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Semiconductor laser with feedback is an excellent model for nonlinear optical system which shows chaotic 
dynamics. It is interesting not only from the fundamental physical study but also application standpoints of 
view. The dynamics of feedback induced instability and chaos, especially for optical feedback, and their 
applications are reviewed in this paper. The model of such a system is described by the laser rate equations. 
At first the dynamic behaviors of feedback induced instability and chaos in semiconductor lasers are dis-
cussed on the basis of the theory and experiments. Instability and chaos may be stabilized by the method of 
chaos control. Then we apply the method to suppress the noise induced by the feedback in a semiconductor 
laser. The synchronization of chaos between two similar systems is also an important issue in chaos 
applications and we discuss secure communications based on chaos synchronization . Some other examples 
of applications of feedback induced chaos are also described. 
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1. Introduction 

The study of instability and chaos in optics goes back 
to the middle of '70s when it was proved that the laser 
rate equations can be described by the similar differential 
equations to the chaos model developed by Lorenz.1) In 
the mean time, chaotic behaviors were demonstrated in a 
ring laser system.2) Since early '80s, feedback induced 

instability and chaos in semiconductor lasers have also 
been paid much attention as one of the most interesting 
nonlinear phenomena in optics.3) Here "feedback" 
means not only optical one from an external reflector out-

side the laser cavity, but also an opto-electronic one 
through a photodetector to the injection current. In this 

review, we are mainly concerned with optical feedback 
effects in semiconductor lasers. 

When the light reflected from an external reflector cou-
ples with the original field in the laser cavity, the laser os-

cillation is afilected considerably. A variety of dynamical 

behaviors can be observed in semiconductor lasers with 
optical feedback and they have been investigated by 
many researchers for those two decades. One of the main 
differences between semiconductor lasers and other 
lasers is low reflectivities of the internal mirrors in the 
laser cavity. It ranges typically only from 10 to 300/0 of 

the intensity in Fabry-Perot semiconductor lasers. This 
makes the feedback effects significant in semiconductor 
lasers. Other difference is a large absolute value of the 

linewidth enhancement factor a. The value of a = - 2-
- 6 was reported in semiconductor lasers, while this 
value is almost zero in other lasers. These facts lead to in-

teresting and a variety of dynamics different from other 
lasers. At weak to moderate optical feedback reflectivity, 

the output power of the laser shows interesting dynami-
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cal behaviors such as stable state, periodic and quasi-
periodic oscillations, and chaos with the change of the 
system parameters. These ranges of the external reflec-
tivity are not only interesting but also very important in 
actual applications of semiconductor lasers such as in op-
tical data storage systems. The dynamical behaviors of a 
semiconductor laser with optical feedback are mainly 
influenced by three parameters in the system, which in-
clude the reflectivity and length of the external mirror 
and the bias inj ection current . Extensive lists of the litera-

ture for the dynamic characteristics in semiconductor 
lasers with optical feedback in early times can be found 
in Refs. 4) and 5). 

The dynamic behaviors of a semiconductor laser with 
optical feedback are not simple and strongly dependent 
on the feedback reflectivity. According to the behaviors 
of the laser output, the dynamics of the output power can 
be characterized into five regimes (1-V) with increase of 
the feedback reflectivity.6,7) For the very small feedback 

regime I, the laser linewidth is increased or decreased de-

pending on the phase of the returned light into the laser 
cavity. With increase of the feedback level, the laser 
shows mode hopping among several external cavity 
modes (regime II). Chaos can be observed at moderate 
levels of the feedback amplitude reflectivity around lo/o 
which corresponds to the regimes 111 and IV. With fur-
ther increase of the feedback level, coherence collapse oc-

curs in the laser output power, in which_the linewidth is 

drastically broadened and the coherence length of the 
laser is much reduced . These regions are very important 
in actual optical data storage systems. A very high feed-
back level (regime V) corresponds to stable laser opera-
tion. We are much interested in the regimes 111 and IV 
which show chaotic dynamics and the detailed descrip-
tions in these regimes are presented in the following. 

Up to now, a lot of semiconductor laser devices with 
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different structures have been proposed and fabricated. 
In spite of the differences of device structures, the dy-

namics of semiconductor lasers are the same as long as 
the laser rate equations are written by the same or simi-
lar forms. For those two decades, the dynamic behaviors 
of semiconductor lasers with optical feedback and their 
related topics have been investigated and a lot of fruitful 

results have been obtained. Yet, the phenomena contain 
much of fundamental physics and the study is still under 
way. Optical feedback ~effect is an old problem but it is 
still an important issue in semiconductor lasers. The fun-

damental study of chaotic dynamics was the main issue 
for the semiconductor lasers with optical feedback, but 
the situation has been changed in early '90s. The ideas of 

the control and synchronization of chaos have been 
proposed and developed for the decade. Namely, applica-
tions of chaos have been opened by these methods. Of 
course, many applications of chaos have been proposed 
and demonstrated in semiconductor lasers with optical 
f eedback. 

In this review, we start from the brief description of 

the general laser rate equations which reduce to the 
Lorenz equations and the classifications of lasers are 
given. A semiconductor laser is a class B Iaser and it does 

not show chaotic dynamics, but it is easily destabilized 
by external disturbances such as external feedback and, 
as a result, shows chaotic dynamics. The theoretical 
background of serniconductor lasers with optical feed-
back is described by the rate equations and the stability 
and instability are studied by the linear stability analysis 

for the equations. In this review, instability and chaos in 

that system are demonstrated by the numerical simula-
tions based on the rate equations and the linear stability 

analysis, and some experimental results are presented. 
Routes to chaos in this system have been clarified at cer-

tain extents and we will discuss them in details. Phase 
conjugate optical feedback is also an interesting issue in 

semiconductor lasers since a semiconductor laser is re-
cently used as a light source in phase conjugate optics. 
The different dynamics from those for conventional mir-
ror feedback are expected in phase conjugate feedback 
and we will present some of the effects. As applications 
of chaos, the methods of the control of chaos and the 
chaos synchronization between two similar systems are 
introduced and some applications are demonstrated. 
Most of the descriptions in this reviews are concerned 
with those for Fabry-Perot single mode lasers. But, 
finally, the dynamics and applications for some of new 
types of semiconductor lasers such as VCSELS (vertical-
cavity surface-emitting lasers) and high power semicon-
ductor lasers are also briefly described. 

