
Abstract This paper deals with the problem of

estimating a transmitted string X* by processing the

corresponding string Y, which is a noisy version of

X*. We assume that Y contains substitution, inser-

tion, and deletion errors, and that X* is an element

of a finite (but possibly, large) dictionary, H. The

best estimate X+ of X*, is defined as that element of

H which minimizes the generalized Levenshtein dis-

tance D(X, Y) between X and Y such that the total

number of errors is not more than K, for all X 2H.

The trie is a data structure that offers search costs

that are independent of the document size. Tries also

combine prefixes together, and so by using tries in

approximate string matching we can utilize the

information obtained in the process of evaluating any

one D(Xi, Y), to compute any other D(Xj, Y), where

Xi and Xj share a common prefix. In the artificial

intelligence (AI) domain, branch and bound (BB)

schemes are used when we want to prune paths that

have costs above a certain threshold. These tech-

niques have been applied to prune, for example,

game trees. In this paper, we present a new BB

pruning strategy that can be applied to dictionary-

based approximate string matching when the dictio-

nary is stored as a trie. The new strategy attempts to

look ahead at each node, c, before moving further,

by merely evaluating a certain local criterion at c.

The search algorithm according to this pruning

strategy will not traverse inside the subtrie(c) unless

there is a ‘‘hope’’ of determining a suitable string in

it. In other words, as opposed to the reported trie-

based methods (Kashyap and Oommen in Inf Sci

23(2):123–142, 1981; Shang and Merrettal in IEEE

Trans Knowledge Data Eng 8(4):540–547, 1996), the

pruning is done a priori before even embarking on

the edit distance computations. The new strategy

depends highly on the variance of the lengths of the

strings in H. It combines the advantages of parti-

tioning the dictionary according to the string lengths,

and the advantages gleaned by representing H using

the trie data structure. The results demonstrate a

marked improvement (up to 30% when costs are of

a 0/1 form, and up to 47% when costs are general)

with respect to the number of operations needed on

three benchmark dictionaries.

Keywords Trie-based syntactic pattern recognition Æ
Approximate string matching Æ Noisy syntactic

recognition using tries Æ Branch and bound techniques Æ
Pruning

1 Introduction

We consider the traditional problem involved in the

syntactic pattern recognition (PR) of strings, namely

that of recognizing garbled words (sequences), and

present a novel recognition strategy which involves

tries, branch and bound (BB) pruning, and dictionary-

A preliminary version of some of the results of this paper was
presented at CORES’05, the 4th international conference on
computer recognition systems, Rydzyna Castle, Poland, May
2005.

G. Badr (&) Æ B. J. Oommen
School of Computer Science, Carleton University,
1125 Colonel By Dr., Ottawa, ON, Canada K1S 5B6
e-mail: gbadr@scs.carleton.ca

B. J. Oommen
e-mail: oommen@scs.carleton.ca

Pattern Anal Applic (2006) 9:177–187

DOI 10.1007/s10044-006-0036-8

123

THEORETICAL ADVANCES

A novel look-ahead optimization strategy for trie-based
approximate string matching

Ghada Badr Æ B. John Oommen

Received: 17 November 2005 / Accepted: 22 March 2006 / Published online: 26 August 2006
� Springer-Verlag London Limited 2006

based (as opposed to string-based) dynamic program-

ming (DP).

Let Y be a misspelled (noisy) string, of length M,

obtained from an unknown word X*, of length N,

which is an element of a finite (but possibly, large)

dictionary H, where Y is assumed to contain substitu-

tion, insertion, and deletion (SID) errors. Various

algorithms have been proposed to obtain an appro-

priate estimate X+ of X*, by processing the information

contained in Y, and the literature contains hundreds (if

not thousands) of associated papers. We include a brief

review here.

The trie is a data structure that offers search costs

that are independent of the document size. Tries also

combine prefixes together, and so by using tries in

approximate string matching [15, 27], we can utilize the

information obtained in the process of evaluating any

one D(Xi, Y), to compute any other D(Xj, Y), where Xi

and Xj share a common prefix. As opposed to this, in

the field of artificial intelligence (AI) Branch and

Bound (BB) techniques [12] are well known, and have

been used to prune paths for game trees etc. They are

used when we want to prune paths that have costs

above a certain threshold.

In this paper, we attempt to use the same data

structure, the trie, for storing the strings in the dictio-

nary so as to take advantage of the compact calculations

for the distance matrix, by utilizing the common paths

for the common prefixes. We then introduce a new BB

pruning strategy that makes use of the fact that the

length of the strings to be compared is known a priori.

We thus propose to apply this new pruning strategy to

the trie-based approximate search algorithm, which we

call the look-ahead branch and bound (LHBB) scheme.

By using these four features (the trie, BB, look-ahead,

and dictionary-based dynamic programming), we can

demonstrate a marked improvement, because this

pruning can be done before we even start the edit dis-

tance calculations. LHBB helps us to search in portions

of the dictionary where the word lengths are accept-

able, without actually having to partition the dictionary,

and at the same time make use of the effective prop-

erties of tries. The experimental results presented later

shows improvements of up to 30%, and up to 47% when

costs are general with small and large benchmark dic-

tionaries. This high improvement is at the expense of

just storing two extra memory locations for each node

in the trie. Also, if the length of the noisy word is very

far from all the acceptable words in the dictionary, i.e.,

those which can give an edit error smaller than K, the

edit distance computations for this noisy word can be

totally pruned with only a single comparative test. All

of these concepts will be illustrated presently.

