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Abstract This paper proposes an efficient solution to the

problem of per-pixel classification of textured images with

multichannel Gabor wavelet filters based on a selection

scheme that automatically determines a subset of prototypes

that characterize each texture class. Results with Brodatz

compositions and outdoor images, and comparisons with

alternative classification techniques are presented.
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1 Introduction

Texture is a major visual cue utilized in a wide variety of

computer vision tasks as it allows distinguishing among

different objects or surfaces that have similar shape or

color. Unfortunately, it is the visual cue that is most dif-

ficult to model, as it is intrinsically noisy by nature and

affected by various external factors, such as illumination,

rotation, and scale, which alter its perception. This com-

plexity has fostered a large amount of research during the

last decades.

Two of the main approaches to texture-based image

analysis are: unsupervised texture segmentation, which

consists of partitioning a given image into regions of uni-

form texture, although without recognizing the texture

class associated with every region, and supervised texture

classification, whose goal is to identify all or some of the

texture patterns present in the input image given a set of

known classes of interest. In particular, supervised per-

pixel (also known as pixel-based) texture classification

aims at recognizing the texture patterns to which the pixels

of a given image belong. In order to accomplish this task, it

is necessary to compute a set of texture features by eval-

uating one or more texture feature extraction methods in a

neighborhood of every pixel. This neighborhood is usually

defined as a square window centered at that pixel.

Regarding texture classification, considerable effort has

been devoted to the classification of single-textured images

(e.g., [1–4]). In this problem, known as whole-image (or full-

image) classification, every texture pattern of interest is

usually characterized by computing a single feature vector

(prototype). Another feature vector is then obtained in a

similar way from the given input image to be recognized.

Finally, this image is classified into the texture pattern whose

prototype is closest to the image’s feature vector.

However, single-textured image classifiers cannot be

directly applicable to the problem of per-pixel classifica-

tion. To start with, in this problem it is necessary to

compute a single feature vector per pixel, not per image.

This implies that those vectors must be determined based
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on the information contained in the neighborhood of every

pixel. This process must be carried out over both the input

image to be classified and the training images corre-

sponding to the different texture patterns. Regarding the

latter, this poses the problem of deciding how many pro-

totypes are utilized to characterize each texture pattern, as

every training image potentially generates as many proto-

types as pixels. The use of so many prototypes can be

prohibitive in real applications in terms of both computa-

tional time and memory usage.

The present paper provides a solution to the aforemen-

tioned problem by automatically selecting a subset of

prototypes per texture pattern. Those prototypes are

obtained after applying a modified k-means clustering

algorithm to the feature vectors extracted from the avail-

able training images. Afterwards, a K-nearest neighbors

classifier (K-NN) is used to finally assign a label to every

pixel of the classified image. The parameters of both the

proposed variation of k-means and K-NN are automatically

selected for every texture pattern. Feature vectors are

obtained by processing the images with a multichannel

Gabor wavelet filter bank by following the per-pixel

methodology described above. Multisized windows are

also utilized in order to improve the accuracy of the clas-

sifier near boundaries between regions of different texture.

The use of multiple window sizes has already proven to be

advantageous for per-pixel texture classification [5, 6]. The

proposed technique is effective in terms of classification

rates, memory consumption, and computation time.

This paper is organized as follows. Section 2 gives a

detailed explanation of the stages of the proposed per-pixel

texture classifier. Section 3 describes the technique for

automatic parameter selection. Section 4 shows experi-

mental results. Finally, conclusions and future work are

given in Sect. 5.

2 Proposed Gabor-based, per-pixel classifier

The texture classification methodology proposed in this

work is as follows. During an initial training stage, a set of

prototypes is extracted from every texture pattern. The

training image/s associated with each pattern are first fil-

tered by applying a multichannel Gabor filter bank,

obtaining a cloud of texture feature vectors for every pat-

tern. A set of prototypes is then extracted in order to

represent that cloud.

During the evaluation stage of the classifier, a given test

image is processed in order to identify the texture pattern

corresponding to each of its pixels. This is done by first

applying the multichannel Gabor filter bank to the test

image. A feature vector is thus obtained for every pixel.

