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Abstract A special class of graphs is introduced in this
paper. The graphs belonging to this class are charac-
terised by the existence of unique node labels. A number
of matching algorithms for graphs with unique node
labels are developed. It is shown that problems such as
graph isomorphism, subgraph isomorphism, maximum
common subgraph (MCS) and graph edit distance
(GED) have a computational complexity that is only
quadratic in the number of nodes. Moreover, computing
the median of a set of graphs is only linear in the car-
dinality of the set. In a series of experiments, it is dem-
onstrated that the proposed algorithms run very fast in
practice. The considered class makes the matching of
large graphs, consisting of thousands of nodes, compu-
tationally tractable. We also discuss an application of
the considered class of graphs and related matching
algorithms to the classification and detection of abnor-
mal events in computer networks.

Keywords Graph matching Æ Graph
isomorphism Æ Maximum common subgraph Æ Graph
edit distance Æ Median graph Æ Unique node label

1 Introduction

Graph matching has become a very active field of
research [1–3]. In its most general form, graph matching
refers to the problem of finding a mapping f from the
nodes of one given graph g1 to the nodes of another
given graph g2, that satisfies some constraints or opti-
mality criteria. For example, in graph isomorphism
detection [4], mapping f is a bijection that preserves all
edges and labels. In subgraph isomorphism detection [5],
mapping f has to be injective such that all edges of g1 are
included in g2 and all labels are preserved. Other graph
matching problems that require the construction of a
mapping f with particular properties are maximum
common subgraph (MCS) detection [6, 7] and graph edit
distance (GED) computation [8, 9].

The main problem with graph matching is its high
computational complexity, which arises from the fact
that it is usually very costly to find mapping f for a pair
of given graphs. It is a known fact that the detection of a
subgraph isomorphism or a maximum common sub-
graph (MCS), as well as the computation of GED are
NP-complete problems. If the graphs in the application
are small, optimal algorithms can be used. These algo-
rithms are usually based on an exhaustive enumeration
of all possible mappings f between two graphs. Some-
times, application-dependent heuristics can be found
that allow us to eliminate significant portions of the
search space (i.e. the space of all possible functions f),
but still guarantee the correct, or optimal, solution being
found. Such heuristics can be used in conjunction with
look-ahead techniques and constraint satisfaction [5, 10,
11]. For the matching of large graphs, one needs to re-
sort to suboptimal matching strategies. Methods of this
type are characterised by a (often low-order) polynomial
time complexity, but they are no longer guaranteed to
find the optimal solution for a given problem. A large
variety of such suboptimal approaches have been pro-
posed in the literature, based on a multitude of different
computational paradigms. Examples include probabi-
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listic relaxation [12, 13], genetic algorithms [14, 15],
expectation maximisation [16], eigenspace methods [17,
18] and quadratic programming [19].

Another possibility to overcome the problem arising
from the exponential complexity of graph matching is to
focus on classes of graphs with an inherently lower
computational complexity of the matching task. Some
examples of such classes are given in [20–22]. Most re-
cently, in the field of pattern recognition and computer
vision, the class of trees has received considerable
attention [23, 24].

In this paper, another special class of graphs will be
introduced. The graphs belonging to this class are
characterised by the existence of unique node labels,
which means that each node in a graph possesses a node
label that is different from all other node labels in that
graph. This condition implies that, whenever two graphs
are being matched with each other, each node has at
most one candidate for possible assignment under
function f in the other graph. This candidate is uniquely
defined through its node label. Consequently, the most
costly step in graph matching, which is the exploration
of all possible mappings between the nodes of the two
graphs under consideration, is no longer needed.
Moreover, we introduce matching algorithms for this
special class of graphs and analyse their computational
complexity. Particular attention is directed to the com-
putation of graph isomorphism, subgraph isomorphism,
MCS, GED and median graph computation.

If constraints are imposed on any class of graphs, we
usually lose some representational power. The class of
graphs considered in this paper is restricted by the
requirement of each node label being unique. Despite this
restriction, there exist some interesting applications for
this class of graphs. From the general point of view,
graphs with unique node labels seem to be appropriate
whenever the objects from the problem domain, which are
modelled through nodes, possess properties that can be
used to uniquely identify them. We review one particular
application of this class of graphs in the domain of com-
puter networkmonitoring. Another application of graphs
with unique node labels isWeb document analysis. In this
case, each unique term (word) that occurs in a document is
represented by a node.Multiple occurrences of a term are
represented by the same node. In this application, the
considered class of graphs has been used for the tasks of
classification and clustering ofWeb pages, and has shown
superior performance over traditional vector-based ap-
proaches. For further details, see [25–27].

The remainder of this paper is organised as follows.
In Sect. 2, we introduce our basic concepts and termi-
nology. Graphs with unique node labels and related
matching strategies are presented in Sect. 3. Potential
applications of this class of graphs are discussed in Sect.
4. In Sect. 5, we present the results of an experimental
study where the run time of some of the proposed
algorithms was measured. Finally, conclusions from this
work are drawn in Sect. 6. An earlier version of this
paper appeared in [28]. The present paper has been

significantly extended in both theory and experimental
evaluation.

2 Basic concepts and notation

In this section, the basic concepts and terminology used
throughout the paper will be introduced. We consider
directed graphs with labelled vertices (nodes) and edges
(links). Let LV and LE denote the sets of node and edge
labels, respectively. A graph g=(V, E, a, b) is a 4-tuple
where V is the finite set of vertices, E � V � V is the set
of edges, a: V fi LV is a function assigning labels to the
nodes and b: E fi LE is a function assigning labels to
edges. Edge (x, y)2E originates at node x2V and ter-
minates at node y2V. An undirected graph is obtained
as a special case if there exists an edge (y, x)2E for every
edge (x, y)2E with b(x, y)=b(y, x).

