
Abstract A novel feature-based tracking approach

based on the Kalman filter is proposed for the detec-

tion, localization, and 3-D reconstruction of internal

defects in hardwood logs from cross-sectional com-

puter tomography (CT) images. The defects are

simultaneously detected, classified, localized, and

reconstructed in 3-D space, making the proposed

scheme computationally much more efficient than

existing methods where the defects are detected and

localized independently in individual CT image slices

and the 3-D reconstruction of the defects accomplished

via correspondence analysis across the various CT

image slices. Robust techniques for defect detection

and classification are proposed. Defect class-specific

tracking schemes based on the Kalman filter, B-spline

contour approximation, and Snakes contour fitting are

designed which use the geometric parameters of the

defect contours as the tracking variables. Experimental

results on cross-sectional CT images of hardwood logs

from select species such as white ash, hard maple, and

red oak are presented.

Keywords Computer tomography Æ Internal defect

detection Æ Kalman filter Æ Feature-based tracking Æ
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1 Original contribution of the work

The paper describes the design and implementation of

a novel feature-based tracking approach for the

detection, localization, and 3-D reconstruction of

internal defects in hardwood logs from cross-sectional

computer tomography (CT) images. With declining

trends in hardwood forest resources and increasing

costs of hardwood logs, improving the lumber value

yield via detection and localization of internal log de-

fects prior to lumber production has become impera-

tive for many sawmills. Although the technical

feasibility of CT scanning of logs in real time is fast

approaching reality, the computational methods for

analyzing the resulting CT images reliably and in real

time are still a major challenge. In most conventional

approaches, the internal log defects are detected and

localized by analyzing individual CT image slices

independently and the 3-D reconstruction of the de-

fects accomplished via correspondence analysis across

the various CT image slices. The resulting computa-

tional complexity makes the conventional approaches

unsuitable for real-time applications. In the proposed

scheme, defect detection, defect localization, and 3-D

defect reconstruction are integrated within a Kalman

filter-based feature tracking framework by exploiting

spatial coherence across successive CT image slices.

Robust techniques for defect detection and classifica-

tion are proposed. Defect class-specific tracking
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schemes based on the Kalman filter, B-spline contour

approximation, and Snakes contour fitting are designed

which use the geometric parameters of the defect

contours as the tracking variables. Robust techniques

for extraction and characterization of the external log

surface are also designed. Since the internal defects

and the external log surface are simultaneously de-

tected, classified, localized, and reconstructed in 3-D

space, the proposed scheme is shown to be a major

improvement over conventional approaches in terms of

both computational efficiency and detection accuracy.

Experimental validation of the proposed scheme on

cross-sectional CT images of hardwood logs from se-

lect species such as white ash, hard maple, and red oak

is also presented.

2 Introduction

The value of hardwood lumber is determined by the

quantity, size, and types of internal log defects such

as knots, cracks, decay, and other anomalies of tree

growth that eventually appear on the lumber sur-

faces. Depending on the nature of the hardwood end

utilization, each log must be sawed to minimize the

presence of these internal defects on the resulting

lumber surfaces. In order to achieve this goal, the

internal defects within the log must be accurately

identified and localized prior to the sawing of the log.

In most sawmills, however, logs are processed into

lumber with little or no information about the

internal log defects and with inaccurate or incomplete

geometric data about the logs. The logs are sawed by

a sawmill operator who uses only his best judgement

based on external log inspection and knowledge of

lumber grades to make sawing decisions. Sometimes

the sawmill operator unknowingly chooses the best

sawing pattern for a log. However, many times his

choices are far from optimal and less lumber or

lumber of a lower grade is produced. Furthermore,

boredom and fatigue of the sawmill operator can

affect the accuracy of the lumber processing, result-

ing in suboptimal lumber production where the po-

tential value of logs is wasted.

Production of lumber is essentially a destructive

process. As the log is sawed, new information is di-

vulged on the quality of the wood inside which may

suggest a different and better sawing pattern. However,

since each step in the sawing process is irreversible, the

loss in the value yield has already been incurred and

cannot be rectified. Haygreen [1] has reported a low

conversion efficiency of about 35% for conventional

sawmills. With the rising costs of hardwood logs

accounting for over 80% of total production costs [2],

improving the lumber value yield from hardwood logs

has become imperative for many sawmills. Given the

inherent limitations of external log inspection, it is

reasonable to assume that future gains in lumber value

yield will be possible only by internal log scanning [2–

10].

Identification and localization of internal log de-

fects are estimated to lead to potential gains of about

15–18% in lumber value, representing a savings of

over $2 billion for the hardwood lumber industry in

the United States [10, 11]. Forest products-based

economies are increasingly dependent on getting the

highest value wood products from a declining forest

resource base. This results in disproportionate har-

vesting pressure on high-demand hardwood species

such as hard maple, black walnut, white ash, and red

oak that exhibit the greatest differences in value

between the highest and lowest lumber grades [12].

Environmental concerns and the ecological need for

maintaining biodiversity in forest ecosystems under-

score the need to utilize as many hardwood species

for wood products as possible, to improve the effi-

ciency in converting low-grade logs into high-value

lumber products, to reduce unnecessary wastage, and

to conserve valuable hardwood forest resources. One

way of achieving these goals is by identification and

localization of internal defects in hardwood logs and

using this information to optimize the processing of

the resulting lumber.

Studies of computer axial tomography (CAT or CT)

and magnetic resonance imaging (MRI) [also known as

nuclear magnetic resonance (NMR) imaging] for

internal log defects [2, 6–8, 10, 13–15] have demon-

strated that the CT and MRI technologies available

today can be used successfully to image the internal

features of logs. CT scanners which are essentially solid

state (i.e., with a minimum of moving parts) can scan at

rates exceeding 30 slices per second. Thus, the techni-

cal feasibility of scanning logs in real time is fast

approaching reality. However, the computational

methods for analyzing the CT images for internal de-

fects reliably and in real time, and exploiting the

knowledge of the internal defects to determine optimal

lumber processing strategies remain a challenging and

open research topic.

In this paper we describe the design and imple-

mentation of a computer vision system for the detec-

tion, localization, and 3-D reconstruction of internal

defects in hardwood logs from cross-sectional CT

images. Robust techniques for defect detection and

classification are proposed. In contrast to traditional

methods, where the defects are detected and localized
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independently in individual CT image slices and the

3-D reconstruction of the defects accomplished via

correspondence analysis across the various CT image

slices, the proposed system integrates defect detec-

tion, defect localization, and 3-D defect reconstruc-

tion within a Kalman filter-based feature tracking

framework. The defects are simultaneously detected,

classified, localized, and reconstructed in 3-D space,

making the proposed system computationally much

more efficient than existing systems. Defect class-

specific tracking schemes based on the Kalman filter

are designed and implemented. The Kalman filter [16]

uses the geometric parameters of the defect contours

identified in the individual CT image slices as the

tracking variables. The pixels corresponding to the

outer boundary of the log cross-section are extracted

in each CT image slice and collated across all the CT

image slices to generate the external surface of the

log. The identified and localized internal defects and

the external surface of the log are reconstructed in 3-

D space, resulting in a virtual 3-D model of the log

along with its internal defects. The 3-D model of the

log and internal defects could subsequently be used

by a computer-based lumber production planning

system to determine an optimal sawing strategy.

