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Abstract This paper presents a robust, reliable iris
location system for close-up, grey scale images of a
single eye. The system is meant as a bootstrap or
recovery module for automated iris tracking within
medical applications. We model the iris contour with an
active ellipse, sensitive to intensity gradients across its
perimeter. In this way, we avoid modelling the noisy
appearance of the iris (e.g. corneal reflections). The iris–
sclera intensity transition is modelled at two spatial
scales with Petrou–Kittler optimal ramp filters. The
optimal ellipse is identified by a simulated annealing
algorithm tuned to the problem characteristics. The
system performed accurately and robustly with 327 real
images against substantial occlusion levels and varying
image quality, subject, eye shape and skin colour.

1 Introduction and related work

This paper presents a robust iris location system, espe-
cially designed for close-up images of the eye (Figs. 1, 2).
The system, in its present state, is meant as a single-
image bootstrapping or failure recovery module for an
eye tracker. The eye is assumed to cover a significant
portion of the image acquired by a standard video
camera. The system must be robust to occlusion (e.g.
eyelids), skin and eye shape variations, image quality,
and perform reliably in unstructured, general illumina-
tion conditions. Gaze and iris position within the image
are unconstrained. The primary target is the determi-
nation of the iris centre with an accuracy of 5 pixels in a
360·280 image.

Existing iris and pupil location techniques can be
divided into invasive and non-invasive. Invasive tech-
niques involve the use of one or more devices to be
applied to the subject, in the form of electrodes, con-
tact lenses and even head-mounted photodiodes or
cameras [2]. Non-invasive techniques, instead, do not
make use of external devices, but often rely on special
illumination to highlight relevant eye characteristics.
Classical examples are the so-called Purkinje images
that exploit the reflections of infrared light off the
cornea-lens boundaries [2, 5, 22, 25]. Neither invasive
devices nor structured illumination are admissible in
our case.

The requirement of robustness in uncontrolled con-
ditions of illumination, image quality and iris appear-
ance prevents us from using well-established techniques
introduced to achieve iris recognition for people identi-
fication. Ma et al. [17] use only high-quality, unoccluded
frontal images and detect the limbus (the boundary be-
tween the iris and the white of the eye, also known as
sclera) with a combination of edge detection and Hough
transform. The integro-differential operator used by
Daugman [7, 11] in the iris recognition context proves
very robust, but is restricted to frontal images where the
limbus appears circular. We cannot make similar
assumptions, and we adopt a detection technique based
on active ellipses.

Active ellipses and, in general, active contours have
been widely studied in computer vision [10, 15, 19, 23]
and used, among others, in medical applications [8, 12,
14]. The main problems in our case are iris occlusion,
unwanted features (e.g. corneal reflections) and varying
image quality (e.g. blur, skin type, race). Occlusion is
by far the biggest problem, since part of the iris is
almost invariably covered by the eyelid or, occasion-
ally, by other facial features. This is efficiently com-
bated by a robust active ellipse location algorithm that
recovers the iris shape even from limited parts of the
limbus. Our system maximizes a criterion comparing
intensity variations across the ellipse perimeter (Fig. 3)
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with a model derived from observations. When the el-
lipse overlaps the limbus, the criterion achieves a global
maximum.

We use simulated annealing (SA henceforth) given the
extremely craggy energy landscape. Non-stochastic opti-
mization algorithms tried failed to reach the correct
minimum with comparable consistency in the presence of
occlusions and poor-quality images. In addition, a sto-
chastic minimization algorithm can be initialized from
significantly far-from-target states and still reach the
correct minimum. This is a desirable property in our case,
as no constraints are assumed on the iris position in the
image. We detect the iris independent of other eye fea-
tures, instead of using a complete eye template [1, 3, 6],
because our images do not guarantee that other eye parts
(pupil, eye contours) can be detected reliably. Moreover,
contours occur at different spatial scales (rather sharp

intensity transition between iris and sclera, wide and noisy
one between sclera and eyelid) and some of the features
appear blurred, making location especially difficult.

The rest of this paper is organised as follows. Section
2 presents the modules of our system (pre-processing,
iris modelling, active ellipse location), Section 3 a per-
formance evaluation, and Section 4 our conclusions and
thoughts for future work.