The organization of the paper is as follows. Sec-

tion 2 presents a brief background for the work done in

the paper. Section 3 describes, in detail, the new

LHBB scheme when costs are of 0/1 form, while sect. 4

describes the technique when costs are general. Sec-

tion 5 presents the experiments done and provides the

results that demonstrate the benefits of the new

method. Section 6 concludes the paper.

2 Background

Damerau [5, 20, 26] was probably the first researcher to

observe that most of the errors found in strings were

either a single substitution, insertion, deletion or a

reversal (transposition) error. In much of the existing

literature, the transposition operation has been mod-

eled as a sequence of a single insertion and deletion.

The first breakthrough in comparing strings using the

three (the SID) edit transformations was the concept of

the Levenshtein metric introduced in coding theory

[16], and its computation. The Levenshtein distance,

D(X, Y), between two strings, X and Y is defined as the

minimum number (or the associated weights) of edit

operations required to transform one string to another.

This distance is intricately related to the costs associ-

ated, with the individual edit operations, typically the

SID operations. These inter-symbol distances can be of

a 0/1 sort, parametric [6, 23] or entirely symbol

dependent [15, 26], in which case, they are usually as-

signed in terms of the confusion probabilities. In this

case it is named general Levenshtein distance (GLD).

In all of these cases, the primary DP rule used in

computing the inter-string distance D(X,Y) is

Dðx1 . . . xN ; y1 . . . yMÞ
¼ min Dðx1 . . . xN�1; y1 . . . yM�1Þ þ dðxN ; yMÞf g;½

Dðx1 . . . xN ; y1 . . . yM�1Þ þ dðk; yMÞf g;
Dðx1 . . . xN�1; y1 . . . yMÞ þ dðxN ; kÞf g�;

ð1Þ

where d(a,b) is the inter-symbol distance between the

two symbols a and b, and k is the null symbol.

Wagner and Fischer [30] and others [26] also pro-

posed an efficient algorithm for computing this dis-

tance by utilizing the concepts of DP. This algorithm

is optimal for the infinite alphabet case and it has

O(MN) worst case. Various amazingly similar ver-

sions of the algorithm are available in the literature, a

review of which can be found in [5, 26, 28]. Masek

and Paterson [17] improved the algorithm for the

finite alphabet case, and Ukkonen [29] designed

178 Pattern Anal Applic (2006) 9:177–187

123

solutions for cases involving other inter-substring edit

operations which runs in O(KN) worst case. Related

to these algorithms are the ones used to compute the

longest common subsequences (LCS) of two strings

[5, 13, 14, 26, 28]. String correction using GLD-related

criteria has been done for noisy strings [5, 9, 25, 26,

28], substrings [26, 28], and subsequences [20], and

also for strings in which the dictionaries are treated as

grammars [26, 28, 31]. A new approach to rapid se-

quence comparison, basic local alignment search tool

(BLAST) [1], directly approximates alignments that

are based on the optimization of a local similarity

measure, the maximal scores pair (MSP). It yields the

results that would approximate a DP algorithm for

optimizing this measure. The direct applications of

this tool are stated in [1] and include DNA and

protein sequence database searches, motif searches,

gene identification searches, and the analysis of mul-

tiple regions of similarity in long DNA sequence.

Besides these, various probabilistic methods have also

been studied in the literature [4, 25]. Indeed, more

recently, probabilistic models which attain the infor-

mation theoretic bound have also been proposed [22,

24]. The most recent survey on approximate string

matching can be found in [18].

All early algorithms proposed for estimating X+

requires the separate evaluation of the edit distance

between Y and every element of X 2H, and would thus

unnecessarily repeat the same comparisons and mini-

mizations for a substring and all its prefixes. Thus, most

previous algorithms usually have many redundant

computations.

The first pioneering attempt to avoid the repetitive

computations for a finite dictionary was the one which

took advantage of this prefix information, as proposed

by Kashyap and Oommen [15]. The authors of [15]

proposed a set-based algorithm to compute X+ 2 H. It

calculated D(X,Y) for all X 2 H simultaneously, and

this was done by treating the dictionary as one

integral unit and by using ‘‘dictionary-based’’ DP

principles. They proposed a new intermediate edit

distance called the ‘‘pseudo-distance’’, from which the

final edit distance can be calculated by using only a

single operation. However, the algorithm in [15] was

computationally expensive, because it required

set-based operations in its entire execution. This work

has been recently extended by Oommen and Badr

[21], by presenting a feasible implementation for the

concepts introduced in [15]. This was achieved by the

introduction of a new data structure called the Linked

Lists of Prefixes (LLP), which can be constructed

when the dictionary is represented by a trie. The LLP,

which in one sense actually implements a modified

breadth first search (BFS) of the trie, rendered the

solution proposed by Kashyap and Oommen [15] both

feasible and practical.