Alternatively, the system could be used as a decision

aid by sawyers and machinists in a sawmill where the

detection and visualization of the internal defects and

computer simulation of key machining operations

would assist in determining an optimal lumber pro-

duction strategy for a given hardwood log. The system

could also be used as an interactive training tool for

novice sawyers and machinists whereby they could

practice various sawing strategies on virtual logs be-

fore working on real logs.

The remainder of the paper is organized as follows.

Section 3 provides a brief review of previous work.

Section 4 provides an overview of the proposed com-

puter vision system. Section 5 provides a detailed

scheme for the detection, identification, and localiza-

tion of internal defects in a single CT image slice using

a combination of structural and spectral features. The

procedures for the detection, identification, and local-

ization of knots, holes, and cracks in a single CT image

slice are detailed in Sects. 5.1, 5.3, and 5.4, respectively.

Section 6 describes the 3-D reconstruction of the

internal defects using Kalman filter-based tracking

algorithms. The 3-D reconstruction procedures for

knots, and for cracks and holes are presented in Sects.

6.1 and 6.2, respectively. Section 7 presents experi-

mental results on real CT image data from hardwood

logs. Section 8 concludes the paper with an outline for

future work.

3 A brief review of previous work

Computer axial tomography (CT or CAT) and MRI

[also known as NMR imaging] represent two poten-

tially viable techniques for acquiring cross-sectional

images of logs. Although MRI is a more recent inno-

vation, CT technology is approaching the speed nec-

essary for real-time production use in sawmills [2]. MR

images are characterized by the fact that wet portions

of the object being imaged appear as relatively light

regions in the resulting image, whereas dry portions of

the object appear as relatively dark regions in the im-

age. Hence MRI techniques are particularly well suited

for detecting internal features of logs, such as knots,

reaction wood, wet wood, and gum spots that are

characterized by varying moisture content in the

underlying wood [3, 17].

In CT images, the grayscale value of a pixel is di-

rectly proportional to the X-ray absorption which is

then correlated with the material density at the pixel

location [2, 8, 15, 18]. Knots and moisture pockets are

noted to have higher material density and/or higher

moisture content than surrounding clear wood and are

often characterized by pixels with very high grayscale

values in the CT image. Holes and decay pockets are

void areas that are filled with air or decayed wood,

respectively, and hence characterized by low material

density. Consequently, the CT image pixels corre-

sponding to holes and decay pockets have very low

grayscale values. Cracks are also filled with air, and like

holes and decay pockets, are characterized by pixels

with very low grayscale values in the CT image. The

major difference is that holes and decay pockets usu-

ally have circular cross-sections and are typically short

in length whereas cracks are usually thin and long.

Gray-level thresholding and binarization techniques

have been used extensively in internal defect identifi-

cation in cross-sectional CT images of logs. As de-

picted in (1), the grayscale value of a pixel F(i,j) is used

to classify the pixel as belonging to one of the major

internal defect classes such as knots, moisture pockets,

holes, decay pockets and cracks [4–7, 10, 19–22].

Defect Classði; jÞ

¼
Knots, moisture pockets if Fði; jÞ[T1

Cracks, holes, decay pockets if Fði; jÞ\T2

Normal wood otherwise

8
><

>:

ð1Þ

In (1), the threshold values T1 and T2 are deter-

mined by analyzing the grayscale histogram over all the

CT image slices. The grayscale thresholding operation
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is followed by region growing that groups spatially

contiguous pixels with the same class label into defect

regions. As can be seen from (1), a grayscale-based

classification scheme cannot distinguish between knots

and moisture pockets or between cracks, holes, and

decay pockets. Neural networks have been used to

integrate grayscale features within a local 2-D and 3-D

pixel neighborhood for internal defect classification

[23–25]. However, since only gray level values are used

as inputs, the neural network is reported to have

problems distinguishing between knots and moisture

pockets, both of which are characterized by high

grayscale values in the CT images [24, 25]. Conse-

quently, more recent approaches use shape and texture

features in addition to pixel grayscale values to identify

and localize the major internal defects [13, 14, 26–29].

Zhu et al. [29] use the basic 3-D geometric features of

the defects in conjunction with the Dempster–Schafer

theory of evidential reasoning for defect classification.

Butler et al. [22, 26] impose the spatial coherence

constraint in their defect classification algorithms.

Samson [30] presents a geometrical model to describe

knots within logs and on the surface of lumber beams

sawn from those logs. Samson [30] also presents an

algorithm to compute the effect of the presence of

knots in the conversion of logs into structural lumber.

Bhandarkar et al. [13, 14] use the 3-D geometry of the

reconstructed defects for the purpose of classification.

In particular, the 3-D shape parameters are used to

distinguish between knots and moisture pockets and

between cracks and holes/decay pockets.

The results of internal defect identification and

localization can be used to reconstruct a 3-D model of

the log along with its internal defects [13, 14, 21, 31–

34]. Software programs that simulate various machin-

ing operations such as sawing and veneering on the

virtual 3-D log reconstruction have been described in

the literature [13, 14, 35–38]. Likewise, programs for

automated grading of virtually produced lumber (using

the aforementioned simulators) and physical lumber

produced by sawmills have also been reported in the

literature [4, 39–44]. These programs have been used to

estimate the improvements in value yield recovery for

lumber production using internal log scanning which

are reported to be in the range of 40–60% [14, 36, 45].

The above review covers the most relevant devel-

opments in the use of CT and MRI technologies for

internal defect detection and identification in hard-

wood logs. The review paper by Pham and Alcock [46]

covers the wider area of automated visual inspection of

logs and lumber and includes both external scanning

using optical sensors and internal scanning using CT

and MRI technologies.

4 Overview of the proposed defect detection system

The proposed computer vision system for identifica-

tion, localization, and 3-D reconstruction of internal

defects in hardwood logs via analysis of cross-sectional

CT images is motivated by two major limitations of

most existing systems. First, most existing computer

vision systems identify internal log defects using

thresholding algorithms that are based on the analysis

of the pixel-level grayscale histogram computed from

the input CT or MR image. However, it has been ob-

served that such pixel-level thresholding or binariza-

tion methods are often inadequate in terms of their

ability to discriminate the defect-containing areas in

the input image from the defect-free areas even with

fairly sophisticated analysis of the grayscale histogram

[13, 14, 35–38]. In many CT images, the grayscale

values of the pixels comprising a knot are usually close

to those of pixels comprising the bright rings in the

annular ring structure of the log. Consequently, if the

value of threshold T1 in (1) is chosen to be too high,

some pixels comprising a true knot might be mistak-

enly classified as non-knots. Conversely, with a very

low value for threshold T1, many pixels comprising the

bright rings will be misclassified as comprising a knot.