2 System overview

The iris is located by an active ellipse search returning
the estimated position and shape of the iris. The system
incorporates a pre-processing stage designed to suppress
reflections and similar distracting artefacts. Figure 1
sketches the essential system architecture.

Fig. 1 Essential architecture of
the active-ellipse iris detector
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2.1 Input and preprocessing

Reflections and other unwanted artefacts, such as mo-
tion blur, can affect iris location seriously. Corneal
reflections of room lights, for instance, prove particu-

larly disruptive as they introduce distracting, strong
contours. A 10·10 median filter run on the whole image
prior to minimization proved a simple and very effective
solution to combat the effects of artefacts. We can afford
such a relatively large mask (the average image size is

Fig. 3 The segments normal to the ellipse, along with intensities, are analysed by the Petrou–Kittler ramp detectors. The diagrams show
measured intensity profiles along some of the segments (pixel co-ordinates on x axis, intensity values on y axis)

Fig. 4 SA block diagram. T is
temperature, S is current state,
E(S) is the energy state of S.
MC stands for ‘‘move class’’.
All other symbols are explained
in the text
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350·270), compromising texture details, as the algo-
rithm uses only iris boundary information, which is well
preserved by median filtering.

2.2 Iris location via active ellipses

We pose the problem of the location of the elliptical
iris–sclera boundary as an optimization in the param-
eter space of an active ellipse model. The result iden-
tifies the elliptical image contour (location and shape)
which best follows a predicted model of intensity
changes. This block has two key components, the cost
function and the minimization method. They will be
described separately.

2.2.1 Intensity transition model: cost function

The sclera–iris boundary is characterized by a light
(sclera) to dark (iris) transition. The spatial extent of
such a transition depends on many factors, primarily
image resolution and quality, and the particular eye
shape. In images typical for our application and acqui-
sition set-up, it can be between 3 and 12 pixels approx-
imately. We model this transition with two Petrou–
Kittler ramp edges [18] at two different spatial scales.

The ellipse is parametrized by its centre and axes. The
latter are assumed aligned with the image axes, as head
orientation is constrained in our application. The cost

function selects a fixed number n of control points
(usually 30) along the ellipse perimeter, and calculates
the normal to the ellipse at each control point (Fig. 3).
Intensity profiles are extracted along these normals on
both sides of the perimeter, yielding n numerical profiles.
We convolve each of these profiles with two optimal
ramp detection filter masks, introduced by Petrou and
Kittler [18], at two different spatial scales. The graph of
such filters is illustrated in Fig. 2, and their analytical
model is

hðxÞ ¼ eAx½L1 sin ðAxÞ þ L2 cos ðAxÞ�
þ e�Ax½L3 sin ðAxÞ þ L4 cos ðAxÞ� þ L5xþ L6e

sx

þ L7;

for �w £ x £ 0, where w is the filter half-width. The
values of A and L1 ... L7 are tabulated for the two target
spatial scales. The parameter s represents the inverse of
the transition length. We can easily tune the filter for
different values of s by rescaling A and w. These filters
are antisymmetric and therefore unaffected by uniform
changes of illumination. The two-scale filtering scheme
adopted, involving processing signals at separate scales
and combining results, is inspired to [13]. Extensive
testing suggested that two masks optimal for transitions
of 4 and 10 pixels respond well to typical limbus edges
encountered in our target imagery, and poorly to tran-
sitions related to non-iris features such as eyebrows or
eyelashes. As we are interested only in the value of the
filter output in the centre of the normal segments (i.e. on

Fig. 5 Examples of detection
on low-difficulty images:
moderate iris occlusions,
acceptable image quality,
subject looking mostly towards
the camera
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the ellipse perimeter), we compute only one filtered value
per segment. Filtered values are summed over all control
points and over both filter sizes to obtain the criterion to
optimize, c, given below:

c ¼ �
XN

i¼1

Z w

�w
SiðxÞf1ðxÞdxþ

Z w

�w
SiðxÞf2ðxÞdx

� �
; ð1Þ

where N is the number of control points, S_i is the
intensity profile extracted at the control point i and f1
and f2 are the filters at the two different scales.