2. Theory of Semiconductor Lasers with Optical 
Feedback 

The theoretical approach for laser dynamics is based 
on the rate equations. Various laser models by using the 
rate equations have been proposed up to present. Here, 
as a starting point, we employ a Haken model which 
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describes a unidirectional ring laser.1,5) The rate equa-

tions of this model proves to be reduced to the same 
differential equations as those of the well known Lorenz 
model in chaotic dynamics. Next, the rate equations of 
semiconductor lasers with optical feedback are in-
troduced. The stability and instability of laser oscillation 

can be theoretically discussed by the linear stability anal-

ysis for the rate equations. We also treat this analysis. 

2. I Lorenz-Haken Model of Lasers 
Starting frorn Maxwell's equation of the laser field in a 

unidirectional ring laser model with a two level system 
and using a slowly-varying-envelope approximation, af-
ter some calculations, the equations for the laser field A, 

the polarization B, and the power gain per unit length g 
are written byi,5) 

dA i 1 dt ~2 VOB-2T A, (1) 
d ~ 

T2 = - (1 - i6)B- igA, (2) dt 

dg Im [A*B] T1 = (go ~ g) + (3) d t Isat 
These equations are called the Haken equations and der-
ived as a mean field limit. Here, vo is the speed of light in 

the medium, 6 is the scaled atomic detuning, go is the 
small signal gain, and Isat is the intensity saturation. Tp is 

the photon lifetime, T1 is the population decay time, and 
T2 is the dipole dephasing time. It is easily shown by ap-
propriate scalings for the variables that the Haken equa-
tions reduce to the Lorenz equations which show chaotic 
dynamics. Therefore, Eqs. (1)-(3) are called the Lorenz-
Haken equations.1,5) 

Since chaotic dynamics are expected to be occurred in 
the existence of three coupled, first-order, nonlinear 
differential equations, a laser described by Eqs. (1)-(3) 
can be a candidate which shows instability and chaos in 
its output. However, in actual, the polarization equation 
or the polarization and gain equations may be eliminated 
due to small scales of the lifetimes. Depending on sllch 
categories, Iasers are classified into three types, namely, 
A, B, and C classes.5) In class A Iasers, for example, He-

Ne laser and dye lasers, the lifetimes T1 and T2 are so 
small compared with the photon lifetime Tp. Therefore, 
both the polarization and population inversion equations 
are adiabatically eliminated and only the field equation 
becomes the important term. As a result, chaotic dynam-
ics cannot be observed in class A Iasers. In class B Iasers, 

for example, C02 Iaser and semiconductor laser, only the 
polarization equation can be adiabatically eliminated due 
to the small lifetime of T2. Therefore, class B Iasers are 

also not candidates which show chaotic dynamics. The 
field equation contains amplitude and phase. At glance, 
class B Iasers are described by three nonlinear differen-
tial equations (amplitude, phase, and gain) and they are 
supposed to show chaotic dynamics. But it is easily 
proved that the phase equation is decoupled from other 
two, so that class B Iasers themselves cannot exhibit 
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chaos. But class B Iasers easily exhibit instability and 
chaos when one more degree of freedom is introduced to 
them. A degree of freedorn to be added may be an exter-
nal injection or an optical feedback from an external 
reflector. This induces coupling between the phase and 
the amplitude and the system is capable of exhibiting 
chaotic dynamics. In class C Iasers, for example, far-
infrared NH3 Iaser and Ar ion laser, all three equations in 

Eqs. (1)-(3) must be considered and such lasers show 
chaotic dynamics under appropriate conditions without 
any external disturbance or modulation. 
2.2 Semicouductor Lasers with Optical Feedback 

Semiconductor laser is not simply modeled by a two-
level system as discussed in the previous section, but the 
approximations5,8) Iead to two differential equations with 

the complex field and the carrier density. In the presence 
of optical feedback, the feedback term is added to the 
field equation. Figure I shows an schematic of a semicon-
ductor laser with optical feedback. We assume the same 
reflectivities for the rear and front facets of the laser, but 

a different case is a straightforward extension. As al-
ready stated, the field amplitude is coupled with the 
phase due to optical feedback, so that various dynamic 
behaviors related to instability and chaos are expected to 
the laser output po~ver. The theoretical study for the dy-
namic characteristics of serniconductor lasers with opti-
cal feedback is performed based on these rate equations. 
Assuming that the laser oscillates in a single longitudinal 

mode with an angular frequency coo, the complex electric 
field in the active region is written as E(t) exp [i(coot+ 

c(t))], where c(t) is the phase change of the field. 
Then, the rate equations for the amplitude and phase of 
the complex electric field and the carrier density are 
given by3,9,ro) 

dt ~~ G(N(t)-No)~~;}E(t) { dE(t) 1 

K +- E(t- T) cos O (t) +FE(t), (4) 
i* 

dc(t) a f - -i} dt ~2 G(N(t) No) T 

K E(t-T) 
-- sin e (t) +Fc(t), (5) Ti* E(t) 

dN(t)=J-N(t) G{N(t)-No} IE(t)12+FN(t), (6) 

dt Ts 
where G is the linear gain coeflicient, No is the carrier 
density at transparency, a is the linewidth enhancement 
factor, and Jis the injection current density. Tp is the pho-

ton life time as already introduced, T~ is the carrier life 

time, T=2L/c is the external cavity round-trip time 
where L is the distance from the laser facet to the exter-
nal reflector and c is the light velocity in vacuum, and 
Tin = 2nl/c is the round-trip time within the laser cavity 

where I is the internal cavity length and n is the refrac-

tive index of the laser cavity. The Langevin noise terms 
FE, Fc, and FN are included in the rate equations. e(t) 
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Fig. 1. Schematic diagram of semiconductor laser with optical 
f eedback. 