Figure 1a shows an example CT image containing two

knots (i.e., the two homogeneous bright areas). With a

threshold value T1 = 185, the region classified as a knot

in the upper right corner of the image contains too

many pixels which actually belong to the ring structure

(Fig. 1b). Simultaneously, some pixels which actually

comprise the knot are classified as non-knots. A similar

problem exists in the case of detection of cracks. A

very low value for threshold T2 in (1) results in frag-

mentation of the crack, whereas too large a value for

T2 results in the inclusion of pixels comprising the

grayscale valleys between successive bright rings in the

log ring structure. Figure 2a shows a CT image con-

taining a crack. With a threshold value T2 = 50, the

binarized image (Fig. 2b) can be seen to include sev-

eral pixels comprising the grayscale valleys between

successive rings in the log ring structure. Fragmenta-

tion of the crack can also be observed in Fig. 2b. These

problems are further exacerbated when the log is too

wet or too dry. When the log is too wet, there is a

greater overlap between the grayscale values of pixels

comprising the ring structure and those of pixels

comprising the knots. Conversely, when the log is too

dry, the grayscale values of pixels comprising the holes

and cracks are almost the same as those of pixels

comprising the grayscale valleys between successive

rings in the log ring structure. The above examples

clearly demonstrate the need to combine structural or
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shape information along with spectral or grayscale

information within the defect detection and identifi-

cation process.

Second, in most existing computer vision systems,

the detection, identification, and localization of inter-

nal log defects are done independently in each CT or

MR image slice. Simple correspondence analysis across

multiple CT image slice is performed to reconstruct the

defect in 3-D space [13, 14]. The geometrical parame-

ters pertaining to the defect shape, size, and location

are used to establish the correspondence across mul-

tiple image slices. However, this technique is compu-

tationally inefficient and unsuitable for real-time

application since the spatial coherence of the defect

along the axial direction is not exploited. In addition,

since only two successive slices are used to establish the

correspondence, the reconstruction is prone to error in

the case of defects with complex 3-D shapes. Clearly, a

technique that more closely integrates the processes of

defect detection, identification, and 3-D reconstruction

is needed.

The proposed system addresses both the aforemen-

tioned shortcomings. Defect detection and identifica-

tion is achieved by integrating the spectral and

structural properties of potential defect-containing re-

gions in a CT image slice. Knots and rings share the

same grayscale values but differ in their structural

properties. Rings can be modeled as narrow strip-like

regions in a local window, whereas knots can be

modeled as ellipsoidal regions with bounded eccen-

tricity. Analysis of the pixel grayscale density in a local

window centered at each pixel within the defect-con-

taining region is used to distinguish between the knots

and rings. Since the above technique tends to cause

erosion of the knot boundaries, a morphological

operator is used to recover the boundaries of the knots.

Since cracks are typically thin and long, they are also

modeled as narrow strip-like regions in a local window.

The grayscale valleys between successive rings also

exhibit the same grayscale values as the cracks. How-

ever, the fact that a crack is usually perpendicular to

the rings and grayscale valleys is exploited [47]. The

Fig. 1 An example CT image
and the result of knot
detection using (1): a original
CT image, and b binary image

Fig. 2 A example CT image
and the result of crack
detection using (1): a original
CT image, and b binary image
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points of intersection of a crack with the rings and

grayscale valleys, termed as fork points, are detected

and grouped to extract the line segments comprising

the crack. False crack lines are removed via analysis of

orientation of these line segments.

The processes of detection, identification, and

reconstruction of the log and its internal defects are

integrated within a Kalman filtering framework. A

Kalman filter [16] is used to track cracks and holes

continuously from one CT image slice to the next. A

dynamic contour extraction technique based on Kal-

man Snakes [48] is used to reconstruct the knots and

the outer boundary of the log in 3-D space. The Kal-

man filter is used to predict the locations of the defects

in successive slices. This results in much faster detec-

tion, identification, and localization of the defects since

only a local search within a fairly small neighborhood

of the predicted defect locations is entailed. For

example, when the approximate location and shape of

a knot contour in the current CT image slice are

known, the Kalman Snakes method can be used to

predict the location and shape of the new contour in a

succeeding CT image slice using local information, thus

speeding up the overall computation. The overall

flowchart for the proposed defect detection system is

given in Fig. 3.

5 Defect detection in a single CT image

The two primary goals of the proposed computer vision

system are (1) to integrate structural and spectral fea-

tures in the processes of detection, localization, and 3-

D reconstruction of internal defects and (2) to inte-

grate the processes of detection, localization, and 3-D

reconstruction of internal defects within a single Kal-

man filter-based feature tracking framework. Defect

detection and localization within a single CT image

slice is performed in order to initialize the Kalman

filter-based tracking algorithm. After a defect is de-

tected and localized within a CT image slice, the

tracking algorithm is used to detect and localize the

defect in successive CT image slices and also recon-

struct it in 3-D space.

5.1 Detection of knots

Since a simple pixel-level binarization or thresholding

scheme typically misclassifies the bright annular ring

areas as knots, a new binarization method is proposed

to separate the knot-containing regions from the ring

areas. Knots and rings share similar grayscale values

but differ in their structural properties. Rings can be

modeled as narrow strip-like regions in a local window,

whereas knots can be modeled as ellipsoidal regions

with bounded eccentricity. The ring areas can be

eliminated via analysis of the pixel grayscale density in

a local window centered at each pixel within the de-

fect-containing region as outlined in (2).

Kði; jÞ ¼
1 if 1

M2

P

ðx;yÞ2Wði;jÞ
Fðx; yÞ > Tk

0 otherwise

(

ð2Þ

where K(i,j) is the resulting binary image delineating

the knots, W(i,j) is a window of predetermined size

M · M centered at pixel (i,j), F(i,j) is a CT image slice

of the log, and Tk is a predetermined threshold used to

classify a pixel as a knot pixel. The binary image

resulting from the application of (2) to the CT image

slice in Fig. 1a is shown in Fig. 4a. A comparison of

Figs. 1a and 4a shows that the application of (2) results

in the erosion of the knot boundaries. Consequently, a

morphological dilation operation [49] is used to re-

cover the knot boundaries. The morphological dilation

operation is represented as K � B where � is the

dilation operator, K is the binary image resulting from

the application of (2), and B is the dilation operator

mask of size M · M depicted in Fig. 4b. The knots

extracted after applying the dilation operation are

shown in Fig. 4c.

5.2 Detection of the outer log boundary

The outer boundary of the log cross-section in a single

CT image slice can be simply detected using the bi-

narization technique given in (2). However, the size of

the window W used for the detection of the outer log

boundary is much smaller (3 · 3 is typically adequate).

Moreover, the threshold value T used for detection ofFig. 3 The flowchart of the proposed defect detection system
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the outer log boundary is also much smaller; typically it

is slightly larger than the grayscale value of a void area

in the CT image.

5.3 Detection of holes

Holes are actual void areas and appear as dark regions

in the CT images with graylevels similar to those of the

background. A simple thresholding scheme outlined in

(3) is used to classify the CT image pixels as holes.

Kði; jÞ ¼ 1 if Fði; jÞ\Th

0 otherwise

�

ð3Þ

Since holes are usually small in size and approxi-

mately round in shape, false holes, typically caused by

small cracks or grayscale valleys between successive

rings, are removed by using a combination of mor-

phological erosion and dilation operations on the

thresholded result [49]. The mask size for the erosion

and dilation operators in the case of detection of holes

is smaller than the mask size of the dilation operator

used in knot detection. A 3 · 3 mask size is used for

the erosion and dilation operators for hole detection.

Figure 5 depicts the procedure to detect holes. Fig-

ure 5a is a CT image slice which contains a crack and

several holes. After thresholding, holes are retained in

the resulting binary image. However, a number of non-

hole regions are also detected (Fig. 5b). After appli-

cation of the erosion operator (Fig. 5c), the nonhole

pixels are removed, but the holes are eroded. The

dilation operator is then applied to restore the holes to

their true size (Fig. 5d).