2.2.2 Optimization scheme

Simulated annealing [21] has been variously used in
computer vision [4, 9, 20]. SA is well-suited to tormented
energy landscapes with several local minima as it can
explore efficiently wide search regions of parameter
space, homing in in promising regions. Figure 4 shows a
sketchy flowchart of our version. A characteristic of SA
is that all its blocks must be specialized for the specific
problem being addressed [21]. A problem-specific move

class ensures sufficiently wide search regions at high
temperatures (initial stages), and focuses search at lower
temperatures (final stages). The number of new ellipses
tested is also progressively reduced with temperature.
The active ellipse is parameterized by a, b (semiaxes),
O_x, O_y (centre co-ordinates), forming a 4D state
vector S. This is initialized at the image centre with a
default size. We do not consider the ellipse orientation in
the image plane as the system is designed for applica-
tions in which the patient’s head is reasonably vertical.
Small inclinations are possible (and indeed included in
our test), as the head is not constrained, but do not upset
the fit enough to introduce orientation as a fifth
parameter to optimize. Notice that the values of key
parameters (number of iterations per loop, temperature
reduction schedule) have been selected through extensive
experimental analysis of the algorithm performance in
varying, controlled conditions [24].

The algorithm is organized in two nested loops, an
inner and an outer loop.
Inner loop A move class (MC) (see below) generates a
new candidate state Scand, for which an energy difference
D=E(Scand)�E(S) is computed. If D<0 (energy

Fig. 6 Examples of detection
for challenging images,
including heavily occluded iris,
lower image quality (e.g. blur,
motion)
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decrease), the new state is accepted and used as the
starting point for the next iteration; else the state is ac-
cepted or rejected using a random acceptance rule (AR).
Both MC and AR depend on the temperature T, con-
trolling the width of the search region. The procedure is
repeated for a number of iterations depending on tem-
perature (see below), and the lowest-energy state
encountered is recorded.

Outer loop The temperature is lowered (affecting both
MC and AR) and the inner loop repeated with a reduced
number of iterations, starting from the best state so far.
The algorithm ends when a stipulated minimum temper-
ature is reached (details below). Typical values in our
experiments areTstart=500 andTend=1, which have been
decided by sampling the cost function over several images
and calculating the relative acceptance ratio, whose
desirable value at high temperature is around 50%.

Move class The new state is generated stochastically,
subject to constraints imposed by expectations on the
iris size. For every new parameter a new candidate
value is generated from a Gaussian distribution cen-
tred in the previous state’s parameter value, and with
standard deviation rnew=Rrold, much in the spirit of
Fast Annealing by Ingber [16]. R controls the search
range, starting from 2 pixels for ellipse centre and 1
pixel for axes lengths and decreasing with an indi-
pendent annealing schedule (see below). Starting stan-
dard deviations are 3 pixels for the axes and 5 pixels
for the centre co-ordinates. These values provide an
adequately large step at high temperature and allows
rapid exploration of large search areas. New states are
tested only if falling within an allowed range reflecting
the likely appearance of the iris in the images. Typical
ranges used are 30–60 pixels for axis lengths and 0.8–
1.2 for the axes’ ratio, reflecting the appearance of the
iris in our images.

Acceptance rule The standard (Metropolis) acceptance
rule proves a simple and effective solution for our case: if
the candidate state brings an energy increase, it is ac-
cepted with a probability e�D/T (notice the dependence
on T).

Annealing schedule the annealing schedule is numeri-
cally tuned to our problem. The temperature is reduced
according to Tnew=Tolda

t+1, where t is the outer loop
index (number of T values so far), and a=0.98. The
number n of new states tested before decreasing T is also
decreased, as annealing proceeds, following

n ¼ Nffiffiffiffiffiffiffiffiffiffi
t þ 1
p þ 100;

where N is the starting value (500). The number n ranges
from 600 (high T) to little over 100 (low T).

The annealing schedule affects the move class via the
range parameter R:

Rnew ¼
1ffiffiffiffiffiffiffiffiffiffi

t þ 1
p þ 0:3

� �
Rold

with all the symbols as above.

3 Experimental results and performance analysis

The current implementation runs on a Pentium 4 PC
workstation, running Matlab 6.5.0 release 13. We used a
database of 327 selected test images of various degrees of
difficulty. Roughly, half of the images have a high degree
of difficulty, including heavily occluded iris, blurred or
unfocused images, images of eyes facing away from the
camera, images of people wearing glasses or a combi-
nation of the above. The images are greyscales of vari-
ous sizes, roughly averaging 350·270 pixel, captured by
a digital camera or a digital camcoder under uncon-
trolled room lighting (Figs. 5 and 6).