represents the phase coupling between the original light 
in the cavity and the delayed light from the external 
reflector, and is given by the following form 

a ( t) = coo T + c( t) ~ c( t ~ T). (7) 

The feedback parameter K is written by K = (1 - r~)r/ro, 
where ro and r are the amplitude reflectivities of the laser 

exit facet and the external reflector, respectively. Since 
multiple reflections between the laser facet and the exter-
nal reflector are neglected, Eqs. (4)-(7) are valid for a 
weak to moderate feedback level. Choosing appropriate 
values of the system parameters such as the injection cur-
rent J, the external reflectivity r, and the external cavity 

length L, Eqs. (4)-(7) are numerically solved. The fourth 
order Runge-Kutta algorithm is frequently used since the 
laser output power signal rapidly changes in time . In the 

following numerical simulations, we use the same 
parameter values listed in Table I in Ref. 11). 
2.3 Linear Stability Al~alysis 

Next, we briefly describe the linear stability analysis 
for Eqs. (4)-(7) for the study of stable oscillation condi-
tions of the laser output power. The linear stability analy-
sis has already been given in detail in the references.12,13) 

For the calculation of linear stable modes, we at first der-

ive the stationary solutions for the variables. We assume 
the solutions for the amplitude, the phase, and the carrier 

density as E(t)=E*, c(t)=(co*-coo)t, and N(t)=N*, re-
spectively. Inserting these solutions into Eqs. (4)-(7), the 

stationary solutions for each variable can be obtained in 
the following forms. 

1 K G(N.-No) ~T= ~2 ~ cos a).T, (8) 
in 

lc 

co* - coo (9) = -- (a cos co~T+sin co*T), 
Ti* 

G(N.-No)E~=J-~ 

The laser oscillation angular frequency is proportional to 

the injection current and written by 

acoo 

co0=co, aJ J, (11) 
where co* is the constant angular frequency at a certain 
bias injection current and acoo/aJ is the angular fre-
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quency conversion efliciency to the injection current. 
The relation between the solitary laser angular fre-
quency coo and the laser angular oscillation frequency co~ 
for the steady state condition is given by3,13) 

(coo ~ co*)T= C sin (co*T+ arctan a), (12) 

with 

KT C=~, f rF~:. (13) 
in 

In Eq. (12), the laser angular oscillation frequency co* 
generally has multiple solutions and the number of solu-
tions depends on the parameter value C. The actual laser 
oscillation is determined both from the phase and gain 
conditions for the stable state. For a larger value of C, 
the laser becomes unstable and it sometimes hops around 
among possible oscillation frequencies. Form Eqs. (8)-
(10), the angular frequency shift A(~)* = (o* - coo and the 
carrier density N* Iie on an ellipse and stable and instable 

natures of the laser oscillation, such as Hopf and saddle 
node bifurcations, can be discussed by the locations of 
the solutions.5,14) Among multiple solutions, we choose 
one that results in the maximum gain as a steady state so-
lution for the angular frequency in the following numeri-
cal calculations, however, it is noted that it is not always 

true in actual situation of laser oscillation. 

In order to analyze the stability of the laser output pow-

er for a small perturbation from the stationary state, we 
assume the form of the solutions in the rate equations as 

x(t)=x*+6xexp (yt) (x=E, N, c), (14) 
where y( =F+ i~~) is a complex number. The real and im-
aginary parts of y represent the arnplitude damping rate 
and the frequency of the small perturbation, respec-
tively. Therefore, a solution diverges for the case of F> O 

with time evolution, while it converges for the case of 
F< O . Substituting the stationary solutions with small per-

turbations into the rate equations , one obtains the follow-
ing characteristic equation for ylo,12,13) 

1 2KA D(y) y +y2 -+ cos(co T) 
TR in 
2lcA lCA 2 +y co~+ cos (co*T)+ 
TR Ti* Ti* 

1 lCA 2 lCA + - +co~ [cos (co*T)-asin (co~T)] 
TR Ti* Ti* 

with A=1-exp (yT), B=1+exp (yT), and T~l=T~1+ 
gE~, where coR=27cfR (co~=gE~/ Tp) is the relaxation os-
cillation angular frequency of the solitary laser. Stable os-

cillation conditions of the laser output are studied by sta-

ble linear modes corresponding to the solutions of the 
above equation. As discussed in later, the relaxation oscil-

lation frequency plays an important role for the laser dy-
namics. The relaxation oscillation frequency for the soli-
tary laser is calculated from the characteristic equation 
without optical feedback (by setting rc = O). For no exter-

6 

~ ~:~ 

~ ~4 a)~ 

~ 
~~t 2 

J~ 

O 
o 

J , OHTSUBO 

(a) L;9.0cm 

.:t 'IL]:1:" 

li"i::1.:!'.: 

' :.Il:i 

':':i'l 

i: 

l 

"':1 :1"' 
:1' :!'i:": ': 
'-t':'i.1'11: ' -

l:::[;:';:Ijii!'1j]i!'.i:11'::I 

l' ::'., : .!i' j":::,:i:1:' 