5.4 Crack detection

A crack, as it appears in a CT image of a log, is usually

long and thin. A straightforward grayscale-based bi-

narization of the image results in either fragmentation

of the detected cracks or too many misclassifications of

regions denoting the grayscale valleys between the

annular rings as cracks (as shown in Fig. 2b). Since

both the grayscale valleys and cracks are narrow and

long, the grayscale density-based binarization tech-

nique (2) is not able to separate them. However, cracks

are typically perpendicular to the grayscale valleys and

the local direction of a grayscale valley can be esti-

mated by approximating the grayscale valleys by con-

centric circles centered at the centroid of the log cross-

section. This property is exploited in the proposed

crack detection scheme.

The proposed crack detection scheme is summarized

as follows. The local linear structures resulting from

cracks and valleys are first detected. Since the lines

defining the cracks and the lines defining the local

structure of the valleys intersect each other, the points

of intersection are represented as fork points within a

local window. By detecting and localizing these fork

points, the actual crack features can be detected and

localized. In order to reject false crack features, which

are usually caused by the presence of random noise

between the rings, it is determined whether or not the

detected crack feature is parallel (within a certain

angular threshold) to the local structure of the valleys.

If the detected crack line is indeed parallel to the local

structure of the grayscale valleys, then it is discarded

else it is retained as an actual crack feature.

Fig. 4 Result of knot
detection: a result of analysis
of local graylevel pixel
density, b dilation mask, and c
extracted knots

Fig. 5 Result of hole
detection: a input CT image, b
thresholded image, c removal
of cracks and valleys using
erosion, and d restoration of
holes using dilation
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In order to detect the edges associated with the

crack features, four directional Sobel-like operators

are used. These operators perform a combination of

direction-sensitive smoothing and edge detection for

linear features. These operators are observed to reli-

ably detect and localize the linear features in a CT

image, even in the presence of noise. They can detect

crack features without causing them to be frag-

mented. Additionally, the grayscale valleys between

the rings are detected as well. A sample image

resulting from the application of these operators is

shown in Fig. 6a. The resulting image is binarized

using a simple thresholding technique and a thinning

(i.e., skeletonization) algorithm described in [50] is

used to skeletonize the binary image (Fig. 6b). Fork

points in the thinned image are detected and localized

using a local 7 · 7 window. Fork points that are

distributed along the same crack feature are grouped

together using a greedy clustering algorithm that is

based on connectivity and mutual proximity of the

fork points. The clustering algorithm exploits the fact

that fork points on the same crack feature should be

spatially proximate and connected to each other.

Groups of fork points that are parallel to the local

ring or valley structure are discarded. Figure 6c, d

shows the results of fork detection and fork grouping,

respectively.

The groups of fork pixels that are retained are

characterized by line segments that describe the crack

feature. The RANSAC algorithm [51] is used to

perform line fitting since it is robust to the presence

of outliers in the input data. The RANSAC algorithm

randomly samples a subset of points from the given

set of data points to perform least-squares line fitting.

The data points whose distances from the fitted line

are above a certain threshold are considered as out-

liers, whereas the remaining data points are consid-

ered to be inliers. If the number of inliers is above a

certain percentage of the total number of data points,

the least-squares line fitting is performed again but

the input data points are restricted to the inlier set. If

the inlier set is not large enough, the above proce-

dure is repeated on a new subset of the input data

points.

In our case, the RANSAC-based line fitting proce-

dure is not restricted to the fork pixels since the

number of candidate fork pixels in a group is typically

not large enough to ensure robust line fitting. Hence, in

addition to the fork pixels within a group, the pixels

between the fork pixels in the skeletonized (i.e., thin-

ned) image are considered as well. In order to achieve

this, the candidate fork pixels within a group are or-

dered. The bounding box for the group of candidate

fork pixels is computed. If the width of the bounding

box is larger than the height, the candidate fork pixels

in the group are ordered along the x axis, otherwise

they are ordered along the y axis. If {pi} is the ordered

set of candidate fork pixels within the group, then for

each pair of successive fork pixels (pi, pi+1), a local

window can be defined by using the pixels (pi, pi+1) as

the corner points of the window. The 1-pixels in the

skeletonized image obtained from within all the win-

dows defined for every pair of successive candidate

fork pixels together with the fork pixels are used in the

line fitting procedure. Figure 7 depicts the result of the

RANSAC-based line fitting procedure.

The extraction of the actual crack line segment in

the binary image is based on the parameters of the

fitted line. The primary reason for doing so is that the

line segment representing the actual crack line may be

longer than the line segment defined by the fork pixels.

This is so because the ring structure is weak in the

vicinity of the center of the log cross-section, causing

fork pixels to go undetected. Thus, a 1-pixel in the

binary image is deemed to belong to the actual crack

line segment, if it is both, close to the fitted line and

also spatially connected via a path consisting entirely of

1-pixels to the fork pixels within the group. An itera-

tive depth-first search procedure detailed in [52] is used

to localize the actual crack pixels.

6 Three-dimensional defect reconstruction

using the Kalman filter

Internal defects within the log are observed to exhibit

spatial coherence across several successive CT image

slices, i.e., the appearances of an internal defect in

Fig. 6 Result of crack
detection: a output of the
Sobel-like operators, b result
of thinning the binary image,
c result of fork detection, and
d result of fork grouping
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successive CT image slices share similar attributes,

such as location, shape, size, and grayscale distribution.

Once an internal defect is detected in an image slice, its

attributes in successive slices can be predicted. Thus,

when the attributes of an internal defect in previous

image slices are known, it is much more efficient to

predict its attribute values in succeeding image slices

and then compute the actual attribute values by using

the predicted values as the starting point. Defect cor-

respondence between successive slices is automatically

established in this scheme thus precluding the need to

perform correspondence analysis independently for

each pair of successive image slices. The result is a

computationally more efficient defect extraction and 3-

D defect reconstruction procedure. The Kalman filter

is adopted as the prediction scheme for this purpose.

Computationally efficient algorithms for detection of

knots, holes, and cracks are designed to take advantage

of the predicted defect attribute values resulting from

the Kalman filter. Continuous defect tracking and 3-D

construction across CT image slices are achieved by

iteratively repeating the process of Kalman filter-based

prediction and fast defect extraction.

Knots, holes, and cracks exhibit very different geo-

metrical attributes in a 2-D image slice and hence have

different Kalman filtering models. A knot can be

approximated by a homogeneous region bounded by a

convex contour. The convexity assumption enables

efficient geometric computation. A crack is usually

long and thin and is approximated by a line segment. A

hole usually has a smaller cross-sectional area and can

be represented by a rectangular bounding box. In

addition, the outer boundary of the log cross-section is

also detected and tracked across CT image slices in

order to virtually reconstruct the entire log in 3-D

space.

6.1 Three-dimensional reconstruction of knots and

the exterior log surface

The knots and the outer boundary of the log cross-

section can be simply encoded by using the positions of

their centroids and enumerating the pixels on their

respective bounding contours. However, the raw con-

tour pixels cannot be used directly as the tracked/pre-

dicted variables in the Kalman filter model for two

reasons:

1. The number of contour pixels for a single knot

defect may vary significantly in different image

slices. This makes formulation of the model a dif-

ficult task.

2. It is computationally inefficient to use too many

tracked/predicted variables in the Kalman filter.