Let g=(V,E,a,b) and g¢=(V¢,E¢,a¢ ,b¢) be graphs; g¢ is
a subgraph of g, g0 � g if V 0 � V ; E0 � E; a xð Þ ¼ a0 xð Þ for
all x2V¢ and b(x, y)=b¢(x, y) for all (x, y)2E¢. Let
g � g0 and g � g00:Then, g is called a common subgraph of
g¢ and g¢¢. Furthermore, g is called a maximum common
subgraph (notation: MCS) of g¢ and g¢¢ if there exists no
other common subgraph of g¢ and g¢¢ that has more nodes
and, for a given number of nodes, more edges than g.

For graphs g and g¢, a graph isomorphism is any
bijection f: V fi V¢ such that:

1. a(x)=a¢(x) for all x2V; and
2. For any edge (x, y)2E, there exists (f(x), f(y))2E¢ with

b(x, y)=b¢(f(x), f(y)), and for any edge (x¢, y¢)2E¢,
there exists an edge (f�1(x¢), f�1(y¢))2E with b¢(x¢,
y¢)=b(f�1(x¢), f�1(y¢)).

If f: V fi V¢ is a graph isomorphism between graphs
g and g¢, and g¢ is a subgraph of another graph g¢¢, i.e.
g0 � g00; then f is called a subgraph isomorphism from g
to g¢¢.

Next, we introduce the concept ofGED,which is based
on graph edit operations. We consider six types of edit
operations: substitution of a node label, substitution of an
edge label, insertion of a node, insertion of an edge,
deletion of a node and deletion of an edge. A cost (i.e. a
non-negative real number) is assigned to each edit oper-
ation. Let e be an edit operation and c(e) its cost. The cost
of a sequence of edit operations, s=e1,..., en, is given by
the sum of all its individual costs, i.e. c sð Þ ¼

Pn
i¼1 c eið Þ:

The edit distance d(g1, g2) of two graphs g1 and g2 is equal
to the minimum cost, taken over all sequences of edit
operations, that transform g1 into g2. Procedures forGED
computation are discussed in [8].

Finally, we introduce the median of a set of graphs
[29]. Let G={g1,..., gN} be a set of graphs and U be the
set of all graphs with labels from LV and LE. The median
�g of G is a graph that satisfies the condition:

XN

i¼1
d �g; gið Þ ¼ min

XN

i¼1
d g; gið Þjg 2 U

( )
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It follows that the median is a graph which has the
minimum average edit distance to the graphs in set G. It
is a useful concept to represent a set of graphs by a single
prototype. Intuitively, the median can be understood as
an optimal representative of a set of graphs since it has,
in the universe of all graphs, the smallest average dis-
tance to the given graphs. In many instances, the median
of a given set G is not unique, neither is it always a
member of G. The use of the term ‘‘median graph’’
seems appropriate because of its analogy to the median
of a set of numbers; both minimise the average absolute
difference to the members in the set.

3 Graphs with unique node labels

In this section, we introduce a special class of graphs
that are characterised by the existence of unique node
labels. Formally, we require that, for any graph g and
any pair x, y2V, the condition a(x) „ a(y) holds if x „ y.
Furthermore, we assume that the underlying alphabet of
node labels is an ordered set, for example, the integers,
i.e. LV={1, 2, 3,...}. Throughout the rest of this paper,
we consider graphs from this class only, unless otherwise
mentioned.

Definition 1 Let g=(V, E, a, b) be a graph. The label
representation q(g) of g is given by q(g)=(L, C, k),
where:

1. L={a(x)|x2V}
2. C={(a(x), a(y))|(x, y)2E}; and
3. k: C fi LEwith k(a(x), a(y))=b(x, y) for all (x, y)2E.

According to this definition, the label representation
of a graph g is obtained by representing each node of g
by its (unique) label and dropping set V. From the for-
mal point of view, q(g) defines the equivalence class of
all graphs that are isomorphic to g. The individual
members of this class are obtained by assigning an
arbitrary node, or, more precisely, an arbitrary node
name, to each unique node label, i.e. to each element
from L.

Example 1 Let LV={1, 2, 3, 4, 5} and g=(V, E, a, b)
where V={a, b, c, d, e}, E={(a, b), (b, e), (e, d), (d, a),
(a, c), (b, c), (d, c), (e, c), (a, e), (b, d)}, a: a ´ 1, b ´ 2,
c ´ 5, d ´ 4, e ´ 3, b: (x,y) ´ 1 for all (x, y)2E. A
graphical illustration of g is shown in Fig. 1a, where the
node names (i.e. the elements of V) appear inside the
nodes and the corresponding labels appear outside. Be-
cause all edge labels are identical, they have been omit-
ted. The label representation q(g) of g is then given by
the following quantities: L={1, 2, 3, 4, 5}, C={(1, 2), (2,
3), (3, 4), (4, 1), (1, 5), (2, 5), (4, 5), (3, 5), (1, 3), (2, 4)},
k : i; jð Þ7!1 for all (i, j)2C.

Intuitively, we can interpret the label representation
q(g) of any graph g, as a graph identical to g up to the
fact that all node names are left unspecified. Hence, q(g)

can be conveniently graphically represented in the same
way as g is represented. For example, a graphical rep-
resentation of q(g), where g is shown in Fig. 1a, is given
in Fig. 1b.

Lemma 1 Let g1=(V1, E1, a1, b1), g2=(V2, E2, a2, b2)
be two graphs and q(g1)=(L1, C1, k1), q(g2)=(L2, C2,
k2) be their label representations. Graph g1 is isomorphic
to graph g2 if and only if q(g1)=q(g2) (i.e. L1=L2,
C1=C2 and k1=k2).

