based on three classifiers, each one

specialized in recognizing one of the three input classes.

Specifically, the three experts are:

– Positive Expert (PE): classifier specialized on the

classification of positive sample;

Table 1 Combination mode of the feature selection procedure

Description Formula Mode #

Absolute feature Fx
i 1

Combination with the positive control Fx
i -Fi

pos ctrl of x 2
Fi

x

Fi
pos ctrl of x

3

Combination with the negative control Fx
i -Fi

neg ctrl of x 4
Fi

x

Fi
neg ctrl of x

5

Fx
i represents the value of ith feature of sample x, Fi

pos ctrl of x and

Fi
neg ctrl of x represents the value of ith feature of positive and negative

control of x, respectively
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– Negative Expert (NE): classifier specialized on the

classification of negative sample;

– Intermediate Expert (IE): classifier specialized on the

classification of sample belonging to the intermediate

class.

Each classifier uses its own representation of the input

pattern integrating physically different types of measure-

ments. The different representations used, corresponding to

different feature sets, are reported in Table 2.

6 System architecture

In the literature, it has been observed that different features

and pattern recognition systems complement one other in

classification performance [21–24]. The idea is that the

recognition performance attainable combining set of

experts should be improved by taking advantage of the

strengths of the single experts, without being affected by

their weakness.

Based on these considerations and motivated by the

previous reasons (see Sect. 4), we adopt the system

architecture shown in Fig. 2. The resulting MES aggregates

three different experts, each one specialized in recognizing

one of three input classes (i.e., positive, negative, inter-

mediate). Each expert is a nearest neighbor (NN) classifier.

To further validate such a design choice, we also explore

some other solutions. First, we test a single classifier

architecture and, second, we try out an MLP with a hidden

layer of ten neurons as classifier of each specialized expert,

that is, PE, NE and IE. The corresponding results, reported

in Sect. 7.2, confirm that the MES constituted by NN

classifiers outperforms the other solutions. Moreover, it is

worth observing that the classification system has to be

integrated with a reject option to operate in the different

working scenarios presented in Sect. 2.1. In this respect,

the NN classifiers can be effectively employed since the

paradigm used for the reject option has been presently

validated on them [25].

In the general case, the rule adopted in the selection

module depends on the assumptions about classifier

dependencies, the type of classifier outputs, the aggregation

strategy (global or local) and the aggregation procedure (a

function, a neural network, an algorithm), etc. [23]. In the

literature, there are two types of combinations: classifier

fusion and classifier selection. In the classifier fusion

algorithms, individual classifiers are applied in parallel

over the whole feature space. In the classifier selection

scheme, each classifier is an expert in some local area of

the feature space. In the latter case, the classifiers should be

considered complementary rather than competitive [22,

23], and the algorithm attempts to predict which expert is

most likely to be correct for a given sample. One classifier

as in [26], or more than one as in [24, 27], can be nomi-

nated to make the decision.

Since classifiers of the proposed MES are specialized,

we decide to adopt a classifier selection approach in the

selection module. Moreover, since in the literature it has

been observed that the evaluation of the classification

reliability should be useful for solving complex pattern

recognition tasks [21, 22, 28, 29], we decide to use this

parameter from individual classifier to select the final

output (dotted arrows in Fig. 2).

Table 2 Selected features for each expert

Positive expert (PE) Intermediate expert (IE) Negative expert (NE)

Kurtosis of H1 using mode # 2 Skewness of H1 using mode # 1 Kurtosis of H1 using mode # 3

Autocorrelation of H2 using mode # 2 Kurtosis of H1 using mode # 1 Energy of H1 using mode # 3

Entropy of H1 using mode # 3

Covariance of H2 using mode # 2 Inverse of H2 using mode # 1 Covariance of H2 using mode # 3

Energy of H1 using mode # 5

H1 and H2 represent the first and second-order gray-level histogram, respectively. Skewness and kurtosis are the third and fourth moment of the

histogram, respectively. Inverse stands for the inverse difference moment, that is, a measure of local homogeneity. For the description of features

mode combination (#) see Table 1

Positive Expert (PE)