In addition, the complexity of geometrical compu-

tation for a nonconvex contour is much higher than

that for a convex contour. This is an important con-

sideration in a lumber production planning system,

where a significant amount of geometrical computation

is entailed in determining the contour(s) of intersection

of a knot (or the exterior log surface) and the sawing

plane. Thus, it is desirable to encode a knot defect or

the exterior log boundary in a single CT slice using a

convex hull defined by a small number of points. A B-

spline contour approximation algorithm can be used to

determine the control points of the convex hull. The

control points are then used as the tracking parameters

in the Kalman filtering model. In this section, the

Kalman filter model for 3-D reconstruction of knots

and the outer surface of the log is described.

The Kalman filter model for the reconstruction of

knots is depicted in Fig. 8 and is described as follows:

1. Initially, a knot defect area is detected in a single

CT image using the technique described in Sect.

5.1.

2. The contour of the knot defect is extracted and its

convex hull is computed. M B-spline control points

are then used to approximate the convex hull.

3. The Kalman filter is applied to predict the

‘‘velocity’’ of the knot defect. Here, the term

velocity denotes the rate at which the shape of the

knot changes across successive CT image slices.

Let dx denote the velocity component along the x

axis and dy the velocity component along the y

axis. Let s denote the scale parameter in the time

interval [t, t + 1] such that s = 0 denotes the fact

that the object size is unchanged in the time

interval [t, t + 1], s > 0 denotes that the object size

Fig. 7 The result of the RANSAC-based line fitting procedure
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has increased and s < 0 denotes that the object size

has shrunk in the same time interval. If at time t,

the centroid of the convex hull is given by (cx, cy),

and the velocity by (dx, dy, s), then for a point

(x, y) on the convex hull at time t, its position

(x¢, y¢) at time t + 1 can be computed using (4).

x0 ¼ xþ dx þ sðx� cxÞ
y0 ¼ yþ dy þ sðy� cyÞ

ð4Þ

4. The predicted velocity (dx, dy, s) is used to estimate

the new position of the predicted convex contour

using (4). The updated convex contour is obtained

by using the predicted convex contour to initialize

the Snakes contour fitting algorithm. The Snakes

contour fitting algorithm is used to search for the

actual boundary of the knot in the new CT image

slice.

5. Steps 2, 3, and 4 are repeated until all the CT im-

age slices are processed or the size of the knot is

too small to be classified as a valid knot.

Since the above algorithm uses a combination of

Kalman filter-based prediction and contour fitting

using Snakes, it is termed as the Kalman Snakes

algorithm. The Kalman Snakes algorithm for recon-

struction of the exterior log surface is similar, except

for some differences in how the convex hull points are

generated. The algorithm for convex hull generation is

given in the following subsection. The details of the B-

spline contour approximation algorithm and Kalman

filter-based prediction can be found in [55].

6.1.1 Convex hull extraction

Given N 2-D contour points, there exists a subset

consisting of M of the N contour points such that these

M contour points define a convex contour and each of

the original N contour points is either enclosed by this

convex contour or is a vertex of the convex contour.

The M contour points described above constitute the

convex hull of the original N contour points. Graham’s

algorithm [53] allows for the efficient computation of

the convex hull. Graham’s algorithm can be briefly

described as follows.

The top most point from the original point set is

chosen as the starting point. All other points in the

original point set are sorted in clockwise order based

on their angles formed with the topmost point.Gra-

ham’s algorithm iteratively adds a new point pi from

the sorted point array in to the convex point set; and

checks whether the point pi-1 added prior to pi vio-

lates the convexity relationship with respect to points

pi and pi-2 where pi-2 is the point added prior to point

pi-1. Point pi-1 is deleted if it violates the convexity

relationship. The details of Graham’s algorithm can

be found in [53]. Figure 9 depicts an example of a set

of the original points where point p0 is chosen as the

starting point. The other points are sorted and

sequentially added to the convex point set. Points p2

and p7 are removed because they do not comply with

the convexity relationship. The complexity of

Graham’s algorithm is O(N log N). In order to

reduce the computational complexity, we resample

Fig. 8 An outline of the
Kalman Snakes-based
tracking method
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the contour points (increase the sampling interval) in

order to reduce N before Graham’s algorithm is ap-

plied.

It is empirically observed that the error resulting

from approximating the contour of a knot defect in a

single CT image slice with its convex hull is relatively

insignificant since most knot contours are very close

to being convex in shape. The outer boundary of a

log cross-section, as it appears in a single CT image

slice, is also close to being a convex contour in shape.

However, since the outer boundary is large, there is a

possibility of treating large void areas as normal

wood when approximating a slightly nonconvex outer

boundary by its convex hull. Therefore, it is neces-

sary to check the difference between the original

outer boundary and its convex hull approximation

using the following procedure. Let P denote an or-

dered sequence of the contour points belonging to

the outer boundary of the log cross-section. The

contour points in P that belong to the convex hull

are marked. All possible subsequences in P, such that

the endpoints of each subsequence are convex hull

points and all other points in the subsequence are

nonconvex hull points, are generated. Each such

subsequence of points defines a region which is in-

cluded in the convex hull but does not belong to the

interior of the actual contour. The convex hull of

each such region, with an area above a predefined

threshold, is also stored as part of the contour data in

addition to the convex hull of the actual contour. For

example, consider the sequence of points p0, p1,...,p8

in Fig. 9. If the original order of the contour points is

p0, p1, p2, p3, p4, p5, p6, p7, p8, then based on the

aforementioned algorithm, the subsequences that

need to be stored are p1, p2, p3 and p6, p7, p8

(Fig. 10). On the other hand, if the original order of

the points is p0, p1, p3, p2, p4, p5, p6, p7, p8, then

based on the aforementioned algorithm, the subse-

quences that need to be stored are p4, p2, p3 and

p6, p7, p8 (Fig. 11).

6.1.2 Active contour modeling using Snakes

Snakes is an active contour modeling method used to

represent and extract deformable contours in an image.

Given an initial contour, Snakes evolve to the actual

contour by minimizing an energy function, such as the

one given in (5). Usually, the Snakes energy function is

a sum of two terms, the first representing the internal

energy and the second the external energy. The inter-

nal energy term imposes a smoothness constraint on

the object shape whereas the external energy terms

pull the points on the Snakes contour towards the ac-

tual object boundary. The internal energy term, which

includes the sum of the distances between successive

Snakes contour points and the sum of the second-order

differences of the Snakes contour points, ensures

smoothness and compactness of the object shape. The

external energy term in (5) contains the image gradi-

ent, which tends to pull the Snakes contour points to-

wards the image pixels with high gradient values.