Proof Assume that there exists a graph isomorphism f:
V1 fi V2. Then, a1(x)=a2(f(x)) for all x2V1. As f is
bijective, it follows that L1=L2. Furthermore, because
of the conditions on the edges that are imposed by graph
isomorphism f, we conclude that C1=C2 and k1=k2.
Conversely, assume that q(g1)=q(g2). Construct now
the mapping f: V1 fi V2 such that f(x)=y if and only if
a1(x)=a2(y). Because L1=L2 and the node labels in both
g1 and g2 are unique, this mapping is a bijection that
satisfies the conditions of graph isomorphism imposed
on the edges and edge labels in g1 and g2.

Based on this lemma, we can examine two graphs for
isomorphism by simply generating their label represen-
tations and checking the conditions L1=L2, C1=C2

and k1=k2. Assume n=max{|V1| , |V2| }. Then, L1j j ¼
L2j j ¼ O nð Þ; E1j j ¼ C1j j ¼ O n2

� �
and E2j j ¼ C2j j ¼

O n2
� �

: Testing two ordered sets for identity is an oper-
ation that is linear in the number of elements. Hence,
the computational complexity of testing two graphs
with unique node labels for isomorphism amounts to
O n2
� �

:

Lemma 2 Let g1, g2, q(g1) and q(g2) be the same as in
Lemma 1. Then, g1 is a subgraph isomorphic to g2 if and
only if L1 � L2; C1 � C2 and k1(i, j)=k2(i, j) for all (i,
j)2C1.

Proof Firstly, we assume that there exists a subgraph
isomorphism f: V1 fi V2. Then, a1(x)=a2(f(x)) for all
x2V1. As f is injective, it follows that L1 � L2: Similarly
to the proof of Lemma 1, we conclude C1 � C2 and
k1(i, j)=k2(i, j) for all (i, j)2C1. Conversely, assume
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Fig. 1a, b Example graph g and its label representation. a Example
graph g. b Label representation of g
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L1 � L2; C1 � C2 and k1(i, j)=k2(i, j) for all (i, j)2C1.
Then, we can construct an injective mapping f:
V1 fi V2 such that f(x)=y if and only if a1(x)=a2(y).
Similarly to the proof of Lemma 1, it follows that this
mapping is a subgraph isomorphism from g1 to g2.

Using Lemma 2, testing two graphs for subgraph
isomorphism reduces to examining the corresponding
label representations for the three conditions
L1 � L2; C1 � C2 and k1(i, j)=k2(i, j) for all (i, j)2C1.
The third condition can be checked in O C1j jð Þ ¼ O n2

� �

time. Checking whether an ordered set is a subset of
another ordered set is linear in the size of the larger of
the two sets. Hence, the computational complexity of
subgraph isomorphism of graphs with unique node la-
bels equals O n2

� �
:

Lemma 3 Let g1, g2, q(g1) and q(g2) be the same as in
Lemma 1. Let g be a graph with q(g)=(L, C, k) such
that L=L1\L2, C={(i, j)|(i, j)2C1\C2 and k1(i, j)=k2(i,
j)} and k(i, j)=k1(i, j) for all (i, j)2C. Then, g is an MCS
of g1 and g2.

Proof First, we note that L � L1 and L � L2: Hence,
V � V1 and V � V2: for any graph g with label repre-
sentation q(g)=(L, C, k). Similarly, because C in-
cludes a pair (i, j) if and only if a corresponding edge
with identical label exists in both g1 and g2, we ob-
serve E � E1 and E � E2: for any such graph g.
Thirdly, the labels of edges (x, y) occurring in both g1
and g2 are preserved under k. Hence, g is a subgraph
of both g1 and g2. Now assume that g is not an MCS.
In this case, there must exist another subgraph g¢ of
both g1 and g2 with either more nodes than g, or the
same number of nodes, but with more edges. The first
case contradicts the way set L is constructed; if g¢ has
more nodes than g, then L „ L1\L2. The second case
is in conflict with the construction of C and k, i.e. if g¢
has the same number of nodes as g, but more edges,
then C and k must be different from their values
stated in Lemma 3. Hence, g must be indeed an MCS
of g1 and g2. The proof follows.

Possible computational procedures implied by
Lemma 3 are again based on the intersection of two
ordered sets. Hence, the complexity of computing
the MCS of two graphs with unique node labels is
O n2
� �

:
In [30], a detailed analysis was provided showing

how GED depends on the costs associated with the
individual edit operations. A set of edit operations to-
gether with their cost is also called a cost function. In
this paper, we focus our attention on the following cost
function: cnd(x)=cni(x)=1, cns(x)=¥, ced(x, y)=cei(x,-
y)=ces(x, y)=1, where cnd(x), cni(x) and cns(x) denote
the cost associated with the deletion, insertion and
substitution of node x, while ced(x, y), cei(x, y) and
ces(x, y) denote the cost associated with the deletion,
insertion and substitution of edge (x, y), respectively.

This cost function is simple in the sense that each edit
operation has a cost equal to 1, except for node sub-
stitutions, which have infinite cost. It is easy to see that,
for any two graphs, g1 and g2, there always exists a
sequence of edit operations that transforms g1 into g2
with a finite total cost (for example, a sequence that
deletes all nodes and edges from g1, and inserts all
nodes and edges in g2). Hence, edit operations with
infinite cost will never be applied in the computation of
any actual GED. This means that node substitutions
will never be applied and may be considered non-
admissible under the cost function introduced above,
while all other edit operations can be applied and have
the same cost. The exclusion of node substitutions for
graphs with unique node labels makes sense since node
label substitutions may generate graphs with non-un-
ique node labels, i.e. graphs that do not belong to the
class of graphs under consideration.