2.1 Tries and cutoffs

Tries offer text searches with costs which are inde-

pendent of the size of the document being searched.

The data are represented not in the nodes but in the

path from the root to the leaf. Thus, all strings sharing

a prefix will be represented by paths branching from a

common initial path. Figure 1 shows an example of a

trie for a simple dictionary of words {for, form, fort,

forget, format, formula, fortran, forward}. Shang and

Merrettal [27] used the trie data structure for exact and

approximate string searching. They presented a trie-

based method whose cost is independent of the docu-

ment size. They proposed a K-approximate match

algorithm on a text represented as a trie, which per-

forms a depth first search (DFS) on the trie. The insight

they provided was that the trie representation of the

text drastically reduces the DP computations. The trie

representation compresses the common prefixes into

overlapping paths, and the corresponding column (in

the DP matrix) needs to be evaluated only once.

In [27], the authors applied a known pruning strat-

egy called Ukkonen’s cutoff [29] to abort unsuccessful

searches. For example, in Fig. 1, if the noisy word is

Y = ‘‘fwt’’, Ukkonen’s cutoff will force searching in

any path to terminate prematurely, whenever the

prefixes to be examined cannot lead to Y with an error

less than K. This means that the paths that cannot lead

a solution can be pruned, and thus the method limits

the search to a portion of the search space. So, for

example, if K = 2, the path for the word ‘‘fortran’’ will

be cut off after doing the calculations at node r, and so

no more search will be done at the trie rooted at node

r. Figure 2 shows the pruning done when applying

Fig. 1 An example of a dictionary stored as a trie with the words
{for, form, fort, fortran, forma, forget, format, formula, forward}

Pattern Anal Applic (2006) 9:177–187 179

123

Ukkonen’s cutoff technique. Chang and Lawler [7]

showed that Ukkonen’s algorithm evaluated O(K) DP

table entries. If the fanout of the trie is S, the trie

method needs to evaluate only O(K| S |K) DP table

entries, which is independent of the number of noisy

words we are searching for. Their experiments showed

that their method significantly out-performs the near-

est competitor for K = 0 and K = 1, which are arguably

the most important cases. They also compared their

work experimentally with agrep, a software package

for Unix that implements the algorithm presented in

[32], which is an extension (for a numeric scheme) for

the exact string matching algorithm developed by

Baeza-Yates and Gonnet [2]. Also, a similar cutoff

technique, called the edit distance cutoff, was used in

[19], to devise error-tolerant finite-state recognizers.

Most of the dictionaries used in string correction

contain strings of different lengths. This variation in

the string lengths could help in excluding many strings

from the computation of the corresponding edit dis-

tances when compared against the noisy word, as

strings of this length could not have possibly given rise

to the given noisy string. Indeed, this conclusion is

because the difference in their lengths is more than the

number of errors allowed. This property was used in

[11] to partition the dictionary and eliminate the words

to be compared in the dictionary. A set is built from all

possible partitions, and a string-to-string correction

technique was used to get the best match. The authors

of [11] limited their discussion to cases where the error

distance between the given string and its nearest

neighbors in the dictionary was small. The problem

with this method is that this set can be quit large for

larger values of K, and can thus include the whole

dictionary. This could lead to string-to-string compar-

isons for a large partition of the dictionary, or even the

whole dictionary itself. Another drawback of this

method is that two words sharing common prefixes, but

which reside in different partitions, will necessitate

redundant computations for the entire common seg-

ments.

3 Look-ahead branch and bound scheme

Given the fact that the dictionary is stored in a trie, any

PR-related search for a word in H will have to search

the entire trie. To minimize the computational burden,

we shall now show how we can use concepts in AI to

‘‘reduce’’ the portion of the search space investigated.

We do this by invoking the principles of BB strategies.

In AI, whenever we encounter a search space, the

latter can be searched in a variety of ways such as by

invoking a BFS, a DFS, or even a best-first search

scheme, where, in the latter, the various paths are

ranked by using an appropriate heuristic function. But

if the search space is very large, BB techniques can be

used to prune the search space. This is done by esti-

mating the costs of the various potential paths with a

suitable heuristic, and if the cost of any path exceeds a

pre-set threshold, this path (or branch) is pruned, and

the search along this path is aborted. What we pay are

that we need more processing operations per node, and

possibly additional storage for storing some local

indices. But what we gain is that we can prune

numerous unneeded paths, and thus save enormous

redundant computations.

In the present case, we now investigate how we can

eliminate searching along some of the paths of the trie.

Thus, we effectively map the trie into the ‘‘search tree’’

of an AI algorithm, and seek a suitable heuristic to

achieve the pruning. The heuristic that we propose has

three characteristics, namely, it has a static component,

a dynamic component, and finally, it must be of a look-

ahead sort, as opposed to the cut-off methods already

proposed [19, 29]. Indeed, the edit distance cutoff used

in [19] and Ukkonen’s cutoff used in [27] depend on

the a posteriori evaluation of the edit distances even as

we process more characters from prefixes of strings in

the dictionary. In other words, in these schemes, the

pruning is invoked only after calculating the edit dis-

tance of the prefix being currently processed, and re-

sults only when there is no possible conversion from

this prefix to the noisy word in hand. We will now

examine each of the components of our BB heuristic.