Es ¼
X

aj _xðsÞj þ bj€xðsÞj þ EextðxðsÞÞ
¼
X

ajvi � vi�1j þ bjvi�1 � 2vi þ viþ1j
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

internal energy

þ �cjrIðviÞj
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
external energy

ð5Þ

If the image gradient values are very low in the

vicinity of the Snakes contour points, there are no

external forces to pull the Snakes contour points to-

wards the edge points. Hence, in this situation, the

Snakes contour points, although smooth, provide a

very poor fit to the actual edge pixel data. For example,

the interior of knot defects is usually homogeneous and

strong image gradient values exist only along the outer

boundary of the knots. Thus, a Snakes contour that is

initialized with image pixels within the interior of a

knot would not converge on the outer boundary of the

knot. In a more complicated situation, a small image

gradient value within the interior of the knot could

Fig. 9 An example to illustrate Graham’s convex hull finding
algorithm

Fig. 10 Order of the original contour points
p0, p1, p2, p3, p4, p5, p6, p7, p8
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draw the Snakes contour points towards the interior of

the knot from which it may never recover. There are

many methods proposed to tackle the Snakes contour

fitting problem within homogeneous image regions. Xu

and Prince [54] have proposed a gradient vector flow

technique, which iteratively propagates the gradient

value from a pixel with high gradient value to the

neighboring pixel locations, thus producing a gradient

vector flow. This technique solves the problem caused

by the presence of locally homogeneous regions when

performing Snakes contour fitting, but is computa-

tionally intensive as several iterations are needed to

establish the vector flow over the entire image. More-

over, when a hole exists within the interior of a knot

resulting in strong gradient values around the hole, the

gradient vector flow algorithm only makes the situation

worse.

A knot region in a single CT image slice can be

extracted by using a binarization technique, which al-

lows for a much simpler solution to the problem caused

by the presence of homogeneous regions in the image.

If a point belongs to the interior of the knot, a force

can be designed to move this point away from the

centroid of the knot thus causing it to approach the

actual outer boundary of the knot. If a point does not

belong to the knot, a force can be designed to move

this point towards the centroid of the knot thus

bringing it closer to the outer boundary of the knot.

The redesigned external energy equation Eext = -

sign(Tk – D(vi))|vi – C| has this property. Here C is the

centroid of the knot, DðviÞ ¼ 1=M2
P
ðx;yÞ2WðviÞ Fðx; yÞ

is the grayscale density at Snakes contour point vi

measured in a local window W (vi) of size M · M

centered at vi, F(x,y) is the image intensity function, Tk

is the binarization threshold for knots and sign(x) = 1 if

x ‡ 0; and sign(x) = – 1 otherwise. If D(vi) ‡ Tk,

then vi is a knot point and larger |vi – C| values will

result in lower energy since sign(Tk – D(vi)) = – 1. On

the other hand, if D(vi) < T, then vi is not a knot point

and smaller |vi – C| will result in lower energy since

sign(Tk – D(vi)) = 1. Note that the computation of the

grayscale density D(vi) is fairly robust to the presence

of small holes within the interior of the knot as long as

the overall area covered by the holes within the win-

dow W(vi) is a small fraction of the window size M2.

The redesigned energy function can be expressed as

follows:

Es ¼
X

ajvi � vi�1j þ bjvi�1 � 2vi þ viþ1j
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

internal energy

þ signðTk �DðviÞÞjvi � Cj
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

external energy

ð6Þ

in which Tk is the chosen binarization threshold for

knots, D(vi) is the grayscale density value at Snakes

contour point vi, and C(x,y) is the centroid of the

Snakes contour which is a good approximation to the

centroid of the knot. This redesigned Snake contour

fitting technique is termed as Binary Snakes fitting in

this paper.

The Binary Snakes fitting technique can be used to

extract both knots and the outer log cross-section

boundaries in a single CT image slice. The only dif-

ference is that in the case of the outer log boundaries

the binarization threshold is much smaller than the one

used for knots and the window size M can be just 1

since the grayscale difference between the interior and

exterior of the log cross-section is typically quite sig-

nificant. Figure 12a,b depict the results of Binary

Snakes contour fitting for knot extraction on two CT

image slices.

6.1.3 Kalman Snakes

The Snakes contour fitting algorithm converges to the

actual boundary in much fewer iterations if the initial

Snakes contour points are chosen close enough to the

actual boundary. Therefore it is natural to combine the

Kalman filtering algorithm with the Snakes fitting

algorithm, where the Kalman filter is used to predict

the initial locations of the Snakes contour points in the

new CT image slice given the locations of the boundary

points in previous CT image slices. A hybrid velocity-

and contour-based Kalman filter model proposed by

Koller et al. [56, 57] is used in this paper. The model

can be described using the following equations:

n�kþ1 ¼ nþk þ qk ð7Þ

Zk ¼ Hkn
�
k þ vk ð8Þ

X�kþ1 ¼ Xþk þHknk ð9Þ

ZX
k ¼ X�k þ vk ð10Þ

Fig. 11 Order of the original contour points
p0, p1, p3, p2, p4, p5, p6, p7, p8
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Equation (7) represents the velocity transition

function, (8) the velocity measurement function, (9)

the contour transition function, and (10) the contour

measurement function. Each of the two pairs of (7) and

(8), and (9) and (10) constitute a standard linear Kal-

man filter model. Variables with the superscript ‘‘ – ’’

denote the prior estimations or predicted values.

Variables with superscript ‘‘+’’ denote the post esti-

mations or the predicted values after adjustments. The

various variables in (7)–(10) are explained as follows:

nk: The velocity vector at time k. nk = (dx dy s)T

where dx is the speed or velocity component

along the x axis, dy the speed or velocity

component along the y axis and s is the scale

parameter as described in (4).

qk: Random additive noise in the velocity transition

function. It is modeled as zero-mean Gaussian

white noise that follows the distribution

Nð0;QkÞ A time-invariant (i.e., stationary)

noise model is assumed, i.e., Qk = Q0.

vk: Random additive noise in the velocity

measurement function. It is modeled as zero-

mean stationary Gaussian white noise, i.e., vk~
N(0, Rk) where Rk = R0.

Xk: The points along the contour of an object at time

k. Xk = (x1,y1,...,xn,yn)T, which represents the

vector of the B-spline control points in Kalman

Snakes model.

Hk: The measurement matrix given by

Hk ¼
I2 ðX̂þ1;k � CkÞ
..
. . .

.

I2 ðX̂þn;k � CkÞ

0

B
B
@

1

C
C
A where I2 ¼

1 0
0 1

� �

:

Ck:

The centroid of the object at time k.

Zk
X: The control points of the actual contour

obtained from the Snakes fitting algorithm.

Zk: The actual velocity measurement used for

velocity predictiongiven by Zk = Zk
X – Xk

–.

The Kalman filtering algorithm can be explained as

follows:

1. Given the adjusted velocity prediction (postpre-

diction) nk
+ at time k, predict the velocity at time

k + 1 using nk+1
– = nk

+ + q where initially, n0
+ = (0 0

0)T.

2. Predict the positions of the contour control points

Xk+1
– using nk+1

– : Xk+1
– = Xk

+ + Hk
+nk+1

– .

3. Compute the prior-covariance of the velocity

transition function: pk+1
– = pk

+ + Q.

4. Based on the predicted contour control points,

compute the actual contour control points Zk+1 at

time k + 1 using the Snakes fitting technique and

compute the error as ~Zkþ1 ¼ Zkþ1 �X�kþ1:

5. Compute the postcovariance for the transition

function as (pk+1
+ )–1 = Hk+1¢R–Hk+1 + (pk+1

– )–1

where H¢ is the transpose of H.

6. Compute the postcovariance of the measurement

function: (Pk+1
+ )–1 = R–1 + (Pk+1

– )–1.

7. Compute the postprediction for the velocity:

n̂þkþ1 ¼ pþkþ1ðH0kþ1R�1 ~Zkþ1 þ p�1
kþ1n̂

�
kþ1Þ:

8. Compute the postprediction for the contour con-

trol points: X̂þkþ1 ¼ Pþkþ1ðR�1 ~Zkþ1 þ ðP�kþ1Þ
�1

X̂�kþ1Þ:

For further details on the Kalman filter, the inter-

ested reader is referred to [55].