Negative Expert (NE)

Intermediate Expert (IE) Selection
Module

Feature
set1

Feature
set2

Feature
set3

PE

NE

IE

YPE

YIE

YNE

O

Fig. 2 The architecture of the proposed system. To obtain the

decision O of the MES, the decisions YPE, YIE, YNE of the component

experts are selected according to a rule, which can take or not take

into account the reliability parameters wPE, wIE, wNE, evaluated on the

basis of the expert output vectors. In such a way, different reliability

values can be associated with each classification act of an expert
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In the next two sections we propose two selection rules

and present their results.

7 The classifier selection scheme

As pointed out previously, to combine the outputs of the

classifiers we adopt a selection approach among comple-

mentary experts. The issue requires evaluating which

single classifier is most likely to be correct for any given

sample. In our case we have three specialized classifiers,

each one with a binary output, and three desired output

classes: in Table 3 all possible combinations of the clas-

sifiers’ outputs are reported. In the following subsections,

two classifier selection rules are proposed.

7.1 Binary combination

A first selection scheme for our MES architecture is a

binary combination of the experts’ outputs. Let us denote

O(x) for the MES output and Yk (x) for the output of the kth

classifier on sample x. Furthermore, let Ck be the class on

which the kth classifier is specialized. Note that in our

system, k should be PE, NE or IE. According to Table 3,

the possible combinations can be grouped into three cate-

gories: (1) those for which only one expert k classifies the

sample in its class Ck (labeled as a), (2) those for which

more experts classify the sample in its own class (labeled

as b or c), (3) those for which none expert classifies the

sample in its class (labeled as d).

According to these considerations, the following selection

rule is adopted. In case (1) as a final output is chosen the class

of the expert whose output is 1, since all the classifiers agree

in their decision. In case (2) the sample is rejected since two

or more experts indicate that the sample belongs to their own

class. In case (3) the sample is rejected since none of the

experts indicate that the sample belongs to its class. Note that

this choice is conservative since no decision is taken in cases

(2) and (3), when there is ambiguity in the outputs of the three

experts. It is worth noting also that this approach does not

require any reliability estimation.

7.2 Zero-reject selection rule

Alternatively, a zero-reject strategy that chooses an output

in any of the eight cases reported in Table 3 may be

introduced. Once more, the eight cases can be reduced to

four main alternatives, referred to in the following as a, b, c

and d, respectively. In cases labeled as a, only one expert

votes 1, in cases labeled as b, two experts vote 1 and in

cases labeled as c or d, all the classifiers vote the same.

Let us then denote wk (x) for the reliability parameter of

the kth classifier when it classifies the sample x. Since all

the classifiers agree in their decision in case a, we choose

as before the class of the classifier whose output is 1 as a

final output. Conversely, in cases b, c and d, the final

decision is performed looking at the accuracy of single

expert’s classifications.

More specifically, in case b, two experts vote for their

own class, whereas the third one indicates that x does not

belong to its own class. To solve the dichotomy between

the two conflicting experts we look at the reliability of their

classification and choose the more reliable one. Formally:

OðxÞ ¼ Ck; where k ¼ arg max
i:YiðxÞ¼1

ðwiðxÞÞ ð1Þ

In case c, all experts classify x as belonging to the class

they specialize in. Since the three classifications are now in

competition, the bigger the wk(x), the less is the

misclassification risk by the kth expert. This evidence

suggests using again the selection rule (1).

In the case d, all experts classify x as belonging to

another class than the one they specialize in. In this case,

the bigger the reliability parameter wk(x), the less is the

probability that x belongs to Ck, and the bigger the prob-

ability that it belongs to the other classes. These

observations suggest selecting the following selection rule:

OðxÞ ¼ Ck; where k ¼ arg min
i:YiðxÞ¼0

ðwiðxÞÞ ð2Þ

In other words, we first find out which classifier has the

minimum reliability and then we choose the class associ-

ated with this classifier as a final output.