The unoptimized and uncompiled Matlab code pro-
cesses one image in about 5 seconds. Previous experi-
ences with porting MATLAB 6 code to target
application platforms with machine-level programming
led to execution speeds up to 20 times higher than
MATLAB prototypes. In our case, this would mean
approximately 10 frames per second.

Ground truth for quantitative tests was established
manually by tracing ellipses following the limbus. We
performed 50 runs on each image, totalling
50·327=16,350 runs. The initial ellipse for all tests is at
the centre of the image, with semiaxes of 40 pixels each.
We compute the difference between estimates of ellipse
parameters and the corresponding ground truth values,
showing the results as error distributions (histograms,
Fig. 9). Good performance is indicated by distributions
centred on zero and vanishing rapidly. An error of under
5 pixels on all parameters is considered a correct detec-
tion. Notice that, as the location of the pupil centre is

Fig. 7 Three examples of misdetection.
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the target, correct location of the centre is more
important than the precise measurements of the iris size
(axes).

In addition to the quantitative analysis below,
we stress that the results indicate excellent stability
(Fig. 7).

Figure 9 shows the error distributions for all the
images. Errors are quite limited: the standard deviation
of the error on b is approximately 4 pixels, and the mean
approximately 3 pixels. The standard deviation of Oy is
less than 10 pixels, and the mean approximately 0. The
errors on b and Oy in both image groups are on average

larger than those on a and Ox, as expected as iris
occlusions occur mostly along the vertical axis (the
limbus is indeed very rarely visible completely).

Figure 8 shows, for each ellipse parameter, the esti-
mated a posteriori cumulative probability of a given
error value in pixels. For instance, we can see that 91.5%
of the Ox histogram falls within the 5-pixel tolerance
interval, suggesting an approximate probability of
91.5% for correct detection (in our definition) of the
horizontal component. For Oy, this figure is 88%. We
notice that, given a 91.5% probability of correct loca-
tion in one attempt, the probability of correct location
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within two independent attempts is 0.993 (probability of
correct detection at the first attempt plus the probability
of correct detection at second attempt given the first
failed). Although two runs on the same image will not be
completely independent, this suggests that running the
algorithm twice provides a high probability of correct
detection, assuming of course there is enough time for
two runs and a criterion to decide which answer is likely
to be the correct one. Possible decision criteria include
the fact that wrong ellipses tend to place iris candidates
outside the eye boundaries or generate candidates
smaller than the average ellipses detected previously.

4 Conclusions and future work

We have presented an iris location system that proves
robust, reliable and accurate with close-up, grey-level
images of an eye. Performance is good in almost all of
the images containing various levels of occlusion, dis-
tracting artefacts, image quality, and different eye shapes
and skin colours. The robustness, reliability and preci-
sion of our system seem comparable with or better than
those reported for other iris/pupil location and tracking
systems, for instance [23] (pupil tracking using statistical
snakes and infrared sequences) or [12] (iris location
using deformable iris models).

It seems appropriate to point out a crucial differ-
ence between iris recognition and the class of appli-
cations we target. Iris recognition assumes that the
subject opens his/her eye to expose the iris to facili-
tating iris location which is sensible given the opera-
tional context of iris recognition systems. We do not
assume, instead, that the subject is asked to expose the
iris; moreover, we do not control either illumination,
or eye, or head motion. The appearance of the iris
then becomes much less predictable, and iris detection
much more complicated. Attempts to deploy edge-
based algorithms followed by search for groups of
edge chains forming ellipses did not meet our reli-
ability targets, and this is the reason why we turned to
active ellipses and stochastic optimisation.

Future work directions include developing a real-time
C version, to be incorporated into an iris tracker, and
incorporating learning models of the iris appearance as
an alternative to active-ellipse location.

5 Originality and contributions

This paper has presented a robust, reliable iris loca-
tion system for close-up, grey scale images of a single
eye. A key contribution is that detection is achieved
with very good reliability even with significant occlu-
sions and uncontrolled illumination. This entirely ori-
ginal work has excellent potential for applications
requiring reliable estimation of the position of the iris,
including medical, transport (e.g. driver monitoring)
and biometrics.
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