6.2 Three-dimensional construction of holes

and cracks

The Kalman filter-based model for 3-D reconstruction

of cracks and holes is given by the following equations:

Fig. 12 Experimental results
of Binary Snakes contour
fitting for knot extraction: a
CT image slice 28, and b CT
image slice 34
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n̂�kþ1 ¼ n̂þk þ qk ð11Þ

Zk ¼ n̂�k þ vk ð12Þ

where n̂ is the tracking variable and Zk is the measured

value of the tracking variable. The contour of a hole is

encoded by its bounding rectangle. The velocity of the

center point of the rectangle n = (nx, ny)T is used as the

tracking variable in the tracking model for holes. Gi-

ven a prediction n̂�kþ1; the new center point of the hole

is computed. A rectangular image region centered on

the predicted center point is then subject to binariza-

tion using (3) and the new location of the hole is ob-

tained exactly using the technique for hole detection in

a single CT image slice. Thus, the 3-D reconstruction of

a hole is achieved by tracking the hole region across

successive CT image slices. The need for explicit cor-

respondence analysis between hole regions extracted

independently in successive CT image slices is thus

averted.

The orientation angle h of the line segment repre-

senting a crack is used as the tracking variable n in the

Kalman filter-based tracking model for a crack. After a

crack is detected and extracted in the previous CT

image slices, its orientation angle in succeeding CT

image slices is predicted using (11). A fast crack

localization scheme is used to extract the crack in

succeeding CT image slices using the predicted orien-

tation. For continuous crack detection, the image is

first binarized using the scheme described in [52]. The

crack detected in the previous CT image slice is rep-

resented by the parameters (q, h, x0, y0, l) where

(x0, y0) is the crack center and l the length of the line

segment describing the crack. The crack line is de-

scribed by the equation x cos h + y sin h = q. The ac-

tual orientation angle of the crack in a succeeding CT

image slice may be slightly different from the predicted

value of h. The following search algorithm is used to

determine the value of parameter h.

For each predicted value of h, a rectangle with

height l, width d and orientation h and centered at

point (x, y) is generated as shown in Fig. 13a. Note that

d is a predetermined small value. The image in the

interior of the rectangle is projected along orientation

h, as shown in Fig. 13b, c. The projected values (the

sum of the pixel graylevel values) along the orientation

h are stored in array p(x) where 0 £ x < d. Let

f ðhÞ ¼ max0�x\dpðxÞ: A local search is performed in

the range h� Dh; hþ Dh½ � and the optimal value h* is

chosen such that h� ¼ arg maxh02½h�Dh;hþDh�f ðh0Þ: Given

the new orientation h* and x� ¼ arg max0�x\dpðxÞ; the

line corresponding to the updated crack can be deter-

mined as ðq0; h0Þ ¼ ðx0 cos h � þy0 sin h� � x0; h�Þ
(Fig. 14). Next, the center of the crack line and its

length are updated using the following procedure. A

new rectangle with parameters (l1, d1, x1, y1, h*) is

chosen as shown in Fig. 15a where l1 is the length of

the new rectangle such that l1 > l, d1 is its width, and

(x1, y1) is its center point which is the projection of

point (x0, y0) on the line (q¢, h¢) such that (x1, y1) =

(q¢ cos h¢ – q0 sin h¢,q¢ sin h¢ + q0 cos h¢), where q0

= x0 sin h¢ – y0 cos h¢. Next, the image within the

interior of this rectangle is projected along the direc-

tion perpendicular to line (q¢, h¢) as shown in Fig. 15b.

The largest continuous area in the projection corre-

sponds to the new crack. However, in some cases, the

crack could be broken, therefore all the segments with

length larger than a threshold, where the threshold is

Fig. 13 Crack localization in
the new slice: a rectangle
defining the crack, b image of
the crack in the interior of the
rectangle, and c projected
pixel graylevel values along
the orientation h
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chosen to be larger than the gap between the annular

rings, are connected together to localize the crack. The

two endpoints (x1, y1) and (x2, y2) of the line segment

can be obtained from the locations of the two end-

points of the projection. Thus, the center point and the

length of the updated crack can be computed and the

updated parameters of the crack in the new CT image

slice obtained.

The Kalman filter-based tracking method described

above for the detection and 3-D reconstruction of

crack defects is much faster than detecting crack de-

fects independently in individual CT image slices and

then computing the 3-D reconstruction by establishing

defect correspondence across the CT image slices. This

is so because in the Kalman filter-based tracking ap-

proach, it is not necessary to perform all the steps in-

volved in crack detection and localization (i.e.,

thinning the binarized image, extracting the fork

points, grouping the fork points, performing RAN-

SAC-based line fitting to the grouped fork points, and

performing a search to determine the crack length) in

subsequent CT image slices once they have been per-

formed for the first CT image slice in the image se-

quence. Moreover, by performing the projection to

obtain the length of the cracks, some false cracks can

be removed if their length is too short.

After the defect detection and localization is per-

formed in the new CT image slice using the Kalman

filter-based tracking method described above, the de-

fect areas that are detected and localized are removed

from further consideration. The procedures for defect

detection and localization in a single CT image slice

(i.e., without defect tracking) are applied to the

remainder of the image to search for new defects.

6.3 Removal of false defects and insertion

of missing defects

Spatial coherence is exploited to remove false defects

and account for missing defects in the CT image slices.

If a defect is detected only in one CT image slice, and

no corresponding defect is detected in k previous or k

succeeding CT image slices, where k is a predeter-

mined threshold (in our case k = 2), then the defect is

deemed to have been caused by random noise and is

removed from further consideration. Likewise, when

the size of a defect is small, it is possible that it is not

detected in a single CT image slice. If a defect is de-

tected in CT image slices i – 1 and i + 1 but not in CT

image slice i, then it is necessary to verify whether or

not the defect exists in CT image slice i. The approxi-

mate position of the defect in CT image slice i is

computed via interpolation between its positions in CT

image slices i – 1 and i + 1. The existence of the defect

at the interpolated position in the CT image slice is

verified by using the defect detection and localization

procedure for a single CT image slice (i.e., without

tracking) but with relaxed threshold values. For

example, in the case of a hole, the detection and

localization procedure described in Sect. 5.3 is used but

the value of threshold Th in (3) is chosen to be slightly

higher. If a hole is detected with the relaxed threshold

value, then it is deemed to be a real hole.

The aforementioned techniques for removal of false

defects and insertion of missing defects by exploiting

spatial coherence have been verified using the avail-

able CT image data sets. It was empirically observed

that detection of false knots or insertion of missing

knots is typically not an issue since knots tend to be

fairly large and distinct. Holes, on the other hand,

could be missed if they are small in diameter. However,

after exploiting spatial coherence it was possible to

restore missing hole defects. In the case of crack

defects, the Kalman filter-based tracking technique

Fig. 14 Updating the crack parameters in the new slice

Fig. 15 Determination of the crack length in the new slice: a
Rectangle defining the crack in the new slice, and b projection of
the pixel graylevel values along a direction perpendicular to the
crack line
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described previously was observed to be robust enough

to detect, localize, and compute a 3-D reconstruction

of a crack, once detected and localized in previous CT

image slices. In the case of false cracks and holes,

verifying spatial support from previous and/or suc-

ceeding CT image slices was found to be very effective

in their removal.