Lemma 4 Let g1, g2, q(g1) and q(g2) be the same as in
Lemma 1. Furthermore, let C0={(i, j)|(i, j)2C1\C2} and
C0

‘={(i, j)|(i, j)2C1\C2} and k1(i, j) „ k2(i, j).
Then d g1; g2ð Þ ¼ L1j j þ L2j j � 2 L1 \ L2j j þ C1j j þ C2j j�
2 C0j j þ C00

�
�
�
�:

Proof Because node substitutions can be regarded
non-admissible, the minimum cost sequence of edit
operations transforming g1 into g2 assigns each node
x2V1 with label a1(x) to node y2V2 with a1(x)=a2(y).
If no node y2V2 exists with this property, node x is
deleted from g1. Similarly, all nodes y2V2 for which
no node x2V1 exists with a1(x)=a2(y) will be inserted
in g2. This leads to L1j j � L1 \ L2j j node deletions in
graph g1 and L2j j � L1 \ L2j j node insertions in graph
g2, each having a cost equal to 1. Hence, the total cost
arising from edit operations on the nodes of g1 and
g2 amounts to L1j j� L1 \ L2j jþ L2j j� L1 \ L2j j¼
L1j j þ L2j j�2 L1 \ L2j j:
We now consider the edges. There exist C1j j � C0j j

edges in g1 that do not occur in g2, and need to be
deleted. Similarly, there exist C2j j � C0j j edges in g2 that
do not have a counterpart in g1, and need to be inserted.
Furthermore, there are two types of edges corresponding
to the set C1 \ C2j j: The first type are edges (i, j)2C0, for
which k1(i, j)=k2(i, j). No edit operations are needed for
edges of this kind. The second type are edges (i, j)2C0

¢,
for which k1(i, j) „ k2(i, j). An edge substitution with a
cost of 1 is needed for each such edge. Hence, the total
cost of the edit operations on the edges of g1 and g2 is
equal to C1j j � C0j j þ C2j j � C0j j þ C00

�
�
�
� ¼ C1j j þ C2j j�

2 C0j j þ C00
�
�
�
�: This concludes the proof.

Possible computational procedures for GED com-
putation implied by Lemma 4 are based again on the
intersection of two ordered sets. Hence, similarly to all
other graph matching procedures considered before, the
complexity of edit distance computation of graphs with
unique node labels is O n2

� �
:
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Finally, we turn to the problem of computing a
graph g that is the median of a set of graphs G={g1,...,
gN} with unique node labels. In the remainder of this
section, we assume, for the purpose of notational
convenience, and without restricting generality, that all
graphs under consideration are complete. That is, there
is an edge (x, y)2E between any pair of nodes x, y2V
for any considered graph g. ‘‘Real’’ edges can be easily
distinguished from ‘‘virtual’’ edges by including a spe-
cial null symbol in the edge label alphabet LE and
defining b(x, y)=null for any virtual edge. The benefit
we get from considering complete graphs is that the
only necessary edit operations on the edges are substi-
tutions. In other words, any edge deletion or insertion
now becomes a substitution that involves the null label.
No conflicts will arise from this simplification because
the cost of edge substitutions, deletions and insertions
are the same.

Let q(g1),..., q(gN) be the label representations of
g1,..., gN. Define LU ¼

SN
i¼n Li and CU ¼

SN
i¼n Ci: Fur-

thermore, let c(i) be the total number of occurrences of
node label i2LU in L1,..., LN. Note that (1 £ c(i) £ N).
Formally, c(i) can be defined through the following
procedure:

c(i)=0;
for k ¼ 1 to N do

if i 2 Lk then c ið Þ ¼ c ið Þ þ 1
Next, we define q(g)=(L, C, k) such that:

1. L={i|i2LU and c(i)‡N/2};
2. C={(i, j)|i, j2L}; and
3. k(i, j)=max_label(i, j),where the function max_labe-

l(I,j) returns the label kk(i, j)2LE that has the maxi-
mum number of occurrences on edge (i, j) in C1,...,
CN. In case of a tie, any of the competing labels kk(i,
j) may be returned.

Lemma 5 Let G and q(g) be as above. Then, any
graph g with a label representation q(g) is a median
graph of G.

Proof The smallest potential median graph candidate
is the graph with an empty set of nodes, while the largest
potential candidate corresponds to the case L=LU. The
second observation is easy to verify because any graph
g* that includes more node labels will have at least one
label k* that does not occur in any of the Li’s. Hence, the
node with label k* will be deleted in all of the distance
computations for d(g*, g), i=1,..., N. Therefore, drop-
ping the node with label k* from g* will produce a graph
with a smaller average edit distance to the members of
G. It follows that, for any median graph g with node
label representation q(g), the set L must be necessarily a
subset of LU.

If we substitute the expression derived in Lemma 4
into the definition of a median graph given in Sect. 2, we
recognise that any median graph g with node label
representation q(g) must minimise the following
expression:

D ¼ Lj j þ L1j j � 2 L \ L1j j þ Cj j þ C1j j � 2 C01j j þ C001
�
�

�
�

þ . . .þ Lj j þ LNj j � 2 L \ LNj j

þ Cj j þ CNj j � 2 C0Nj j þ C00N

�
�

�
�

where we use the following notation (see Lemma 4):

C0k ¼ i; jð Þj i; jð Þ 2 C \ Ckf g and k i; jð Þ ¼ kk i; jð Þ
C00k ¼ i; jð Þj i; jð Þ 2 C \ Ckf g and k i; jð Þ 6¼ kk i; jð Þ

Clearly, D can be rewritten as:

D ¼ N Lj j þ
XN

i¼1
Lij j � 2

XN

i¼1
L \ Lij j þ N Cj j þ

XN

i¼1
Cij j

� 2
XN

i¼1
C0ij j þ

XN

i¼1
C0i
�
�
�
�

Note that all quantities are non-negative integers. As all
Li’s and Ci’s are given, the minimisation of D is equiv-
alent to minimising:

N Lj j � 2
XN

i¼1
L \ Lij j þ N Cj j � 2

XN

i¼1
C0ij j þ

XN

i¼1
C00i

�
�

�
�

First, we analyse the term D1 ¼ N Lj j � 2
PN

i¼1 L \ Lij j: It
is obvious that N|L| will become smaller if we include
fewer nodes in the median graph. On the other hand,

this will also make the term 2
PN

i¼1 L \ Lij j smaller, which
leads to an increase of D1. To find the optimal number of
nodes to be included in the median graph, we consider
each element of L individually and decide whether it
must be included in the median graph or not. From the
definition of D1, it follows that, if a node with label i is
included in the median graph, its contribution to D1 will
be N�2c(i). Conversely, if that node is not included, its
contribution will be zero. Hence, in order to minimise
D1, we include a node with label i in the median graph if
N�2c(i) £ 0, which is equivalent to c(i)‡N/2.