~":,Iili":1 :!ll!~1:i:i:;i~]' 

6 

~ ~;~ 

~4 ~ e)~ 

~ 
~~$2 
p* 
~~j 

O 
o 

(b) L=12.0cm 

'i! 

iSl 

[1"' 

:i' 

J" 
" .r ::i :.:' "'•1 ' 

' i* 
: 

ii 

••f :•-

o 
r(%) 

Fig. 2. Calculated bifurcations of the laser output power for 
variations of the external reflectivity at J= I . 3Jth' The external 

cavity lengths are (a) L=9.0 and (b)12.0 cm. (a) period doubling 
bifurcation and (b) quasi-periodic bifurcation. 

nal feedback, the relaxation oscillation of the laser out-
put power is originated from statistical Langevin noises 
involved in the rate equations in Eqs. (4)-(6). But it is 
much enhanced by the mixing of the original laser oscilla-
tion with an external feedback light. 

3. Instability and Chaos 

Many theoretical and experimental researches for 
instability and chaos in semiconductor lasers with optical 
feedback have been performed up to now.15-19) The theo-
retical study is based on the rate equations and the linear 

stability analysis as described in the previous section. 
Here, we demonstrates some of results from our studies. 
3. I Chaotic B~furcations 

It is a common practice to investigate bifurcation 
scenarios for a variable of interest in a chaotic system. 
The variable to be investigated is the laser output power 
and the system parameters to be varied are the reflectivi-
ty and length of the external mirror and the injection cur-

rent in our case. There are three typical bifurcation 
scenarios in semiconductor lasers with optical feed-
back.5,20-23) The first is a route to chaos with period dou-

bling bifurcation and the second is a quasi-periodic bifur-

cation route . The third one is an intermittent bifurcation 

which is much related to low frequency fluctuation dis-
cussed in later. Here, we discuss the first two types of 
chaos. Figure 2 shows examples of bifurcations of the 
laser output power for variation of the external reflectivi-

ty calculated from numerical simulations for the rate equ-

ations. The external cavity lengths are L = 9.0 and 12.0 
cm for Figs. 2(a) and (b), respectively. The injection cur-

rent is fixed to be J= 1.3Jth' Figure 2(a) corresponds to 
period doubling bifurcation as is well known as a Hopf bi-
furcation, while Fig. 2(b) to a quasi-periodic bifurcation. 



OPTICAL REVIEW Vol. 6, No. I (1999) J. OHTSUBO 5 

O.8 

0.6 

~ 
~ 

'/h' 0.4 

o ~ 
o ~l 

02 

O 1 O 20 Tlme (ns) 

0.8 

0.6 

~ 
~ 
\J H 04 
o ~ 
o od 

O'_ 

l 

o lO 
Tinle (ns) 

20 

0.8 

0.6 

~ 
~ 

'v H o.4 
o ~ 
e ~l 

o•_ 

~~ 

~ 
::~ 

Ft 
a'k 

'B 

~ 

o 

l 

o 

~~ 

~ 
::s 

ok 

'~ 

~ 

l 

lo 
Time (ns) 

20 

O ,O 
~ 
::, 
S:I 

h (, 
'~ 

~ 

pow*r pow*r power 
Fig. 3. Calculated laser output powers and their attractors atJ= 1.06Jth and L 18cm (a) penod one oscillatron at r 1 6 ~ (b) penod two 
oscillation at r= 1.80/0, and (c) chaotic oscillation at r=2.00/0. 

In Fig. 2(a), the laser output stays stable for small exter-

nal reflectivity, and it becomes period-one oscillation for 

small but not negligible external reflectivity. In period-
one oscillations, the period is usually very close to the 
relaxation oscillation frequency of the solitary laser, but 
it is not always exactly the same.24~26) With increase of 

the external reflectivity, it bifurcates and finally evolves 

into chaotic oscillations. In Fig. 2(b), similar bifurcation 

to chaotic oscillations is observed, but period doubling bi-

furcation is not clearly visible and it evolves into chaotic 

oscillations directly after period-one oscillation. So it is 

called quasi-periodic bifurcation. In either case of chaotic 

oscillations, the laser output power shows irregular time 
variations with a scale of over nano-second. Totally, the 
noise of the laser power is much enhanced in this case. 
Lypunov exponents are useful measures for stable or un-
stable nature in a chaotic system under a certain 
parameter condition. For fixed and periodic oscillations, 

the maximum value of Lypunov exponents is less than 
zero and such a state is stable. On the other hand, it has 

positive value for chaotic oscillations and the system 
becomes unstable. 

Figure 3 shows some numerical examples of the laser 
output powers and their attractors. The injection current 
and the external length are fixed to be J= 1.06Jth and 
L = 18 cm, respectively. Figures 3(a) and (b) correspond 
to period-one and period-two oscillations at the external 
reflectivities of 1.6 and 1.80/0, respectively. The fre-
quency of period-one oscillation is close to the relaxation 
oscillation frequency of the solitary laser but it is not al-

ways equal to it. In the detailed analysis, it changes with 

the system parameters. Figure 3(c) shows a chaotic laser 
output power at the external reflectivity of 2.00/0 . From 
the attractor, it is easily seen that the state corresponds 

to chaos. The trajectory of the attractor is compact but 
the chaotic dimension is rather high. This reflects the 
fact that the system is described by the delay differential 