3.1 The look-ahead component

The idea that we advocate is to prune, from the cal-

culations, the sub-tries in which the strings stored are

Fig. 2 The cutoff done for the trie example when applying
Ukkonen’s cutoff, for Y = ‘‘fwt’’ and K = 2

180 Pattern Anal Applic (2006) 9:177–187

123

not within a pre-defined acceptable condition. The

lengths of the string stored in subtrie(c) can be directly

related to the maximum edit distance allowed, and thus

can simplify the equations and the condition that has to

be tested per node even before we traverse the path.

The maximum edit distance or error can give an indi-

cation about the maximum and minimum lengths of

the strings allowed.

We propose a strategy by which we will not traverse

the subtrie(c) unless there is a ‘‘hope’’ of determining a

suitable string in it, where the latter is defined as the

string that could be garbled into Y with less than K

errors. Stating that a subtrie(c) has to be pruned, im-

plies that the minimum possible errors of all the sub-

strings (to transform them into Y) that are stored in

subtrie(c) is bigger than K. So, in our new heuristic,

because the maximum edit distance or error can be

known a priori, and because the lengths1 of the strings

in H are also known a priori, we can look ahead at each

node, c, and decide whether we have to prune the

subtrie(c). If we do, we are guaranteed that all the

strings stored will not possibly lead to Y with less than

K errors.

3.2 The dynamic component

The lengths of the prefixes to be processed can also be

directly related to the maximum edit distance error K.

The maximum and minimum allowed lengths for all

strings stored in a subtrie(c) are easily related to the

length of Y, M, and to the error K, as

maxðlengthðXþÞÞ �M þK:

Further, if we are at node c and the length of the

prefix calculated so far is N¢, and the length of any

string in subtrie(c) is N¢¢, this constraint can be re-

written as

max N0 þN00ð Þ �M þK:

Since N¢ is constant per node c, this means

max N00ð Þ �M �N0 þK: ð2Þ

Similarly, since K is the absolute number of errors,

min N00ð Þ �M �N0 �K: ð3Þ

Using these dynamic equations for the minimum

and maximum lengths allowed for string eligible to be

X+, we can easily test at each node if the lengths of the

suffixes stored are within these acceptable ranges,

namely, min(N¢¢), max(N¢¢). The corresponding

inequalities which involve generalized edit distances

are currently being derived.

3.3 The static component

To test if we are within acceptable ranges for the po-

tential candidates for X+, we need to store the infor-

mation needed for these calculations within each node,

so that the conditions can be tested locally (and

quickly) within the corresponding node. Fortunately,

this information is already known a priori and is easily

calculated and stored. More specifically, we need to

store two values at each node of the trie, which are:

• Maxlen: A value stored at a node which indicates

the length of the path between this node and the

most distant node representing an element of the

dictionary H. This is actually the length of the

largest suffix for all the suffixes stored in the subtrie

rooted at this node.

• Minlen: A value stored at a node which indicates

the length of the path between this node and the

least distant node representing an element in H.

This is actually the length of the smallest suffix for

all the suffixes stored in the trie rooted at this node.

3.4 The overall heuristic

At each node of the trie, before we do any further

computations, we test the following conditions, re-

ferred to as the LHBB conditions:

(a) Minlen > M – N¢ + K obtained by negating

Eq. 2, or

(b) Maxlen < M – N¢ – K obtained by negating

Eq. 3.

If (a) or (b) is true, it means that there is no hope of

finding a solution within the present subtrie, and so we

prune the calculations for the subtrie. The LHBB, as its

name implies, first looks forward at each node, and

sees if it is expected to perform any further calcula-

tions. If at any time we reach a string X in the dictio-

nary (which is thus an accepting node), we accept the

string if the D(X,Y) £ K.

Consider, for example, the same trie in Fig. 1, where

the noisy word Y = ‘‘fwt’’. By applying the LHBB, for

1 Observe that our method is quite distinct from the dictionary
partitioning strategy which is also based on string lengths [11].

Pattern Anal Applic (2006) 9:177–187 181

123

K = 2, the path for the word ‘‘fortran’’ will be pruned

before doing the edit distance calculations at node t,

and so no further search will be done at the trie rooted

at node t. But since node t is an accepting node, we

need to calculate its edit distance. This thus saves two

levels of computations for the edit distance for the trie

rooted at node t with respect to the previous method.

The path for the word ‘‘forget’’, however, will be

pruned before doing edit distance calculations at node

g. Since g is not an accepting node, it will be also

pruned from further calculations. Figure 3 shows the

pruning done when applying the LHBB technique

only.

The LHBB can also be used in combination with

Ukkonen’s cutoff used earlier for tries. The LHBB

requires only the testing of the above conditions

using the values stored locally within each node.

Figure 4 shows the pruning when applying both

techniques.