Now consider the term D2 ¼ N Cj j
�2
PN

i¼1 C0ij j þ
PN

i¼1 C00i

�
�

�
�: Assume for the moment that

|C| is a constant that is defined through the choice of L.
Then, we have to minimise �2

PN
i¼1 C0ij j þ

PN
i¼1 C00i

�
�

�
�:

As C0ij j þ C00i

�
�

�
� ¼ C \ C0j j; this is equivalent to maxi-

mising |C0i|. However, such a maximisation is exactly
what is accomplished by the function max_label. This
function chooses, for edge (i, j), the label that most often
occurs on edge (i, j) in all the given graphs.

So far, we have treated the terms D1 and D2 inde-
pendently of each other. In fact, they are not indepen-
dent because the exclusion of a node with label i from
the median graph implies exclusion of any of its incident
edges (i, j) or (j, i). Therefore, the question arises whether
this dependency can lead to an inconsistency in the
minimization of D=D1+D2 in the sense that decreasing
D1 leads to an increase of D2 by a larger amount, and vice
versa. It is easy to see that such an inconsistency can
never happen. First of all, exclusion of an edge (i, j) for
the sake of minimizing D2 does not imply any constraints
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on inclusion or exclusion of any of the incident nodes i
and j. Second, if node i is not included because
c(i)<N/2, the function max_label will surely return the
null label for any edge (i, j) or (j, i). This is equivalent to
not including (i, j) or (j, i) in the median graph. In other
words, if a node i is not included in the median graph
because c(I)<N/2, the dependency between D1 and D2

leads to also not including all incident edges, which is
exactly what is required to minimize D2. This concludes
the proof of Lemma 5.

In order to derive a practical computational proce-
dure for the computation of a median of a set of graphs
with unique node labels, we need to implement functions
c(i) and max_label(i, j). It is easy to verify that the
complexity of these two functions is O nNð Þ and O n2N

� �
;

respectively. It follows that the median graph compu-
tation problem can be solved in O n2N

� �
time for graphs

with unique node labels.
So far, we have assumed that there are O n2

� �
edges in

a graph with n nodes. There are, however, applications
where the graphs are of bounded degree, i.e. the maxi-
mum number of edges incident to a node is bounded by
a constant j. In this case, all of the expressions O n2

� �

reduce to O nð Þ:
The following theorem summarises all of the results

derived in this section.

Theorem 1 For the class of graphs with unique node
labels, there exist computational procedures that solve
the following problems in quadratic time with respect to
the number of nodes in the underlying graph:

1. Graph isomorphism
2. Subgraph isomorphism
3. Maximum common subgraph
4. Graph edit distance under the cost function intro-

duced earlier in this section

The median graph computation problem can be
solved in O n2N

� �
time where n is the number of nodes in

the largest graph and N is the number of given graphs.

4 Application to computer network monitoring

The performance management of computer networks
is becoming increasingly important as computer net-
works grow in size and complexity. Not surprisingly,
this growth has resulted in an increase in frequency,
type and severity of network problems [31, 32]. In
addition, the dynamic behaviour exhibited by com-
puter networks, in terms of their connectivity and
traffic distributions, has significantly complicated the
role of network performance management. Unusual
activity patterns of network users is often a major
contributor to the dynamic behaviour of these net-
works. Techniques are required to improve network
monitoring and provide proactive detection of net-
work anomalies so that problems can be corrected
before they result in a disruption to services.

In [33, 34], graph similarity measures for network
monitoring and abnormal change detection were pro-
posed. The basic idea is to represent a computer network
by a graph where the nodes represent clients or servers,
and the edges represent physical connections between
clients or servers. A time series of graphs g1, g2,...,gt,
gt+1,..., gn is obtained by measuring the state of a net-
work at regular time intervals and representing each
state by a graph. Measures of network difference that
use graph matching algorithms, such as MCS and GED,
were introduced in [35]. These algorithms are applied to
pairs of consecutive graphs gt and gt+1 to measure
network change. Change is classified as anomalous if the
network change d(gt, gt+1) exceeds a given threshold a.
Another measure of network change can be achieved
using the median graph. Similarly to classical time series
analysis, it can be expected that using the median,
computed over a time window of a certain length, rather
than an individual graph, will lead to more robustness
against outliers in the time series of graphs. In [33], four
procedures, based on median graphs, were defined for
abnormal change detection. Essentially, the median
graph �gt is computed for a subsequence of graphs
(gt-L+1,..., gt) of length L. Then, d �gt; gtþ1

� �
can be used

to measure the anomalous network change. We classify
the change between �gt and gt+1 as anomalous if
d �gt; gtþ1
� �

is larger than a given threshold. The average
deviation / occurring within the median window is used
to assign a more robust threshold (i.e. d �gt; gtþ1

� �
>au).

The class of graphs considered in this paper have the
requirement that each node label must be unique. This
constraint does not pose a problem when dealing with
graphs constructed from data collected from computer
networks. It is common in these networks that
each node, such as a client, server or router, be uniquely
identified. For example, in an intranet employing
ethernet technology on a local area network (LAN)
segment, either the media access control (MAC) or the
internet protocol (IP) address could be used to uniquely
identify nodes on the local segment. As a consequence,
the efficient graph matching algorithms described in
Theorem 1 can be applied to computer networks to as-
sist in network management functions.