forms as shown in Eqs. (4)-(6). Namely, due to a large 
degree of freedom introduced by the delay differential 
effect, the chaos in this system is a high dimension. At 
this state, the output power contains much noise and the 
optical spectrum is broadened. It is not easy to observe 
the waveform of the laser output power directly since the 
time scale of the output power variations is very high. 
But the periodic or chaotic behaviors can easily be 'ob-
served by an optical spectrum such as taken by a Fabry-
Perot interferometer. In fact, we can observe the growth 
of a spectral peak corresponding to the relaxation oscilla-

tion frequency for a period-one oscillation. With further 
increase of the external reflectivity, the output power 
shows quasi-periodic oscillations and we can observe an 
external mode frequency peak and its higher harmonics 
in the optical spectrum beside of the relaxation oscilla-
tion frequency . In strict sense, the additional spectral fre-

quency appeared in the optical spectrum in a quasi-
periodic oscillation is not exactly equal to the frequency 
calculated from the external cavity length due to the non-

linear nature of the system. The maximum Lyapunov ex-
ponent is one of measures for chaotic dynamics as al-
ready stated. For example, the value of the maximum 
Lypunov exponent such as in Fig. 3(c) is positive, then, 
the system is proved to be chaotic. On the other hand, it 
stays a stable state for a negative value as shown in Fig. 
3(a). Another measure for chaotic dynamics is a chaos 
dimension and it is used to distinguish between chaotic ir-

regularity and random noise. But we need a large num-
ber of data to calculate the dimension and it is not easy to 

evaluate for actual experimental data due to the presence 
of stochastic noise. 

3.2 Long Range Chaotic Dynamics 
One of well known effects in the presence of external 

optical feedback in semiconductor laser is output power 
jumps for increa.se of the injection current.27) Figure 4(a) 

shows such a case calculated from the rate equations. 
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Fig. 4. (a) calculated output power jumps for increase of the 
injection current at L= 15 cm and r= 1.00/0. (b) bifurcations of the 

laser output power within the same current range as (a). 

The external length and reflectivity are L = 15 cm and 
r= 1.00/0, respectively, which intrinsically corresponds to 

the regime 111. The output power is proportional to the 
laser oscillation frequency and the amount of each output 
power jump is equal to that calculated from the external 
mode frequency. The jump of the output power is origi-
nated from the external mode alternation, namely, one 
external mode switches to the next at a jump position. 
We have demonstrated for the first time that there exists 
a chaotic scenario between successive jumps. Figure 4(b) 
shows bifurcations of the output power and periodic bi-
furcations of the output power between two successive 
jumps are observed. At the position after a mode jump, 
the laser oscillates with period-one, the laser becomes un-
stable with increase of the injection current, and, finally, 

it evolves into chaotic states. The frequency of period-
one oscillation in the bifurcations is also the relaxation os-

cillation frequency and spectral peaks observed in quasi-
periodic oscillations are also originated from the external 

mode. In the corresponding experiment, the L-1 charac-
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Fig. 5. (a) calculated phase diagram for boundaries of each state in 
bifurcations at J= I .3Jth' (b) experimentally obtained boundary be-
tween stable state and period-one oscillation at J= 1.5Jth' 

teristic in the presence of external optical feedback has a 

hysteresis. In the numerical simulations, the L-1 charac-
teristic was calculated as a step response for the injection 

current so that the laser output power is intrinsically cal-

culated for the increase of the injection current. The 
chaotic scenarios were also investigated by the experi-
ments and chaotic bifurcations were observed by optical 
spectra from a Fabry-Perot interferometer. The good 
coincidence between the experiments and the theoretical 
expectations was found . 

Figure 5(a) shows a numerical result of the phase dia-
gram for boundaries between each state in the bifurca-
tions. The injection current is fixed to be J= 1.3Jth. For 

example, the lower solid curve represents the boundary 
between fixed stable area and period-one state. From this 
figure, we can easily observe a periodic bifurcation at a 
certain external cavity position. The notable feature of 
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this graph is that critical reflectivity of the fixed stable 

state shows a periodic structure for variation of the exter-

nal cavity length and the stable area is much enhanced at 
peak positions. At stability peaks (for example at L = 6.5 
cm) , the output power stays stable for rather large exter-

nal reflectivity, but it soon evolves into chaotic state 
through short range of quasi-periodic oscillations for in-
crease of the external reflectivity. On the other hand, at 
stability bottoms (for example at L = 9.5 cm), we can ob-

serve a typical period doubling bifurcation. The phase 
diagrams were also examined for other values of the in-
jection current and it is found that the stable peak separa-

tion is a function of the injection current. Then, the 
period was proved to be exactly equal to the length calcu-
lated from the relaxation oscillation frequency of the soli-

tary laser. Figure 5(b) shows the experimental result of 
the stability peak enhancement at J= 1.5Jth.28) In the ex-

periment, external reflectivity at which subpeak due to 
the onset of periodic bifurcation appeared in the optical 
spectrum observed by a Fabry-Perot interferometer was 
examined. It is noted here that the external mirror reflec-

tivity in the experiments is not directly equal to or com-
patible with that in the theoretical one. Due to a small 
area of the laser active region and the diffraction effect 
by a collimating lens in front of the laser in the experi-
ment, it is not easy to determine the actual fraction of the 

feedback power into the active region. The intensity 
reflectivity R in Fig. 5(b) is the reflectivity that takes into 

account of the external loss of the power for the laser 
light transmission and coupling losses due to such as the 
diffraction effect are not included. 