Each vector is classified into one of the given texture

patterns by a K-NN classifier fed with the prototypes

extracted during the training stage. The final classified

image is obtained after post-processing that result. The

stages involved in this scheme are detailed below.

2.1 Extraction of texture feature vectors

A wide variety of texture feature extraction methods have

been proposed in the literature. Among them, multichannel

filtering techniques based on Gabor filters have received

considerable attention [7]. A multichannel Gabor wavelet

filtering approach has been used for the texture feature

extraction stage of this work. In particular, the design

originally proposed in [1] is followed.

The texture features that characterize every pixel and its

surrounding neighborhood (window) are both the mean and

standard deviation of the module of the Gabor wavelet

coefficients. The Gabor filter bank has been configured with

six scales and four orientations according to [8], and a range

of frequencies between 0.05 and 0.4 according to [1].

Therefore, every feature vector has a total of 6 (no. of

scales) 9 4 (no. of orientations) 9 2 (mean and SD) = 48

dimensions. All dimensions are normalized between 0 and 1.

The means and deviations mentioned above are com-

puted for W different window sizes (W is set to 6 in this

case): 3 9 3, 5 9 5, 9 9 9, 17 9 17, 33 9 33 and

65 9 65, according to [5]. Thus, W sets of feature vectors

are generated for each of the given texture patterns during

the training stage, as well as for the test image during the

evaluation stage. The Gabor filter’s kernel size has been set

to coincide with the window size.

2.2 Extraction of prototypes from feature vectors

The goal of this stage is to obtain a reduced set of proto-

types that represent a given set of 48-dimensional feature

vectors. A variation of the k-means clustering algorithm is

applied, in such a way that the number k of clusters is not

predefined, but derived from a resolution parameter R that

determines the size of those clusters. R is defined as a

fraction of the longest diagonal L of the bounding box that

delimits the whole feature space.

The proposed clustering algorithm has two main stages:

splitting and refinement. Regarding the splitting stage, let

us suppose that the available feature vectors have been split

into C disjoint clusters (initially C = 1). The bounding box

that delimits the volume of each cluster is found. If

the length of its longest diagonal is greater than R 9 L, the

cluster is split into two. Hence, the lower the value of R, the

larger the number of clusters. R is selected as described in

Sect. 3. Therefore, after a single pass of the algorithm,
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there will be between C (if no clusters are split) and 2C (in

case all previous clusters are split) clusters.

The splitting of a cluster is done by dividing the

bounding box of the original cluster across its longest

dimension. Every resulting cluster is associated with both a

bounding box and its corresponding centroid. After the

splitting stage, the refinement stage consists of applying the

k-means algorithm, but using all the available centroids as

initial seeds. Both the splitting and refinement stages are

repeated until no new clusters are generated.

2.3 K-NN and post-processing

The K-NN classifier is implemented without variations. It

classifies a given texture feature vector into one of the T

texture patterns of interest. For every pattern, it considers a set

of prototypes computed as described in Sect. 2.2. The value

of parameter K is determined as described in Sect. 3. A final

post-processing stage aims at removing the noisy regions that

usually appear after applying the K-NN classifier.

3 Automatic parameter selection

The classifier described in Sect. 2 depends on two para-

meters: the resolution R that limits the clusters’ size, and the

number of neighbors K of K-NN. The performance of the

classifier greatly depends on the choice of those parameters.

A simple parameter selection algorithm entirely based on the

training set is also applied during the training stage.

The selection algorithm applies the proposed classifier

in order to compute classification rates for the training

images corresponding to the T texture patterns of interest.

The classifier is run with different combinations of

R and K. Since an exhaustive search for R and K is pro-

hibitive, a sampled search is performed with R varying

from 1.0 to 0.3 with decrements of 0.1 (8 different values),

and K being 2n, where n varies from 0 to 8 with increments

of 1 (nine different values). However, some of the 8 9 9

combinations of those parameters are unfeasible, since

some values of K are not valid depending on the value of R

as discussed below.