Using Definition 1, the time series of graphs given
above has label representation q(g1), q(g2),..., q(gt),
q(gt+1),...,q(gn). In order to gain a significant saving in the
computation time of MCS and GED, we use the label
representations q(gt) and q(gt+1), and apply the matching
algorithms defined in Lemmas 3 and 4. If the threshold is
exceeded, it can be concluded that a significant network
change has occurred at time t+1. A network adminis-
trator can then use other network management tools to
determine whether the change represents an abnormal
event. The implementation of the median graph detection
strategies, using the label representation, is achieved using
the algorithm defined in Lemma 4.

Given the diverse range of networks that must be
managed by network administrators (e.g. LAN,wide area
networks and the Internet) it is important that techniques
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for measuring network change perform independently of
the type of network topology. By inspection of the algo-
rithms defined in Sect. 3, it can be deduced that, as long as
the graphs have the same number of vertices and edges,
the computation time for each method will be the same
regardless of network topology. Thus, the techniques
described are independent of network topology. This
finding is verified in Sect. 5 and means that an accurate
prediction of computation times can be determined for
real network data based on measurements achieved for
synthetic network data of equivalent size.

5 Experimental results

The aim of the experiments described in this section is to
verify the low computational complexity for the theo-
retical results derived in Sect. 3. The time taken to
compute isomorphism, subgraph isomorphism, MCS
and GED are measured for graphs ranging in size from
hundreds of nodes to tens of thousands of nodes, and
with different edge densities. In addition, we validate the
linear dependency of the time taken to compute a
median graph to the number of graphs from which the
median is derived. Computation times are measured for
synthetic data sets and real network data. Real network
data was acquired from a link in the core of a wide area
computer network. A test for similarity of computation
time measurements for real and synthetic data sets is
made to verify that the results achieved for simulated
networks can be repeated for real-world implementa-
tions. An experiment was conducted to verify that the
time taken to compute algorithms in this paper are
independent of network topology. Two graph generators
were used to produce synthetic data sets having different
network topologies. The real network data set was used
as a third sample having different topology. The graphs
in each data set had to be equivalent in the number of
nodes and links for this test.

The hardware platform used to measure computation
times was a SUN Fire V880 with 4·750 MHz UltraSp-
arc3 processors and 8 GB of RAM. The specific hard-
ware platform used to perform the experiments is not
important and has been provided for completeness only.
Only relative computation times with respect to graph
dimensions are important.

5.1 Synthetic network data

Synthetic data sets are used to validate the computa-
tional complexity of the procedures defined in Sect. 3.
These data sets are also used to verify that the proce-
dures are independent of network topology.

Two data sets have been produced using normally
distributed random edges with edge densities of 2.5%
and 10%, respectively. An edge density of 2.5% was
used so that graphs with 20,000 nodes could be syn-
thesised without exceeding the computer memory of the

computer platform used for the experiments. The data
set with 10% edge density was chosen to mimic the
characteristics of the real data network. The maximum
number of nodes possible for graphs in this data set was
10,000.

An additional single synthetic data set having edge
density of 2.5% was created using a Fan Chung algo-
rithm [36]. This graph generator produced graphs hav-
ing vertex degrees with a power-law distribution. The
resultant topology of graphs produced using this meth-
od is quite different to those of graphs having normally
distributed random edges. In fact, graphs having degree
distribution that are power-laws are characteristic of
large networks, such as the Internet [37].

For each synthetic data set, we first obtain a series S
of graphs, comprising 100, 1,000, 3,000, 5,000, 7,000 and
10,000 nodes. For data sets with an edge density of
2.5%, we obtain an additional graph in the series that
has 20,000 nodes. The resulting graphs have directed
edges with Poisson distributed edge weights. A second
series S¢ was produced as a counterpart, using the same
procedure, for measurements of computation times for
MCS and GED.

A further set of graphs was created to verify the linear
increase in computation time with an increase in edge
density, for a fixed number of nodes. The graph gener-
ator assigned edges using a normal distribution. For this
data set, graphs had 5,000 vertices and edge densities
ranging from 1% to 10% in steps of 1%. A counterpart
was created for each graph to be used for MCS and
GED computations.

To compare the computation times of algorithms
measured for synthetic data against real data sets, we
created two randomly distributed graphs having the
same number of vertices and edges as each of the real
data sets in Sect. 5.2.

Finally, for the validation of computation times for
median graphs, we created a series of 100 graphs using
randomly distributed edges. In this series, the average
number of vertices and the edge density is matched to
our business domain network data set (i.e. comprises
graphs having on average 70 vertices with edge density
of 10%) as described in Sect. 5.2.

5.2 Real network data

Real network data was acquired from a core link in a
large enterprise data network using network perfor-
mance monitoring tools. The data network employs
static IP addresses, hence, its suitability for representa-
tion by the class of graphs defined in this paper. Graphs
were produced from traffic traversing the link at inter-
vals of one day. This resulted in a time series of 100
graphs representing 100 days of network traffic.

Two levels of abstraction have been used to produce
the time series of real network data. Both have quite
different characteristics. The first data set has graph
vertices that represent IP addresses, whilst the second
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has vertices that represent business domains. In
both data sets, edges represent logical links, and edge
weights represent the total number of bytes communi-
cated between vertices in one day. The business domain
abstraction is created by coalescing IP addresses
belonging to a predefined business entity into a single
node. This resulted in graphs that comprises on average
70 nodes with edge densities of 10%. The IP network
abstraction has graphs that have on average 9,000 nodes
with an edge density of 0.04%. The low edge density is a
result of the near bipartite nature of the graphs arising
from data collected at a single point in the core of the
enterprise data network. The business domain and IP
network abstractions are of interest to network admin-
istrators as they provide both coarse and fine network
performance data, respectively.