The periodic structure of the stable state boundary 
and the enhancement of stable state are explained by the 
external mode competitions at near the relaxation oscilla-
tion frequency, which is based on the linear stability anal-

ysis in Sect. 2.3. For increase of the external reflectivity, 

the external mode near the relaxation oscillation fre-
quency at first grows up and it leads to the laser instabil-

ity. At stability peaks, two external modes are competing 

and the two linear modes do not exceed the instability 
threshold. As a result, rather long living stability for in-

crease of the external reflectivity is privileged. But the 

output power soon destabilized once quasi-periodic oscil-
lations start. On the other hand, at stability bottoms, only 

one external mode near the relaxation oscillation fre-
quency concerns so that the laser output smoothly 
evolves into chaotic via period doubling bifurcation for in-

crease of the external reflectivity. The relaxation oscilla-

tion frequency becomes undamped for increase of the ex-
ternal reflectivity. The relaxation oscillation frequency in 

the presence of external feedback (we here call a fre-
quency at period-one oscillation as a "relaxation oscilla-
tion frequency" in the presence of external feedback) is 
also a function of the external cavity length. The relaxa-

tion oscillation frequency Q is calculated based on the 
linear stability analysis as followsl2,13). 

2 =- ) Q QT Q coR cot 2 (16) TR 
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It also has a periodic structure for increase of the exter-

nal cavity length with a period equal to the length corre-

sponding to the relaxation oscillation of the solitary 
laser.29) Namely, the relaxation oscillation decreases as in-

crease of the external cavity length, it suddenly jumps up 
at stability peaks in Fig. 5(a), and repeats similar proc-

ess. 
3.3 Short Range Chaotic Dynamics 

There exists short range dynamics of the output power 
in semiconductor lasers with optical feedback. Here, 
"short range" means small change of the external mirror 
position compatible with optical wavelength A.30-35) It is 

well know that a periodic undulation is observed in the 
laser output power with a period equal to half of the 
wavelength for small change of the external mirror posi-
tion. Figure 6(a) shows such an undulation at J= 1.3Jth 
and r=70/0 . Figure 6(a) is rather for a large optical feed-

back case. In general, sinusoidal undulation with small 
amplitude is observed for small reflectivity. With in-
crease of the external reflectivity, clear periodic struc-

ture is visible and sudden drops in the waveform with 
period equal to ~ /2 as shown in Fig. 6(a) are observed. 
The periodic undulation for small change of the external 
mirror position has already been well known. But, sur-
prisingly, it is found that, within each period, chaotic 
scenario is also involved.36) Figure 6(b) shows bifurca-
tions of the laser output power corresponding to Fig . 6(a) . 

In Fig. 6(b), at around L = 4.2000 cm, the laser output 
power shows chaotic variations and it reduces to periodic 
and stable oscillations for increase of the external cavity 

length. The similar process is repeated with a period 
equal to A / 2. In actual experimental situation, there is 

also a hysteresis either for increase or decrease of the ex-

ternal cavity position. The numerical simulations were 
done for the increase of the external cavity length. 
Figure 6(c) shows experimental results of optical spectra 
for small change of the external cavity position. The 
offset of the external cavity length is 4.2 cm and the ex-
ternal intensity reflectivity is R=20/0 and the injection 
current is J= 1.3Jth. The external cavity length is in-
creased form bottom to top in the optical spectra. In this 
figure, unstable state (weak chaotic or quasi-periodic os-
cillation) reduces to periodic oscillation and to stable 
state, then it again becomes unstable oscillations with a 

period equal to ~ / 2. For example, the spectrum at 
A L = I pm is somewhat destroyed and corresponds to a 
weak chaotic state. 

Up to now, we assume a single internal mode oscilla-
tion for a semiconductor laser. But, for large external 
feedback reflectivity, a semiconductor laser sometimes 
oscillates with multi-modes. In such a case, we observe 
periodic undulations with periods not only A /2 but also 
~ /4, ~ / 6, and so on, for small change of the external cavi-

ty length. Which period occurs in the laser output power 
variations depends on the absolute external mirror posi-
tion from the laser facet.27,37) For long range of the exter-

nal cavity variations equal to the order of - mm or more, 
there also exists periodic change of the laser output pow-
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er with a period equal to the effective internal cavity 
length when the laser oscillates with multi-modes. At 
moderate optical feedback, when only one internal mode 
is related to the laser oscillation (which occurs at integer 

multiples of the internal cavity length mnl; m and n 
being an integer number and the effective refractive in-
dex of the laser medium), an undulation with period A 12 
is observed. When two internal modes are related to the 
laser oscillation (at (m + I /2)nl), an undulation with 
period A / 4 is observed. Similarly, higher order periodic 

undulations are observed depending on the external mir-
ror position and the excited internal modes. Even in a 
higher order periodic undulation, there exist chaotic bi-
furcations within that period.37) Those effects are well 

demonstrated by the numerical simulation of the multi-
mode laser rate equations and can be compared with the 
experimental results. 
3.4 Low Frequency Fluctuations 

The instability of semiconductor laser with optical 
feedback is much enhanced with increase of the external 
mirror reflectivity or length, which can be easily recog-
nized from the increase of the parameter value C in Eqs. 
(12) and (13). The laser becomes unstable when the value 
C has a larger value than unity and many modes (external-

cavity modes and antimodes) are excited depending on 
the parameter conditions. Among many modes, a laser 
usually oscillates with a maximum gain mode for a low ex-
ternal reflectivity, however, it sometimes destabilized 
due to a large value 0L C and drifts or slippings between 
successive modes occur.38~41) At this state, the laser is 

suddenly trapped to an antimode on its way to reaching 
the maximum gain mode. It is brought back to the solita-
ry laser state in an instant and the sudden output power 
drop occurs. Then the laser starts drifts and the process 
repeats all over again. This process is explained by a sad-

dle node instability in the system. The well known 
effects of the mode slippings are pulsations and low fre-
quency fluctuations (LFFS) of the laser output power and 
the effects are related to the coherence collapse of the 
laser oscillation. Figure 7 shows examples of low fre-
quency fluctuations at L = 30 cm. The fraction of the ex-
ternal feedback was several percents in intensity. Low 
frequency fluctuations are phenomena of sudden power 
drops of the laser output power whose frequency is typi-