Given a certain value of R, let p be the number of pro-

totypes of the texture pattern with the minimum number of

clusters according to the prototype extraction algorithm

described in Sect. 2.2. In order to guarantee that all texture

patterns can be identified, K has been forced to be lower than

or equal to p. Without this constraint, some texture patterns

could not be identified, as it is possible to reach a point where

all the p available votes for a texture pattern have been used

(the available votes for a texture pattern coincide with the

number of modeling prototypes considering all window

sizes); but as K is greater than p, the remaining K–p votes

will only consider the textures that can still vote. Thus, in the

experiments conducted in this work, 53 different combina-

tions of R and K have been considered.

Next, the average of all classification rates for each

combination of R and K by considering all the given texture

patterns is computed. For instance, Fig. 1 shows the aver-

age classification rates for the texture patterns belonging to

the first test image in Fig. 2. The best combination of R

and K is marked with a circle. In general, the finer the

resolution R, the larger the number of neighbors K neces-

sary to achieve good classification results.

In the end, the combination of R and K that yields the

maximum classification rate is selected as the configuration

parameters of the classifier described in Sect. 2.

Fig. 1 Average classification

rate curves for the patterns

belonging to the first test image

in Fig. 2 by considering

different combinations of

R and K. The best combination

is marked with a circle
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4 Experimental results

The proposed technique has been evaluated on composite

images based on those presented in [9] and widely used

thereafter, which are made of patches of the well-known

Brodatz textures [10], and on real outdoor images. Figure 2

shows seven of those test images. In both cases, image regions

used for training are different than those used in the test stage.

First, in order to validate the proposed methodology for

automatic parameter selection, the combination of R and K

that yields the best classification results for the given test

images is found. Then, the classification rates produced by

that combination of parameters have been compared with

the rates obtained with the parameters automatically cho-

sen by the selection algorithm described in Sect. 3. All

these classification rates have been obtained without con-

sidering the post-processing stage in Sect. 2.3. Table 1

summarizes the results of this comparison.

These results indicate that the proposed selection algo-

rithm is effective in finding a reasonable pair of parameters

R and K. Actually, if the classification rates corresponding

to the 53 feasible combinations of those parameters are

computed, the combination of R and K that is automatically

chosen by the selection algorithm always scores within the

ten best possible classification rates and it even coincides

with the best configuration in two cases as shown in the last

column of Table 1.

Next, a comparison in terms of classification rates,

memory consumption, and computation time has been

performed, considering the two extreme alternatives that

naturally fit in the approach of the proposed classifier,

namely: the minimum distance classifier, which only uses

both a single prototype per texture pattern and window

size, and one nearest neighbor; and the classifier that stores

all the available feature vectors as prototypes for the given

training texture patterns. In the latter case, the window size

that leads to the best classification rate is chosen in order to

yield a comprehensive computation time.

Results are shown in Table 2. Figure 3 displays two of

the classification maps produced by the three approaches.

The first column shows the ground-truth for each test image.

For the outdoor images (6 and 7), black areas represent

image regions that do not correspond to any of the sought

texture patterns. Pixels that belong to these ‘‘unknown’’

texture patterns have not been taken into account when

computing classification rates. On the other hand, black

borders appearing in the classification maps correspond to

those pixels that could not be classified because of the

minimum window size used. Again, these pixels have been

discarded for the reported classification rates.

Fig. 2 Experimental test

images: Brodatz compositions

based on [9] and outdoor real

images

Table 1 Parameters and

corresponding classification

rates (%) for the classifier

configured with both optimal

parameters and the proposed

parameter selection algorithm,

considering the test images in

Fig. 2

Image Optimal parameters Selected parameters Classification

rate rank

1 R = 0.8 K = 16 91.1 R = 0.6 K = 16 89.5 7/53

2 R = 0.7 K = 32 86.2 R = 0.7 K = 32 86.2 1/53

3 R = 0.5 K = 32 91.6 R = 0.5 K = 16 91.3 5/53

4 R = 0.7 K = 32 78.4 R = 0.6 K = 32 77.4 5/53

5 R = 0.7 K = 16 72.9 R = 0.8 K = 16 71.1 7/53

6 R = 0.3 K = 4 93.1 R = 0.3 K = 4 93.1 1/53

7 R = 0.3 K = 16 81.5 R = 0.3 K = 4 79.9 6/53
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From Table 2, it is clear that the proposed classifier is a

good trade-off between the two extreme approaches as, on

average, the memory usage is around 2209 lower than the

memory used when storing as many prototypes as pixels,

and the computational time to classify an input image is

1509 lower. In turn, the degradation of the proposed

classifier in terms of classification rates is small and below

3 units on average. Notice that, in some cases, the proposed

classifier even yields slightly better results.