3.5 Algorithm for obtaining X+ using LHBB

In this section, we present the algorithm for obtaining

X+, by pruning using LHBB in trie-based calcula-

tions. The algorithm follows the steps of the trie

method except that it includes the LHBB pruning

(see Algorithm 1). The lines indicated by asterisks

show the modified part. Also, computing the Maxlen

and Minlen values is fairly straightforward, and can

be done during the construction of the trie, as the

strings are inserted one by one. When inserting a

string in the trie, we already know the length of this

string, and hence the values of Maxlen and Minlen

need to be adjusted only for the nodes along the path

included in the insertion, which can be done by

comparing their old values with the length of the

newly inserted string.

4 A look-ahead BB scheme for general costs

When general costs are used, relating the computed (or

anticipated) edit distance to the maximum edit dis-

tance or the maximum number of errors is not possible,

and so Ukkonen’s cutoff cannot be used. In this case,

as far as we know, the only available technique that can

be used to prune the trie is the one we propose. This is

because the new technique can serve as a direct link

between the length of the strings in the dictionary and

the maximum number of errors, independent of the

costs that are assigned for the errors, while similarly

using the same LHBB conditions.

In this scenario, we again encounter the three

components of the LHBB as follows:

• The look-ahead component: The lengths of the

string stored in subtrie(c) can still be directly related

to the maximum edit distance allowed. This is be-

cause the LHBB technique builds a relation be-

tween the lengths of the strings and the maximum

number of errors. Thus, independent of the costs we

are using, we will still be able to apply the tech-

nique. We can still look ahead at each node, c, and

decide whether we have to prune the subtrie(c). By

doing this, we are guaranteed that all the strings

stored will not possibly lead to Y with less than K

errors.

• The dynamic component: At each node of the trie,

before we do any further computations, we can still

test the same LHBB conditions obtained by

negating Eqs. 2 and 3. As we see, the calculations

for the proposed LHBB technique do not depend

on the costs for the inter-symbols at all. It only

depends on the length of the noisy word Y, the

length of the prefix calculated so far N¢, and the

maximum number of errors K, that is known a

priori. If any of the LHBB conditions is true, it still

implies that there is no hope of finding a solution

within the present subtrie, and so we can prune the

calculations for the subtrie.

• The static component: We still need to store two

values Minlen and Maxlen at each node of the trie

to be able to calculate the LHBB conditions.

When the maximum number of errors is used as a

criterion, a further improvement can be done by

pruning the paths if the length of the prefix calculated

so far is larger than M + K, and this (as a replacement

for Ukkonen’s cutoff) can be used in conjunction with

the LHBB technique. Other enhancements can be

applied when only the best match is required. In this
Fig. 3 The cutoff done for the trie example when applying only
the LHBB technique, for Y = ‘‘fwt’’ and K = 2

182 Pattern Anal Applic (2006) 9:177–187

123

case, we can ‘‘cut off’’ the subtrie at any node if the

min value (the minimum edit distance value in any

column during the calculation, which is the minimum

edit distance value to change any prefix in H to Y) is

larger than the edit distance of the nearest neighbor

word found so far, and if it is, we can prune the trie at

this node. An analogous technique was also applied in

[27] when the best match was required. We shall see

that when applying the new technique, the enhanced

algorithm yields an even better performance.

5 Experimental results

To investigate the power of our new method with re-

spect to computation we conducted various experi-

ments. The results obtained were remarkable with

respect to the gain in the number of computations

needed to get the best estimate X+. By computations

we mean the addition and minimization operations

needed, including the minimization operations re-

quired for calculating the LHBB criterion2. The LHBB

scheme was compared with the original trie-based

work for approximate matching [27] when the edit

distance costs were of a 0/1 form and of a general form.

Three benchmark data sets were used in our

experiments. Each data set was divided into two parts:

a dictionary and the corresponding noisy file. The dic-

tionary was the words or sequences that had to be

stored in the Trie. The noisy files consisted of the

strings which were searched for in the corresponding

dictionary. The three dictionaries we used were as

follows:

• Eng3 This dictionary consisted of 964 words ob-

tained as a subset of the most common English

words [10] augmented with words used in the

computer literature.

• Dict4 This is a dictionary file used in the experi-

ments done by Bentley and Sedgewick in [3].

• Webster’s unabridged dictionary This dictionary was

used by Clement et al. [8] to study the performance

of different trie implementations. The alphabet size

is 54 characters.

The statistics of these data sets are shown in Table 1.

Three sets of corresponding noisy files were created

using the technique described in [24], and in each case,

the files were created for a specific error value. The

three error values tested were for K = 1, 2, and 3, as

are typical in the literature [19, 27].

The two methods, Trie (the original method) [27]

and our scheme, LHBB, were tested for the three sets

of noisy words. We report below a summary of the

results obtained in terms of the number of computa-

tions (additions and minimizations) in millions.

We conducted two sets of experiments: The first set

of experiments was when the costs were of a 0/1 form,

and the second set of experiments was when the costs

were general and were generated from the table of

probabilities for substitution (typically called the con-

fusion matrix), which was based on the proximity of

character keys on the standard QWERTY keyboard

and is given in [22]5. The conditional probability of

inserting any character given that an insertion occurred

was assigned the value 1/26; and the probability of

deletion was set to be 1/20. All the experiments were

done on a Pentium 4 machine with 3.2 GHZ, 1 GB

RAM, and 80 GB hard disk.