Two consecutive graphs were chosen from each of the
real network data set abstractions to be used in com-
parisons of computation times of algorithms with times
measured for synthetic data. The two graphs chosen for
the business domain abstraction comprised approxi-
mately 90 vertices with an edge density of 10%, whilst
the graphs chosen from the IP abstraction comprised
9,000 vertices with an edge density of 0.04%.

To verify median graph computation times, the whole
100-day time series of graphs of business domain data
was used.

5.3 Verification of O n2
� �

theoretical computational
complexity for isomorphism, subgraph isomorphism,
MCS and GED

To measure the time taken to compute a test for graph
isomorphism, we select the first graph g1 from S, com-
prising 100 unique nodes, and make an exact copy g2.
The fact that g2=g1 guarantees that the graphs tested
are in fact isomorphic to each other. The computation
time measurement does not include the time taken to
derive the label representations q(g1) and q(g2) for
graphs g1 and g2. This is true for all computation times
measured for each algorithm. For the measurement of
computation time for the subgraph isomorphism test, we
use the same graph g1 together with graph g3, obtained
by removing 20% of the edges from g1. The graph g3 is
obviously a subgraph of g1. The measurements of time
to compute both MCS and GED required both graph
series S and S¢. To measure the time taken to execute
these algorithms, we again use g1 from S and select the
equivalent size graph from S¢. The procedures outlined
above were repeated for all three synthetic data sets for
graph sizes 1,000, 3,000, 5,000, 7,000, 10,000 and 20,000
(where present).

The results of all computation time measurements are
shown in Tables 1, 2, 3 and 4. As expected, the measured
computational complexity of all matching algorithms is
O n2
� �

: Figure 2 graphically illustrates the quadratic
dependence of computation time on the number of
nodes for GED; the x-axis corresponds to the number of

nodes in a graph and the y-axis represents the time, in
seconds, to compute the GED algorithm. Greater com-
putation times can be observed for larger edge densities.
This result was anticipated due to the dependency on
graph elements. Computation times to test for graph
isomorphism were the longest. Testing for subgraph
isomorphism required the least time to compute. This
was a consequence of removing 20% of the edges from
g1 to produce a subgraph g2. The smaller the size of g2
with respect to g1, the shorter the time taken to compute
the subgraph isomorphism. The computation times for
both MCS and GED, as observed in Figs. 3 and 4, are
almost indistinguishable. This is not surprising since the
computational steps, proposed in Lemmas 3 and 4, are
nearly identical. In all cases, the computation times
measured for both randomly distributed edges and those
with power-law degree distributions, for an edge density
of 2.5%, are nearly identical. The results would be
identical if the number of edges in the graphs from both
data sets were equal. Since the graph generator used to
produce graphs with randomly distributed edges create,
on average, graphs with a specified edge density, the
actual number of edges can vary. The closeness of the

Table 1 Computation times for isomorphism

Computation times(s) for graphs with N vertices

100 1,000 3,000 5,000 7,000 10,000 20,000

Fan Chung 2.5% 0.01 0.55 5.48 17.41 36.77 78.97 343.77
Random 2.5% 0.02 0.5 5.33 17.74 37.94 81.63 383.80
Random 10% 0.02 2.00 25.16 77.75 163.22 357.72

Table 2 Computation times for subgraph isomorphism

Computation times(s) for graphs with N
vertices

100 1,000 3,000 5,000 7,000 10,000 20,000

Fan Chung 2.5% 0.01 0.38 3.04 10.04 21.33 45.60 197.32
Random 2.5% 0.01 0.33 2.82 9.51 20.71 45.03 206.90
Random 10% 0.01 1.17 13.92 43.23 90.23 195.68

Table 3 Computation times for MCS

Computation times(s) for graphs with N vertices

100 1,000 3,000 5,000 7,000 10,000 20,000

Fan Chung 2.5% 0.01 0.38 3.44 11.21 24.28 52.36 230.63
Random 2.5% 0.01 0.40 3.18 10.74 23.63 51.69 237.16
Random 10% 0.01 1.28 16.21 49.40 102.27 221.55

Table 4 Computation times for GED

Computation times(s) for graphs with N vertices

100 1,000 3,000 5,000 7,000 10,000 20,000

Fan Chung 2.5% 0.01 0.40 3.49 11.34 24.46 52.09 230.51
Random 2.5% 0.01 0.33 3.38 10.90 23.63 51.45 232.09
Random 10% 0.01 1.35 16.30 49.00 101.88 220.26
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results verifies the independence of the algorithms to
network topology.

Further experimentation was performed to show the
linear dependency of computational complexity in the
number of edges in a graph with a fixed number of
vertices. Figure 3 shows results for the four graph
algorithms. Observation of these results reveals the lin-
ear relationship.

5.4 Comparison of computation times for real
and synthetic data sets

In this section, measurements of computation times of
isomorphism, subgraph isomorphism, MCS and GED
on the two real network data sets (i.e. business domain
and IP-level abstractions) and their synthetic counter-
parts were performed. The aim was to confirm that
synthetic data measurements are consistent with those
measured for real network data.

The label representation is first derived for the two
graphs in each data set. Isomorphism and subgraph
isomorphism computation requires only one of the
graphs from each set. Both graphs are required for the
MCS and GED computations. The results are given in
Table 5. It can be seen that all measurements between
the real and equivalent synthetic data sets agree. This
infers that results obtained for synthetic data are con-
sistent to those for real data.

5.5 Verification of theoretical computation times
for the median graph

The computation time of the median graph algorithm
described in Sect. 3 is measured for both real and syn-
thetic data sets. Both comprise a time series of 100
graphs. The sizes of the graphs within each time series
and between time series are similar. We wish to verify

that the time taken to compute a median graph increases
linearly as the number of graphs in the median compu-
tation increases.