On the other hand, the minimum distance classifier is the

fastest among the three compared alternatives as expected.

In turn, the proposed classifier requires significantly more

memory than the minimum distance classifier, although it

can be easily handled by current computers. In terms of

classification rates, however, the difference is notoriously

in favor of the proposed classifier, especially in the fourth

and fifth test images, which are considered among the most

difficult ones as demonstrated by the low achieved scores.

A comparison in terms of classification rates with other

supervised texture classification techniques has also been

performed. These techniques are: the texture classifier

based on integration of multiple methods and windows

described in [5], and both the K-NN (K = 5) and multi-

variate Gaussian (MVG) classifiers provided with the

MeasTex suite [11]. In order to achieve per-pixel classifi-

cation with MeasTex, which is a framework oriented to the

classification of complete images instead of individual

pixels, the classifiers of MeasTex have been utilized to

classify every pixel of the test images given a subimage of

32 9 32 pixels quasi-centered at that pixel (32 9 32 pix-

els is the minimum subimage size accepted by MeasTex).

The texture features and window sizes used by the

integration strategy are the same as the ones discussed in

Sect. 2.1 and will be referred to as optimized Gabor fea-

tures. In turn, the texture features used by the K-NN and

MVG classifiers are energy measures derived from the

coefficients produced by the classical Gabor filter bank

implementation also included in MeasTex. These features

will be referred to as non-optimized Gabor features.

The results of this comparison are summarized in Fig. 4.

Figure 5 shows two of the classification maps produced

after the respective classifications. In all cases, the pro-

posed classifier produced better classification rates than the

other evaluated techniques.

Table 2 Classification rates (%), computation time in seconds (Pentium 4 at 3.0 GHz), and number of selected prototypes for the proposed

classifier and alternative approaches

Images Minimum distance classifier Proposed classifier ‘‘All-prototypes’’ modeling classifier

Classification

rate

CPU

time

Number of

prototypes

Classification

rate

CPU

time

Number of

prototypes

Classification

rate

CPU

time

Number of

prototypes

1 94.9 2 30 95.2 12 763 96.1 2,930 307 9 103

2 90.4 2 30 91.7 7 329 92.9 2,569 288 9 103

3 95.0 2 30 97.0 25 1,633 97.2 2,929 307 9 103

4 79.2 2 30 88.2 15 790 86.9 2,578 288 9 103

5 73.0 2 30 78.6 4 186 80.0 2,936 307 9 103

6 91.0 1.8 24 93.3 19 1,708 92.6 1,266 127 9 103

7 78.1 2 30 84.3 23 1,950 78.6 558 63 9 103

Fig. 3 Classification maps for

images 3 and 6 in Fig. 2

produced by the minimum

distance classifier (second
column), the proposed classifier

(third column) and the classifier

that stores all feature vectors as

texture models (fourth column).

Corresponding ground-truth

(first column)
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Finally, in order to assess the performance of the proposed

classification algorithm applied to optimized Gabor filters,

another comparison with three alternative schemes has been

conducted: (a) a straightforward extension to per-pixel clas-

sification of the LBP-based classifier proposed in [2], with its

same local binary pattern (LBP) operators as feature

extractors and the G statistic as dissimilarity measure. This

extension has been performed in a similar way as the one

described for MeasTex, but with subimages of 16 9 16 as

suggested in [2], and keeping all feature vectors as texture

models. (b) The K-NN (K = 5) classifier of MeasTex, and (c)

the MVG classifier of MeasTex. Both MeasTex classifiers

have been independently evaluated with features derived

from the fractal dimension, gray level co-occurrence matri-

ces (GLCM) and Markov random fields (MRF).

The results presented in Fig. 6 show that the proposed

combination of classifier and texture features yields

significantly better classification rates than the other alter-

natives in the majority of cases. The same applies to the

resulting classification maps. Two of them are shown in

Fig. 7. The few exceptions to this statement occur in test

image 5 (see Fig. 2) for the LBP features with the adapted

G statistic classifier, and for the GLCM and MRF features

with the MVG classifier.