cally from several MHZ to the order of tens of MHz. 
Figure 7 shows the dependence on the injection currents 
at J= 1.28Jth, 1.20Jth, and 1.10Jth from (a) to (c), respec-

tively. At first, Iow frequency fluctuation was recognized 
in a low injection current near the laser threshold, but, re-

cently, it was also observed in rather high injection cur-
rent.42) Therefore, Iow frequency fluctuation is a univer-

sal phenomenon in semiconductor lasers with optical 
feedback. The waveforms as shown in Fig. 7 are ob-
tained as low pass filtered signals less than I GHz. If we 
use a fast response detector that has a resolution as fast 
as picosecond or more, we can observe trains of pulsation 
signals in the waveform when low frequency fluctuations 
occur. Since low frequency fluctuation is originated from 
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L=30 cm. The fraction of the external feedback was several 
percents in intensity. Injection currents are (a) J= 1.28Jth, (b) 
l.20Jth, and (c) 1.10Jth' 

unstable saddle node instability, the laser output power 
can be easily locked to a periodic oscillation by a modula-
tion for the inj ection current with a frequency near the ex-

ternal cavity mode, which is similar to the idea of chaos 
control to an unstable periodic orbit as discussed in the 
following.43) Low frequency fluctuations are observed not 

only for a single internal mode oscillation but also for a 
multi-mode oscillation. 
3.5 Coherence Collapse 

When low frequency fluctuations present in the output 
power, the laser sometimes oscillates multi-modes and 
the coherence is much destroyed . The state is known as 
coherence collapse. Coherence collapse is not always led 
by low frequency fluctuations of the laser output power, 
but low frequency fluctuation is one of the important 
route to coherence collapse. At a coherence collapse 
state, even if the laser looks like to be oscillated as a sin-

gle internal mode observed by such as a spectrum ana-
lyzer with THZ resolution, the spectrum observed by a 
Fabry-Perot interferometer with narrow spectral range 
is completely destroyed. In this case, we cannot observe 
output power jumps such as shown in Fig. 4(a) and the 
output power is linearly proportional to the injection cur-

rent as shown in Fig. 8(a). Figure 8(a) is the experimental 
result, and the length and intensity reflectivity of the ex-

ternal cavity were L = 15 cm and R=30/0, respectively. 
The corresponding optical spectrum observed by a Fab-
ry-Perot interLerometer is shown in Fig. 8(b). We cannot 
distinguish any spectral peaks in this state. The L-1 char-
acteristics in Fig. 8(a) is a static nature (equivalently the 

mean intensity) and, as for the dynamic characteristics, 

the laser output power shows chaotic oscillations 
throughout the range of the injection current. In general, 

coherence collapse occurs in the regime IV of the exter-
nal reflectivity discussed in the introduction, but it oc-
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optical spectrum observed by a Fabry-Perot interferometer at 
coherence collapse state. Length and intensity reflectivity of the 
external cavity are L= 15 cm and R= 30/0. 

curs depending on the system parameters and happens 
even at a low external reflectivity. As a general trend, the 

instability is much enhanced either for long external cavi-

ty length or low bias injection current. Then, the coher-
ence collapse is easily observed at the regime IV at low 
bias injection current with long external cavity length. 
3. 6 Phase Conjugate Optical Feedback 

Recently, a semiconductor laser is frequently used as a 
light source in phase conjugate optics. The dynamic char-
acteristics of phase conjugate optical feedback in semi-
conductor lasers are interesting issues not only from the 
fundamental physical study but also from the applica-
tions. There are many subjects for the study of the dy-
namics in semiconductor lasers with phase conjugate op-
tical feedback. We here consider a degenerated four 
wave mixing phase conjugate feedback with a fast time 
response such like from a Kerr medium.44~48) Other cases 
of the effects for phase conjugate feedback will be briefly 

described in later. The main difference between conven-
tional optical mirror feedback and phase conjugate feed-
back is the phase O in Eqs. (4) and (5) and the phase is 
written by taking the nature of the phase conjugate mir-
ror into consideration as follows44). 

O ( t) = cpCF + c( t) + c( t ~ T), (17) 

where cpCF is a constant phase change by the phase con-
jugate mirror reflection. The notable feature of the phase 
is that it is locked to a certain value with time evolution, 

while the phase for the case of conventional optical feed-
back is linearly increased with time. Other different point 

derived frorn this fact is that the stationary solution for 

the phase is uniquely defined due to the phase locking. In 
conventional optical feedback, multiple stationary phase 
solutions in Eq. (12) induce many antimodes and this 
results in saddle node instability and low frequency fluc-

tuations in the laser output power. On the other hand, 
such instability is not observed for phase conjugate feed-
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Dotted lines are calculated results directly from the rate equations. 

back since there exists no antimode. Therefore, different 
dynamics from the case of conventional optical feedback 
are observed for phase conjugate feedback. 

One of different dynamic behaviors is plotted in Fig. 
9(a). The boundary between stable state and period-one 
oscillation is numerically calculated by the linear stability 

analysis at J= 1.5Jth' Solid line is the boundary for the 
case of phase conjugate feedback and dotted line for con-
ventional optical feedback which is already shown in Fig . 