7.3 Reliability parameter

The approach described above for deriving a zero-reject

classifier from our MES requires the introduction of a

reliability parameter that evaluates the accuracy of the

classification performed by each expert.

Table 3 Combination of experts output

Expert output Case label

Positive expert Negative expert Intermediate expert

0 0 0 d

0 0 1 a

0 1 0 a

0 1 1 b

1 0 0 a

1 0 1 b

1 1 0 b

1 1 1 c

Meaning of symbols: 1(0) the sample is assigned (is not classified) to

the class; a the sample is assigned to just one class; b the sample is

assigned to two classes; c the sample is assigned to three classes; d the

sample is assigned to none class
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A reliability parameter should permit distinguishing

between the two reasons causing unreliable classifications

[28]: (a) either the sample is significantly different from

those presented in the training set, that is, in the feature

space the sample point is far from those associated with

any class, (b) the sample point lies in the region where two

or more classes overlap. To distinguish between these sit-

uations we introduce two reliability parameters, named wa

and wb, which correspond to the two previous cases,

respectively. Note that these values vary in the interval

[0,1], where the more the parameter approaches one, the

more reliable is the classification. Based on these defini-

tions, the parameter providing an inclusive measure of the

classification reliability can be defined as follows:

w ¼ min ðwa;wbÞ ð3Þ

This form is conservative since it considers a classification

unreliable as soon as one of the two alternatives causing

unreliable classifications happens.

The definition of both the parameters wa and wb relies on

the particular classifier architecture adopted. Following

[28], the samples belonging to the training set are divided

into two sets: the reference set and the test set. The former

is used to perform the classification of the unknown pattern

x, that is, it plays the role of training set for the NN clas-

sifier, whereas the latter provides further information

needed to evaluate the wa parameter. More specifically, the

two reliability estimators are defined as:

wa ¼ max 1� Omin

Omax

; 0

� �

wb ¼ 1� Omin

Omin 2

ð4Þ

where: Omin is the distance between x and the nearest

sample of the reference set, that is, the sample determining

the class Y(x), Omax is the highest among the values of Omin

obtained from all samples of class Y(x) belonging to the test

set, and Omin2 is the distance between x and the nearest

sample in the reference set belonging to a class other than

Y(x). For further information, see [28].

8 Experimental results

Since, to our knowledge, there are not reference databases

of IIF images publicly available, several slides of HEp-2

cells were read with a fluorescence microscope in order to

populate an image database.

The slides we use are diluted at 1:80. One of the two

physicians, randomly chosen, takes digital images of slides

with an acquisition unit consisting of a fluorescence

microscope, coupled with a 50 W mercury vapor lamp and

with a digital camera. The last one has a monochrome CCD,

with squared pixels of equal side to 6.45 lm. The micro-

scope objective has a 40-fold magnification and the medium

is air. The exposure time of slides to incident light is 0.4 s.

The images have a resolution of 1,024 9 1,344 pixels, a

color-depth of 8 bits and they are stored in TIFF format.

Up to now, the image data set consists of 600 images,

stored in the database together with the ground truth.

8.1 Ground truth

In IIF, the ground truth is made by labeled images both

with fluorescent intensity and staining pattern classifica-

tion. As motivated in Sect. 3, we made use of two

physician’s classifications to get it.

Clearly, such an approach relies upon the agreement

between multiple readers. In other words, its reliability

depends on the degree of agreement between physicians. In

the literature, many non-equivalent measures of agreement

have been proposed. We choose the most widely used one:

the Cohen’s kappa [30]. Its estimate, kappa (k), can be

expressed as a function of observed frequencies. Although

the true parameter value may vary from -1 to 1, the usual

region of interest is k [ 0. In the literature, the following

guidelines for interpreting kappa values are used [31]:

– 0 \ k \ 0.2 implies slight agreement;

– 0.2 \ k \ 0.4 implies fair agreement;

– 0.4 \ k \ 0.6 implies moderate agreement;

– 0.6 \ k \ 0.8 implies substantial agreement;

– 0.8 \ k \ 1 implies almost perfect agreement.