Apparently in this case, the aforementioned texture

features are able to better distinguish among the sought

texture patterns than the optimized Gabor wavelet filter

bank. In the case of the MRF features, this is specially true

for the patches located both to the right and to the bottom

of the composition. This situation is quite remarkable as

this pair of texture patterns are perceptually very similar

and difficult to segment even for a human observer.

5 Conclusions

This paper presents a new distance-based, per-pixel texture

classifier based on clustering techniques and multichannel

Gabor wavelet filters that achieves good classification

results with low computational times and affordable mem-

ory usage. The proposed classifier has been compared

against the simplest strategy, which stores a single proto-

type per texture pattern and window size, and applies a

nearest neighbor classifier, as well as with the alternative

extreme approach, which stores all the available texture

feature vectors extracted from the training set. Comparisons

with other recent and traditional supervised classification

Fig. 4 Classification rates (%) for the compared classification

techniques (proposed classifier, integration-based classifier, and

MeasTex classifiers) using texture features derived from both

optimized and non-optimized Gabor filters

Fig. 5 Classification maps for images 3 and 6 in Fig. 2 produced by

the proposed classifier (second column), the integration strategy in [5]

(third column), the K-NN classifier included in MeasTex (fourth
column) and the MVG classifier also included in MeasTex (fifth

column). Corresponding ground-truth (first column). The results for

the first two classifiers consider optimized Gabor filters, while the

ones for the last two classifiers consider the classical, non-optimized

Gabor filters implemented in MeasTex
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schemes have been also carried out. In almost all cases, the

proposed classifier yielded the best classification rates.

A selection technique for automatically choosing the

configuration parameters corresponding to: (a) the resolu-

tion R, which determines the size of the clusters and,

therefore, the number of seeds for k-means, and (b) the

number of neighbors, K, used by the K-NN classifier has

also been developed. Experiments have shown that this

selection technique determines configuration parameters

that yield classification rates very close to the optimal ones.

Further work will consist of studying better schemes for

integration of different window sizes in order to reduce the

information sources when classifying a given feature vec-

tor and thus improving the accuracy and computational

time of the current algorithm. Additionally, as the proposed

methodology is thought to be valid for any texture method

or group of methods provided they generate feature vec-

tors, we are planning to extend this technique in order to

integrate different feature extraction methods in a coherent

way. Finally, we aim at adapting the proposed methodol-

ogy to unsupervised per-pixel texture segmentation. The

goal in this case is to automatically determine sets of

prototypes that characterize the different regions of

homogeneous texture within a given image.

6 Originality and contribution

This paper proposes a new, efficient, non-parametric, dis-

tance-based classifier as a solution to the per-pixel texture

classification problem. Within this problem, every image

pixel must be characterized by a feature vector in a local

neighborhood, thus potentially generating an enormous

number of prototypes to compare with during the classifi-

cation stage. Using a resolution-driven clustering algorithm,

which is a wrapper around the classical k-means clustering,

the proposed technique selects a reduced subset of proto-

types in order to model the different texture classes. Then, a

K-nearest neighbors classifier is used to finally assign a

label to every pixel in the input image. As the performance

of the classifier greatly depends on both the resolution used

for clustering and the number of neighbors used for clas-

sification, an automatic parameter selection algorithm that

is able to find a suitable combination of those parameters

entirely based on the training set, has been also proposed.

Experiments with Brodatz compositions and outdoor ima-

ges, and comparisons with alternative classification

techniques show that the developed classifier is effective in

terms of classification rates, memory consumption, and

computation time. Applications that would potentially

benefit from this technique are image analysis tasks, such as

identification of specific types of soil in satellite or aerial

images, detection of tumors in medical images, fabric

defect detection, among others.

Fig. 6 Classification rates for different combinations of classification

technique and texture feature extraction methods

Fig. 7 Classification maps for

images 3 and 6 in Fig. 2

produced by the proposed

classifier with optimized Gabor

filters (second column), an

extension of the LBP-based

classifier proposed in [2] (third
column), and the best result

among the tested MeasTex

classifiers (fourth column).

Corresponding ground-truth

(first column)
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