5.1 Experimental setup I: 0/1 costs

In Tables 2, 3, and 4, the results show the significant

benefits of the LHBB scheme with up to 30%

improvement. For example, for the Webster’s dictio-

nary, when K = 1, the number of computations is

6,849 and 4,776 millions, respectively, which represents

an improvement of 30.26%. The improvement de-

creases as the number of errors increases, which can be

expected because as K increases, more neighbors have

Fig. 4 The cutoff done for the trie example when applying both
Ukkonen’s cutoff and the LHBB technique, for Y = ‘‘fwt’’ and
K = 2

2 The basic addition operation involves adding the inter-symbol
distance to the currently computed inter-string distance, and the
minimization operation involves evaluating the minimum of the
corresponding terms in the DP equation and in the LHBB con-
dition.

3 This file is available at http://www.scs.carleton.ca/~oommen/
papers/WordWldn.txt.
4 The actual dictionary can be downloaded from http://
www.cs.princeton.edu/~rs/strings/dictwords.
5 It can be downloaded from http://www.scs.carleton.ca/~oom-
men/papers/QWERTY.doc.

Pattern Anal Applic (2006) 9:177–187 183

123

to be tested, which, in turn, implies that more parts of

the trie have to be examined. By studying the results

we see that the improvements are quite prominent

even for K = 2 and 3. The improvement is more than

20%, which is considerable compared to what can be

achieved by the state-of-the-art trie methods. Addi-

tionally, observe that the search is still bounded by the

O(K| S |K) DP table entries, because we use the trie to

store the dictionary. This is in contrast to the method

discussed in [11], where the set of all possible partitions

will become so large as K increases, and the method is

reduced to the tedious corresponding sequential string-

to-string comparison techniques.

Further improvement can be obtained when the

algorithm is only searching for the best match. We can

then apply the same strategy for the same dictionaries

when K = 1, 2, and 3. The results are shown in

Table 5 for the Dict dictionary, as the results for the

other dictionaries are almost identical. The results

show the significant benefits of the LHBB scheme with

up to 26% improvement (compare with Table 2). For

example, when K = 1, the number of computations is

Table 1 Statistics of the data sets used in the experiments

Eng Dict Webster

Size of dictionary (KB) 8 225 944
Number of words in dictionary 964 24,539 90,141
Min word length 4 4 4
Max word length 15 22 21

Algorithm 1 Algorithm
LHBB

184 Pattern Anal Applic (2006) 9:177–187

123

1,120 and 819 millions respectively, which represents

an improvement of 26.87%. The improvement de-

creases as the number of errors increases.

5.2 Experimental setup II: general costs

The second set of experiments was conducted when

the costs were general as explained above. In this

case Ukkonen’s cutoff cannot be applied as the

maximum number of errors cannot be related to the

edit distance costs any more. The results are shown

in Table 6 for the Dict dictionary, and not included

for the other dictionaries as the results for the other

dictionaries are relatively the same. The results

show the significant benefits of the LHBB scheme

with up to 47.98% improvement. For example, when

K = 1, the number of computations is 66,545

and 34,614 millions, respectively, which represents an

improvement of 47.98%.

Table 2 The results obtained in terms of the number of
operations (additions and minimizations) needed when the
maximum number of errors K = 1, and the costs are of a 0/1
form

Operation Eng Dict Webster

Trie LH Trie LH Trie LH

Additions 5.2 3.5 550 390 3,360 2,224
Improvement 32.69 29.09 33.80
Minimizations 5.5 4.2 575 454 3,489 2,552
Improvement 23.63 21.04 26.85
Total 10.7 7.7 1,125 844 6,849 4,776
Improvement 28.03 24.97 30.26
Time 0 0 16 9 73 56
Improvement 0 43.75 23.28

The figures given are in millions. The time shown is in seconds,
and the total improvement obtained is in ‘‘bold’’ face

Table 3 The results obtained in terms of the number of
operations (additions and minimizations) needed when the
maximum number of errors K = 2, and the costs are of a 0/1
form

Operation Eng Dict Webster

Trie LH Trie LH Trie LH

Additions 18.1 12.3 3,654 2,648 24,901 16,773
Improvement 32.04 27.64 32.64
Minimizations 19.1 14.5 3,809 3,048 25,830 19,077
Improvement 24.08 20.13 26.14
Total 37.2 26.8 7,463 5,696 50,805 35,850
Improvement 27.95 23.81 29.43
Time 1 1 134 81 615 495
Improvement 0 39.55 19.51

The figures given are in millions. The time shown is in seconds,
and the total improvement obtained is in ‘‘bold’’ face

Table 4 The results obtained in terms of the number of
operations (additions and minimizations) needed when the
maximum number of errors K = 3, and the costs are of a 0/1
form