When the physicians diagnose the samples following the

CDC guidelines, the measured kappa is 0.46 ± 0.13

(p \ 0.05), corresponding to a moderate agreement. With

reference to the kappa values, we believe that k [ 0.6

corresponds to a reasonable agreement degree, and it

should be considered satisfactory to get a reliable ground

truth. Therefore, we deem that labeling the samples in five

subgroups (i.e., four positive and one negative subgroups)

is not completely reliable. Indeed, the disagreement

between physicians is twofold motivated. In one case,

physicians assign the sample to different classes (i.e., one

to positive and the other to negative). In the other case,

physicians disagree about the subgroups to which a positive

sample has to be assigned, that is, physicians label it with a

different number of plus. At a deeper examination, it

appears that physicians always agree with each other when

the sample is marked either with 2+ or more, or when it is

definitely negative. These observations can be better

understood by looking at Fig. 3. It reports the percentage of

agreement between the two physicians when they classify

the samples into five subgroups. The bigger the agreement

between physicians’ classification for each class, the

brighter is the gray level of the corresponding box in the
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figure. To better comprehend this symbolic representation,

the gray levels are computed mapping the biggest agree-

ment percentage to the biggest gray level of the image, that

is, the white. The other agreement percentages are mapped

to a gray value proportional to their value. For the sake of

comprehension, such percentages are reported on the cor-

responding box. Note that both physicians agree with each

other only in 58% of cases, that is, the sum of the main

diagonal in the figure. Such a low agreement is obviously

related to the low kappa value obtained by labeling the

sample into five subgroups.

These observations suggest choosing a classification of

data samples into three classes (i.e., negative, intermediate

and positive). A sample is assigned to the negative class if

both physicians classify it as negative, whereas it is labeled

positive if both physicians mark it with two pluses or more.

Finally, a sample is assigned to the intermediate class when

either of the two types of disagreement described above

happens or when both physicians mark it as 1+. Figure 4

represents the agreement between physicians’ classification

when they label the samples into these three classes. Now,

the agreement percentage between the two physicians

increases from 58 up to 76%. Consequently, adopting this

classification rule, the measured Cohen’s kappa is 0.62

± 0.13, implying substantial agreement, which is consid-

ered satisfactory to get a reliable ground truth.

8.2 Recognition results

For testing the two introduced selection rules, that is, the

binary combination and the zero-reject one, we have used

the 600 images of the database. The a priori probability of

positive, negative and intermediate class is 36.0, 32.5 and

31.5%, respectively.

The error rate has been evaluated according to a p-fold

cross validation approach, dividing the sample set in eight-

folds. The rates reported in the following are the mean of p

tests. For each test, 1/p part of the data set has been used as

the validation set, another 1/p as the test set, and the other

parts as the reference set. Using classes reported in

Table 4, the recognition rate is depicted in Tables 5 and 6,

as relative and absolute values, respectively. Note that in

the case of the zero-reject selection rule, the fourth row of

Table 4 does not apply.

With respect to the binary selection rule, the overall

miss rate is quite low. At a deeper analysis, the selection

scheme does not exhibit false negative rate. Hence, the

positive samples erroneously classified are assigned to the

intermediate class, whereas intermediate samples wrongly

recognized are assigned to the positive class. Furthermore,

no negative samples are misclassified and occasionally

they are rejected. The selection module rejects approxi-

mately 11% of samples, which is the counterpart we have

to pay for such low error rates. Therefore, with reference to

samples not rejected, the hit rate is 98.50%.

It is worth noting that in medical application, the two

kinds of errors, that is, false positive and false negative,

have very different relevance. Typically, the former kind of

error can be tolerated to a larger extent since false positive

leads to non-necessary analysis, whereas the false negative

leads to a worse scenario, where there is a possible disease

but the test indicates that the patient is healthy.

Turning attention to the zero-reject strategy based on

reliability estimation of classification acts, we point out

that the hit rate increases up from 87% to more than 94%.