7 Experimental results

The proposed Kalman filter-based tracking scheme for

detection, localization, and 3-D reconstruction of

internal defects in hardwood logs from CT image data

was subject to experimental verification and validation.

Experiments were conducted on four sets of log data,

from three popular hardwood species found in the

United States, namely, white ash, red oak, and hard

maple, and were labeled as Ash1, Ash2, Maple, and

Oak, respectively. The cross-sectional CT images of

the hardwood logs were captured using a Toshiba TCT

20AX CT scanner (a third generation CT scanner) with

a pixel resolution of 0.75 mm by 0.75 mm, an intensity

resolution of 8 bits per pixel (i.e., 256 gray levels) and

an image size of 316 · 316 pixels. The scanning of a

4 m log resulted in 224 cross-sectional CT images. All

the programs were run on a 2.0 GHz Pentium 4 Xeon

workstation with 1.5 GB RAM and 1.0 MB of cache

memory.

Figure 16 shows the results of Kalman filter-based

tracking and contour fitting using Binary Snakes for

detection and localization of knots over a continuous

sequence of CT image slices. Figure 17 depicts the

resulting 3-D reconstruction of the knots. Likewise,

Fig. 18 shows the results for detection and localization

of cracks and holes over a sequence of CT images.

Holes are represented by their bounding rectangles.

Rectangles with same color in different image slices

correspond to the same hole. A crack is modeled as a

line, but for the sake of clarity a rectangle is used to

mark its locations (Fig. 18). A semitransparent view of

the log showing its internal defects is depicted in

Fig. 19.

Table 1 summarizes the defect detection perfor-

mance of the proposed scheme for over 224 cross-

sectional CT image slices of hardwood log data Ash1

for each of the three major internal defect types: knot,

hole, and crack. The detection rate, false positive rate,

and false negative rate of the proposed scheme are

computed by comparing the results of the proposed

scheme with those obtained from a human expert

grader examining the physically sawn lumber. Also, the

performance of the previous scheme [13, 14] that de-

tected and localized defects in each CT image slice

independently (i.e., slice by slice without tracking the

defects across multiple CT image slices) was compared

with the performance of the proposed scheme (Ta-

ble 1). Although the Kalman filter-based tracking

scheme did not result in any improvement in the

detection rate or the false positive rate for knots, it did

improve the detection rate for cracks from 94 to 98%

and the false positive rate from 12 to 2% when com-

pared to the scheme that processed and analyzed each

CT image slice independently. Likewise, the proposed

Kalman filter-based scheme did not improve the

detection rate for holes but did improve the false po-

sitive rate from 12 to 3%. Tables 2, 3, and 4 summarize

the performance of the proposed Kalman filter-based

Fig. 16 Results of Kalman filter-based tracking and contour fitting using Binary Snakes contour fitting for detection, localization, and
3-D reconstruction of knots

Fig. 17 Three-dimensional reconstruction of the knots
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tracking scheme for hardwood log data Ash2, Maple,

and Oak, respectively. In all cases, it can be seen that

the proposed Kalman filter-based tracking approach

does improve upon the performance of the scheme that

processes and analyzes each CT image slice indepen-

dently in terms of both, defect detection rate and false

positive rate.

Table 5 compares the average processing time per

CT image slice of the proposed Kalman filter-based

tracking scheme and the scheme that processes and

analyzes each CT image slice independently (i.e., slice

by slice) on the hardwood log data Ash1. In order to

ensure a fair comparison, the detection time for the

outer log boundary and each of the three major

internal defect types, i.e., knot, crack, and hole are

measured and tabulated independently. Note that the

3-D defect reconstruction in the proposed method is

done automatically by using the integrated detection-

tracking scheme, whereas the slice-by-slice scheme

needs extra time to compute the defect correspon-

dences in order to reconstruct the 3-D defect model.

The time used to compute the defect correspondences

varies with the different number of defects and the

methods used to compute the correspondences as

tabulated in our previous work [13]. Note that the time

taken to compute the defect correspondences is not

Fig. 18 Results of Kalman filter-based tracking and contour fitting using Binary Snakes contour fitting for detection, localization, and
3-D reconstruction of cracks and holes

Fig. 19 A semitransparent
view of the log showing its
internal defects

Table 1 The detection rate for the three major defect types on log data Ash1

Detection rate Knot (total 24) Crack (total 112) Hole (total 25)

Correct
detection

False
negatives

False
positives

Correct
detection

False
negatives

False
positives

Correct
detection

False
negatives

False
positives

Slice-by-slice 24 (100%) 0 (0%) 0 (0%) 105 (94%) 7 (6%) 13 (12%) 24 (96%) 1 (4%) 3 (12%)
Tracking 24 (100%) 0 (0%) 0 (0%) 110 (98%) 4 (4%) 2 (2%) 24 (96%) 1 (4%) 1 (4%)

Table 2 The detection rate for the three major defect types on log data Ash2

Detection rate Knot (total 135) Crack (total 22) Hole (total 159)

Correct
detection

False
negatives

False
positives

Correct
detection

False
negatives

False
positives

Correct
detection

False
negatives

False
positives

Slice-by-slice 135 (100%) 0 (0%) 0 (0%) 21 (95%) 1 (5%) 3 (15%) 159 (100%) 0 (0%) 0 (0%)
Tracking 135 (100%) 0 (0%) 0 (0%) 21 (95%) 1 (5%) 1 (5%) 159 (100%) 0 (0%) 0 (0%)
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included for the slice-by-slice method in Table 5,

whereas in the case of the integrated detection-track-

ing scheme, the 3-D model is established automatically.

8 Conclusions and future work

In this paper, a novel feature-based tracking approach

was proposed and implemented for the detection,

localization, and 3-D reconstruction of internal defects

in hardwood logs from cross-sectional CT images. In

contrast to traditional methods, where the defects are

detected and localized independently in individual CT

image slices and the 3-D reconstruction of the defects

accomplished via correspondence analysis across the

various CT image slices, the proposed system inte-

grated defect detection, defect localization, and 3-D

defect reconstruction by incorporating a Kalman filter-

based feature tracking scheme. The defects were

simultaneously detected, classified, localized, and

reconstructed in 3-D space making the proposed

scheme computationally much more efficient than

existing methods. Robust techniques for defect detec-

tion and classification were proposed and imple-

mented. Defect class-specific tracking schemes based

on the Kalman filter were designed which use the

geometric parameters of the defect contours as the

tracking variables. The geometric parameters of the

defect contours are computed using a combination of

B-spline contour approximation and an improvised

Binary Snakes contour fitting procedure termed as

Kalman Snakes. Robust techniques for extraction and

characterization of the external log surface were also

designed. Experimental results on cross-sectional CT

images of hardwood logs from select species such as

white ash, hard maple, and red oak demonstrated that

the proposed scheme was a significant improvement

over the traditinal schemes that processed and ana-

lyzed each CT image slice independently in terms of

both detection accuracy and processing speed. The

results of defect detection, defect localization, and 3-D

defect reconstruction could be used for automatic

planning of log sawing and lumber production strate-

gies, and as an interactive graphical tool for the train-

ing of novice sawyers. These research directions will be

pursued in the near future.
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