Operation Eng Dict Webster

Trie LH Trie LH Trie LH

Additions 37.1 27.6 12,117 9,205 93,373 68,133
Improvement 25.60 24.03 29.27
Minimizations 38.8 31.8 12,613 10,430 99,852 76,530
Improvement 18.04 17.30 23.35
Total 75.9 59.4 24,730 19,635 196,190 144,666
Improvement 21.73 20.60 26.26
Time 2 1 306 261 2,327 1,899
Improvement 50.00 14.70 18.39

The figures given are in millions. The time shown is in seconds,
and the total improvement obtained is in ‘‘bold’’ face

Table 5 The results obtained in terms of the number of
operations (additions and minimizations) needed when
maximum number of errors, K is 1, 2, and 3, the costs are of 0/
1 from, the best match optimization is applied, and the Dict
dictionary is used

Operation K = 1 K = 2 K = 3

Trie LH Trie LH Trie LH

Additions 548 389 3,511 2,527 11,131 8,338
Improvement (%) 29.01 28.03 25.09
Minimizations 572 430 3,657 2,779 11,569 9,033
Improvement (%) 24.82 24.01 21.92
Total 1,120 819 7,168 5,306 22,700 17,371
Improvement (%) 26.87 25.98 23.48

The figures given are in millions. The total improvement ob-
tained is in ‘‘bold’’ face

Table 6 The results obtained in terms of the number of
operations (additions and minimizations) needed when
maximum number of errors, K is 1, 2, and 3, the costs are
general, and the Dict dictionary is used

Operation K = 1 K = 2 K = 3

Trie LH Trie LH Trie LH

Additions 38,694 19,412 43,391 29,070 48,633 37,990
Improvement (%) 49.83 33.01 21.88
Minimizations 27,851 15,202 31,202 22,411 34,835 28,917
Improvement (%) 45.42 28.17 16.98
Total 66,545 34,614 74,593 51,481 83,468 66,907
Improvement (%) 47.98 32.19 19.84

The figures given are in millions. The total improvement ob-
tained is in ‘‘bold’’ face

Pattern Anal Applic (2006) 9:177–187 185

123

When the best match is required and the inter-

symbols costs are general, we can apply the same

strategy for the same dictionaries for the cases when K

= 1, 2, and 3. The results are shown in Table 7 for the

Dict dictionary (the results for the other dictionaries

are omitted). The results show the significant benefits

of the LHBB scheme with up to 42.59% improvement.

For example, when K = 1, the number of computa-

tions is 16,827 and 9,661 millions respectively, which

represents an improvement of 42.59%. If we compare

the results of Tables 6 and 7, we will find that the best

match optimization add further improvement of 72%

for the LH when K = 1 and the costs are general. This

best match improvement is not significant when the

costs are of a 0/1 form because in this case Ukkonen’s

cutoff is already applied.

6 Conclusion

In this paper, we presented a new BB scheme that can

be applied to approximate string matching using tries,

which we called a Look-Ahead Branch and Bound

scheme or the LHBB-trie pruning strategy. The new

scheme made use of the information about the lengths

of the strings stored in the dictionary and assumed that

the maximum number of errors was known a priori.

The heuristic that we proposed, worked specifically on

a trie and had three characteristics, namely a static

component, a dynamic component, and finally, was of a

look-ahead sort, as opposed to the cutoff methods al-

ready proposed in [19, 29]. Several experiments were

conducted using three benchmarks dictionaries for

noisy sets involving different error values, K = 1, 2,

and 3.

The results demonstrated a significant improve-

ment, with respect to the number of operations nee-

ded, for approximate searching using tries which

could be even as high as 30%. The new LHBB

pruning could also be used together with Ukkonen’s

cutoff technique [29]. We also demonstrated how we

could extend the latter for the case when the costs

were general, in which case improvements of up to

47% were obtained. Finally, further results were also

obtained when the algorithm utilized the additional

best match optimization.

References

1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ
(1990) A basic local alignment search tool. J Mol Biol
215:403–410

2. Baeza-Yates RA, Gonnet GH (1982) A new approach to
text searching. In: Annual ACM-SIGIR conference on
information retrieval, Cambridge, MA, June 1982, pp 168–
175

3. Bentley J, Sedgewick R (1997) Fast algorithms for sorting
and searching strings. In: Eighth annual ACM-SIAM sym-
posium on discrete algorithms, New Orleans, January 1997,
pp 360–369

4. Bucher P, Hoffmann K (1996) A sequence similarity search
algorithm based on a probabilistic interpretation of an
alignment scoring system. In: Proceedings of the fourth
international conference on intelligent systems for molecular
biology, ISMB, vol 96, pp 44–51

5. Bunke H (1993) Structural and syntactic pattern recognition.
In: Chen CH, Pau LF, Wang PSP (eds) Handbook of pattern
recognition and computer vision. World Scientific, Singapore

6. Bunke H, Csirik J (1993) Parametric string edit distance and
its application to pattern recognition. IEEE Trans Syst Man
Cybern SMC-25(1):202–206

7. Chang W, Lawler E (1992) Approximate string matching in
sublinear expected time. In: 13th annual symposium on
foundations of computer science, St.~Louis, Missouri,
October 1992. IEEE Computer Society Press, pp 116–124