Fig. 3 Gray level map of the agreement between physicians when

they classify the samples into five subgroups

Fig. 4 Gray level map of the agreement between physicians when

they classify the samples into three classes
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Hence, some of the samples that are rejected by the pre-

vious approach are now correctly classified. Nevertheless,

there are also samples previously rejected that are now

misclassified, increasing the overall miss rate of the rec-

ognition system up to 5.67%. Note that, in this case, the

performance on negative samples is still fine, since 99% of

them are correctly recognized.

These results show that an approach based on the reli-

ability evaluation is well founded. In particular, the

adopted reliability estimation integrates several pieces of

information, considering not only the sample of the refer-

ence set that is nearest to the unknown sample, but also the

nearest sample of a class different from the chosen one.

In order to validate the MES approach, such perfor-

mance figures are compared with those achieved by the

other explored solutions, that is, a single classifier archi-

tecture and an MES where each specialized expert is an

MLP classifier (see Sect. 5). In the first case, we train a

single NN using the features reported in Table 2. The

single classifier achieves a hit rate of 91.05%, which is less

than the one attained by the MES (94.33%). Furthermore,

looking at the relative performance we note that the mis-

classification rates on positive, negative and intermediate

samples are 9.29% (FIp: 6.16%, FNp: 3.13%), 8.78% (FPn:

3.14%, FIn: 5.64%) and 8.76% (FPi: 3.31%, FNi: 5.45%),

respectively. It is worth observing that these rates are

higher than those reported in Table 5, showing that the

proposed MES improves the recognition performance

attainable for all the three classes. In the second case, MLP

classifiers replace the NN ones in each specialized experts,

that is, PE, NE and IE. Such an architecture has been tested

applying the two rules presented above: the achieved rec-

ognition performance is always worse than the one attained

by the MES composed of NN classifiers (Table 6). Indeed,

on the one hand, using the binary selection rule, the hit,

miss and reject rates are 82.66, 3.34 and 14.00%, respec-

tively. On the other hand, employing the reliability-based

selection the hit rate is 89.46%. These results show that NN

classifiers outperform MLP ones in the proposed MES.

Now, given the two introduced selection rules, we are

interested in understanding when it is preferable to use one

strategy with respect to the other. To this aim, let us

introduce the cost of a misclassification (Cm), a rejection

(Cr) and the gain of a right classification (Ch). Furthermore,

Table 4 Output categories of the three inputs–three outputs classifier

Input class

p n i

Output class P True positive (TP) False positive (FPn) False positive (FPi)

N False negative (FNp) True negative (TN) False negative (FNi)

I False intermediate (FIp) False intermediate (FIn) True intermediate (TI)

R Rejected (Rp) Rejected (Rn) Rejected (Ri)

Letters p, n, i and r stands for positive, negative, intermediate and rejected samples, respectively. Lower and upper case letters refers to input and

output classes, respectively

Table 5 Relative performance of the recognition system, using the two selection rules

Class Hit rate (recognition rate) Reject rate Miss rate

Binary

selection (%)

Reliability-based

selection (0-reject) (%)

Binary

selection (%)

Reliability-based

selection (0-reject)

Binary

selection (%)

Reliability-based

selection (0-reject) (%)

Positive samples 87.67 92.12 11.88 – FIp 0.45 5.15

FNp 0.00 2.73

Intermediate samples 85.03 92.24 11.53 – FPi 3.43 6.61

FNi 0.00 1.16

Negative samples 89.43 98.90 10.57 – FPn 0.00 0.50

FIn 0.00 0.60

Table 6 Absolute performance of the recognition system using the

two selection rules

Binary

selection (%)

Reliability-based

selection (0-reject) (%)

Hit rate (TP + TI + TN) 87.34 94.33

Miss rate (FP + FI + FN) 1.33 5.67

Reject rate (Rp + Rn + Ri) 11.33 –
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let us denote with m, r and h the miss rate, the reject rate

and the hit rate, respectively.