Measurements commenced by taking the first 10
graphs in the time series (i.e. {g1,..., g10}) of each data set
and computing the median graph. The procedure was
repeated using the first 20, 30, 40,..., 90 and 100 graphs.
The results are given in Table 6 and Fig. 4. Both real
and synthetic data sets show a linear dependency of
computation time with respect to the number of graphs.
The plot of computation times for the real data set
deviates from a straight line because the edge counts in
this data set had a greater standard deviation than those
of the synthetic data set. The number of vertices and
edges in graphs belonging to real and synthetic data sets
can been seen in Fig. 5.

6 Summary and conclusions

Graph matching is finding many applications in the
fields of science and engineering. In this paper, we con-
sidered a special class of graphs, characterised by unique
node labels. A label representation is given for graphs in
this class. For a given graph, it comprises a set of unique
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Table 5 Comparison of computation times for real and synthetic
network data

Real network data

Business domain IP domain

Real Synthetic Real Synthetic

Isomorphism 0.02 0.02 0.60 0.58
Subgraph isomorphism 0.01 0.01 0.35 0.32
MCS 0.01 0.01 0.38 0.36
GED 0.01 0.01 0.38 0.36
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vertex labels of the graph, an edge set based on vertex
labels and a set of edge weights. A number of compu-
tationally efficient matching algorithms were derived for
this class of graphs. The suitability of applying these
matching algorithms to computer network monitoring
was addressed.

The matching algorithms that have been derived for
graphs having a label representation are detection of
graph isomorphism and subgraph isomorphism, com-
putation of MCS, GED and the median graph. The
theoretical computational complexity of these algo-
rithms, for graphs having n nodes, is O n2

� �
: It was also

shown that the time taken to compute a median graph
increases linearly with the number of graphs in the set
from which the median is computed. Theoretical results
were verified using real and synthetic data sets.

It is possible to apply the derived matching algo-
rithms to computer network monitoring as the con-
straint for unique node labels can be satisfied. In
computer networks, nodes can be uniquely identified by
means of the MAS or IP addresses. The matching
algorithms proposed can be used to measure a change
that occurs in a computer network over time. Measures
of network change provide good indicators of when

abnormal network events have occurred. Such tech-
niques greatly enhance computer network management,
especially in the field of performance monitoring.

The theoretical computational complexity of the
matching algorithms were verified through experimen-
tation using synthetic and real network data. Synthetic
data sets of graphs with a specified number of nodes and
edge densities were used for this purpose. In addition,
synthetic data sets having different network topologies
were used to show that the computation times for de-
rived algorithms are independent of network topology.
A comparison of results achieved for synthetic data sets
with those obtained using data acquired from a large
wide area computer network of equal dimension were
shown to agree. This outcome, along with the knowledge
that the algorithms are independent of network topol-
ogy, means that the simulation of performance of the
algorithms on synthetic data can be used to accurately
predict the performance that will be achieved for real
networks.

In conclusion, graph matching algorithms for un-
iquely labelled graphs having a label representation
provide a significant computational saving compared to
the generalised class of graphs where such matching
algorithms have an exponential computational com-
plexity. In this paper, we have shown that, for this class
of graphs, we have been able to apply matching algo-
rithms to graphs having many thousands of nodes. This
is a significant improvement in the pattern recognition
community, where graphs with a few hundred nodes is
considered very large.

The application considered in this paper, i.e. com-
puter network analysis, is not a traditional application
of pattern recognition, such as detection or classification
of objects in an image. Nevertheless, it surely belongs to
the discipline of pattern recognition because the con-
sidered task, i.e. abnormal event detection, is cast as a
classification problem, where the change occurring in the

Table 6 Computation times for median graph

Number of graphs in median Computation time(s)

Real data Synthetic data

10 2.21 3.36
20 2.75 4.72
30 3.17 5.37
40 3.53 6.00
50 3.83 6.39
60 4.08 6.76
70 4.27 7.16
80 4.16 7.47
90 4.48 7.79
100 4.93 8.15

10 20 30 40 50 60 70 80 90 100
2

2.5

3

3.5

4

4.5

5

5.5

6

Number of Graphs in Median Computation

C
om

pu
ta

tio
n 

T
im

e 
(S

ec
on

ds
)

Real Data
Synthetic

Fig. 4 Computation times for median graph algorithm

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

900

1000

Time (Days)

F
re

qu
en

cy
 o

f O
cc

ur
re

nc
e

Real vertex count
Real edge count
Synthetic vertex count
Synthetic edge count

Fig. 5 Vertex and edge counts for real and synthetic data sets

252



network between time t and time t+1 is to be categor-
ised as normal or abnormal. It remains an open problem
to identify more problems in pattern recognition and
artificial intelligence, in addition to the ones described in
[25–27], where graphs with unique node labels are suit-
able object representatives.

7 Originality and contribution

The problem of graph matching, such as the computa-
tion of GED edit distance, is NP complete. In this paper,
we consider a class of graphs with an inherently lower
computational cost for graph matching tasks. These
graphs are characterised by the existence of unique node
labels. The definition of a label representation is given
for graphs in this class, and O n2

� �
matching algorithms

are devised for isomorphism, subgraph-isomorphism,
MCS, GED and the median graph. Whilst graph
matching is not in itself novel, the algorithmic frame-
work developed in this paper for the special class of
graphs is new and offers significant computational
improvements, especially when dealing with very large
graphs. The paper introduces some interesting applica-
tions for this class of graphs and verifies the theoretical
low computational complexity with practical results.

We explore the application of this class of graphs to
computer network monitoring. Nodes in the computer
network under investigation have static address alloca-
tions and, hence, can be considered to have unique
identities. The networks are very large in size and are
dynamic in behaviour. This has lead to increasing diffi-
culties in network performance management. The pro-
active detection of network anomalies is of specific
importance. In this application, we use GED and med-
ian graph computation to detect abnormal changes in
network behaviour. This is very much a useful contri-
bution to the discipline of pattern recognition as com-
puter network monitoring is a classification problem
where we want to categorise network changes as either
normal or abnormal.
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