8. Clement J, Flajolet P, Vallee B (1998) The analysis of hybrid
trie structures. In: Proceedings of the annual ACM–SIAM
symposium on discrete algorithms, San Francisco, CA, pp
531–539

9. Crochemore M, Landau GM, Ziv-Ukleson M (1973) A
subquadratic sequence alignment algorithm for unrestricted
scoring matrices. SIAM J 32(6):1654–1673

11. Dewey G (1923) Relative frequency of English speech
sounds. Harvard University Press, Cambridge, MA

11. Du M, Chang S (1994) An approach to designing very fast
approximate string matching algorithms. IEEE Trans
Knowledge Data Eng 6(4):620–633

12. Firebaugh M (1988) Artificial intelligence: a knowledge-
based approach. Boyd and Fraser, Boston

13. Hirschberg DS (1975) A linear space algorithm for com-
puting maximal common subsequence. Commun ACM
18(6):341–343

14. Hunt JW, Szymanski TG (1977) A fast algorithm for com-
puting longest common subsequences. Commun Assoc
Comput Mach 20:350–353

Table 7 The results obtained in terms of the number of
operations (additions and minimizations) needed when
maximum number of errors K is 1, 2, and 3, the costs are
general, the best match optimization is applied, and the Dict
dictionary is used

Operation K = 1 K = 2 K = 3

Trie LH Trie LH Trie LH

Additions 8,236 4,503 11,412 7,715 16,990 12,821
Improvement (%) 45.33 32.40 24.54
Minimizations 8,591 5,158 11,900 8,734 17,675 14,378
Improvement (%) 39.96 26.61 18.65
Total 16,827 9,661 23,312 16,449 34,665 27,199
Improvement (%) 42.59 29.44 21.54

The figures given are in millions. The total improvement ob-
tained is in ‘‘bold’’ face

186 Pattern Anal Applic (2006) 9:177–187

123

15. Kashyap RL, Oommen BJ (1981) An effective algorithm for
string correction using generalized edit distances -I:
description of the algorithm and its optimality. Inf Sci
23(2):123–142

16. Levenshtein A (1966) Binary codes capable of correcting
deletions, insertions and reversals. Sov Phys Dokl 10:707–710

17. Masek WJ, Paterson MS (1980) A faster algorithm com-
puting string edit distances. J Comput Syst Sci 20:18–31

18. Navarro G (2001) A guided tour to approximate string
matching. ACM Comput Surv 33(1):31–88

19. Oflazer K (1996) Error-tolerant finite state recognition with
applications to morphological analysis and spelling correc-
tion. Comput Linguist 22(1):73–89

20. Oommen BJ (1987) Recognition of noisy subsequences using
constrained edit distances. IEEE Trans Pattern Anal Mach
Intel PAMI 9:676–685

21. Oommen BJ, Badr G (2004) Dictionary-based syntactic
pattern recognition using tries. In: Proceedings of the joint
IARR international workshops SSPR 2004 and SPR 2004,
Libon, August 2004

22. Oommen BJ, Kashyap RL (1998) A formal theory for opti-
mal and information theoretic syntactic pattern recognition.
Pattern Recognit 31:1159–1177

23. Oommen BJ, Loke RKS (1999) Designing syntactic pattern
classifiers using vector quantization and parametric string
editing. IEEE Trans Syst Man Cybern SMC-29:881-888

24. Oommen BJ, Loke RKS (2006) Syntactic pattern recognition
involving traditional and generalized transposition errors:
attaining the information theoretic bound (submitted)

25. Peterson JL (1980) Computer programs for detecting and
correcting spelling errors. Commun Assoc Comput Mach
23:676–687

26. Sankoff D, Kruskal JB (1983) Time warps, string edits and
macromolecules: the theory and practice of sequence com-
parison. Addison–Wesley, Reading, MA

27. Shang H, Merrettal T (1996) Tries for approximate string
matching. IEEE Trans Knowledge Data Eng 8(4):540–547

28. Stephen GA (2000) String searching algorithms, Lecture
notes series on computing, vol 6, World Scientific, Sihgapore,
NJ

29. Ukkonen E (1985) Algorithm for approximate string
matching. Inf control 64:100–118

30. Wagner RA (1974) Order-n correction for regular languages.
Commun ACM 17:265–268

31. Wagner R, Fischer A (1974) The string-to-string correction
problem. J Assoc Comput Machinery (ACM) 21:168–173

32. Wu S, Manber U (1992) Fast text searching allowing errors.
Commmun ACM 35(10):83–91

Pattern Anal Applic (2006) 9:177–187 187

123

	A novel look-ahead optimization strategy for trie-based approximate string matching
	Abstract
	Introduction
	Background
	Tries and cutoffs
	Fig1
	Look-ahead branch and bound scheme
	The look-ahead component
	Fig2
	The dynamic component
	The static component
	The overall heuristic
	Algorithm for obtaining X+ using LHBB
	A look-ahead BB scheme for general costs
	Fig3
	Experimental results
	Experimental setup I: 0/1 costs
	Fig4
	Tab1
	Fig5
	Experimental setup II: general costs
	Tab2
	Tab3
	Tab4
	Tab5
	Tab6
	Conclusion
	References
	Tab7

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