The convenience of using one of the two selection rules

can be evaluated by introducing a global cost function

(Ctot) defined by the linear combination of the costs with

the corresponding rate. However, since h is the 100’s

complement of both m and r, Ctot depends only on Cm, m,

Cr and r, the overall cost is defined by:

Ctot ¼ mCm þ rCr ð5Þ

To further simplify the formula, we can normalize it with

respect to Cm, obtaining:

Ctot ¼ mþ rCr ð6Þ

where the normalized global cost Ctot is given by Ctot/Cm,

whereas the normalized rejection cost Cr is given by Cr/

Cm. To find out for which combination of cost coefficients

one selection rule performs better than the other, this last

equation can be plotted in the ðCr;CtotÞ plane (Fig. 5).

With reference to this figure, each line represents the

normalized global cost of the selection rules, and the trade-

off point A is given by their intersection. The data show

that when the ratio between Cr and Cm is more than 0.38, it

is more convenient to adopt the zero-reject strategy,

whereas when this ratio decreases it is better to use the

binary selection. In practice, the binary selection rule is

preferable when the cost of a misclassification is less than

2.63 times the cost of a rejection.

In Sect. 2, we have discussed four different working

scenarios of a CAD, which is therefore expected to apply to

them. We note that different areas in the plot correspond to

different operating points, making the proposed recognition

system flexible enough to pursue the CAD major objec-

tives. Indeed, in the shaded region, X the classifier keeps

the error rate as low as possible, approaching a zero-error

system (remind that the binary selection rule does not

exhibit a false negative rate), although it shows a fixed

reject rate. Therefore, for operating points located in such

regions, the CAD is suited for application in case a2.

For operating points in the shaded zone W, the recog-

nition system may adopt the selection rule based on

reliability estimation, performing as a zero-reject system.

Hence the CAD can carry out mass screening campaigns

(case a1), can serve as a second reader (case b) or can aid

the physician (case c).

For operating points in the dotted region H, the recog-

nition system could perform intermediately between the

two previous zones, depending on the objective.

9 Conclusions

In this paper we have proposed a system for the automatic

classification of fluorescent intensity of IIF samples. The

first issue we have dealt with concerns the procedure to

reliably label the data set. Then, we addressed the key point

of the feature extraction and selection, presenting three

subsets of features that discriminate very well each class

from the others. Therefore, we have presented a recogni-

tion system that aggregates three experts in an MES

paradigm, using a classifier selection approach. In this

framework, we have proposed two different selection rules,

providing both a fixed-reject and a zero-reject system,

respectively. The former one is based on the binary com-

bination of the output of single classifiers, whereas the

latter rule is based on the evaluation of the reliability of

each recognition act of the classifiers. These rules have

been experimentally evaluated, exhibiting very good per-

formance, since the false positive and false negative rates

approach zero in several cases.

Finally, we have performed a convenience analysis of

using one of the two selection rules in a given application

domain, which can be specified by the costs of a mis-

classification, a rejection and a right classification. Such an

analysis allows finding out for what values of the cost

coefficients one of the two rules performs better than the

other. In particular, the data show that, if the cost of a

misclassification is nearly three times the cost of a rejec-

tion, the zero-reject selection rule should be used.

Furthermore, the two selection rules determine different

regions in the convenience analysis plane, which can be

complied with the different and peculiar objectives of a

CAD system.

Fig. 5 Convenience analysis of using one of the two selection rule

(the binary or the zero-reject one) in a given application domain. The

application domain is specified by the values of cost coefficients. A is

the trade-off point between the two rules. Line r, s determine three

different operating regions X, W and H. In the plot, we make an

instance of possible values for these line equations. Note that line r
and s has to be on the left and on the right side of A, respectively
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We deem that such reasons make the proposed system

suited for application in daily practice.

In the end, note that the HEp-2 substrate shows different

patterns of fluorescent staining that are relevant to diag-

nostic purposes. Hence, we are already working on a CAD

system that is also capable of supporting the physician in

the classification of staining pattern. This work includes the

generation of a labeled data set in order to attain the ground

truth for training and testing purposes.
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