5(a). Periodic stability enhancement is observed with a 
period equal to a length corresponding to the relaxation 
oscillation frequency of the solitary laser, but stability 

peaks between the cases of phase conjugate and conven-
tional optical mirrors are located alternately with each 
other. For increase of the external reflectivity, a fre-
quency related to the external mode is excited beside of 
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the relaxation oscillation frequency. In conventional opti-

cal feedback, the excited frequency in the optical spec-
trum is nearly equal to one for the external cavity mode 
(but not exactly equal to it due to the nonlinear nature of 

the phenomena). Open circles in Fig. 9(b) show the rela-
tion for conventional optical feedback at J= I .5Jth. 
However, the behavior for phase conjugate feedback is 
completely difierent from that of conventional optical 
feedback. Closed circles in Fig. 9(b) shows the result for 

the phase conjugate optical feedback. The frequency ex-
cited by the external cavity is quite different from the ex-

ternal mode frequency and it has a periodic structure 
with a period equal to the relaxation oscillation frequency 
of the solitary laser again. In the figure, open and closed 
circle data are calculated frorn the linear stability analy-

sis and the dotted curves correspond to direct numerical 
simulations from the rate equations. 

As already mentioned, there exist several subjects for 
the study of the dynamics in semiconductor lasers with 
phase conjugate optical feedback. One of them is the dy-
namics for phase conjugate feedback generated from a 
non-degenerated four wave mixing. In that case, one 
more parameter, i.e., the phase mismatch, is introduced 
and the system shows somewhat different dynamics com-
pared with the case for a degenerated four wave mix-
ing.49,50) Another issue of phase conjugate feedback is the 

time response of a phase conjugate mirror. As the time 
scale of the dynamics in a semiconductor laser with opti-
cal feedback is nano-second or faster, the effect of finite 

time must be considered in the dynamics for a phase con-
jugate mirror with slow time response.51,52) For example, 

the time response of a photorefractive phase conjugate 
medium such as a photorefractive crystal is so slow com-
pared with the time fluctuations of a semiconductor 
laser. So the grating formed in a photorefractive crystal 
can be considered as a static grating.53) Once the grating 

is formed in a photorefractive crystal, the dynamics are 
only governed by the total feedback loop of the pump 
beam. As a result, the dynamics are completely the same 
as those for a conventional mirror feedback except for 
the generation of a spatial phase conjugate wave. The dy-
namics in such photorefractive phase conjugate feedback 
are quite different from those for a fast response phase 
conjugate mirror. 

4. Chaos Control and Synchronization 

Chaotic dynamics in optics have been studied for more 
than these two decades. Chaos and instability in many op-
tical fields have attracted many researchers as a fun-
damental physical study. Chaos in optics in early times 
was an unwanted effect in applications since it enhances 
instability and noise in laser systems and other nonlinear 
optical systems. But, since early '90s, the situation has 

been changed. For example, several methods of chaos 
control algorithms were developed and they were suc-
cessfully applied to laser systems to reduce laser noises. 
Other notable application of chaos is the chaos synchroni-

zation between two similar chaotic systems. It provides 
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the method of a secure communication system. In this 
section, the methods of chaos control and synchroniza-
tion are discussed and their applications are demonstrat-
ed. 

4.1 Chaos Control.' The Method 
The first method of chaos control was proposed by 

Otto, Grebogi, and Yorke in 1990, which is known as the 
OGY algorithm.54) By their control, the system is attract-

ed to a certain unstable orbit such as a saddle node point 

by a very small perturbation to one of the system 
parameters when the system is in a chaotic state and 
very close to the attractor to be controlled. Then the 
original dynamic characteristics are not affected by the 
perturbation. The method was successfully demonstrat-
ed by numerical simulations. But the method is rather 
mathematical one and it is not easy to implement for ac-
tual experimental systems. The second method proposed 
by Pyragas is the continuous control method.55) The sys-

tem outputs at times t- T and t (where T is the delay and 
is chosen to be near or equal to the response time of the 
system) are detected and the difference between them is 
fed back to one of the system parameters. For example, 
in our case, choosing the injection current as a control 
parameter, the control signal is given by 

} J= JjD {1 +ft P(t- T) - P(t) (18) 

Po ' 
where Jb is the bias injection current, P is the feedback 
gain, and Po is the average output power. The control sig-

nal is completely eliminated in those methods after the 
control is succeeded.56,57) The third example of the chaos 

control is the OPF (occasional proportional feedback) 
method proposed by Hunt and Roy, and others.58~61) In 
chaos control, the important information to perform the 
control is not an amplitude of the control signal but the 

timing or phase of the waveform. The timing pulses 
which are very small compared with the system output 
are generated from the original output and they are 
applied to one of the control parameters as small pertur-
bations. Then the system with chaotic oscillation is at-
tracted to usually a periodic cycle . This method was suc-
cessfully applied to a solid state laser system and noise in 

the laser output power was much reduced. The OPF 
method requires some digital electronic circuits to gener-
ate a control signal. Therefore, it is not easy to imple-
ment for very fast time varying signals in spite of very 
suitable method for actual experimental situations . As an 

alternative method for chaos control, we have proposed a 
sinusoidal modulation for a fast time varying signal 
which is applicable to semiconductor lasers. 
4.2 Chaos Control aud Noise Suppression in Semiconduc-

tor Laser 

The idea of the sinusoidal modulation for one of the 
control parameters is that the system may be attracted to 
a periodic or stable state by the control with a rather 
small periodic perturbation even if the system is a little 
bit far from the basin of the targeted attractor, which is 
the most probable case in experiments.62,63) One of the 
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problems is how to choose a modulation frequency. The 
other one is that the attractor of the original dynamics 
may be destroyed and changed by the modulation. In the 
following, we introduce the method of the sinusoidal 
modulation for the injection current and show some 
results.n,64) The modulation depth must be small less 
than several percents of the bias injection current, but it 

was sometimes compatible with or over 100/0 in our ex-
periments. The important thing is that, even in that case, 

the control was only succeeded for the chosen frequency 
and failed for other frequencies. So we can consider that 
the stability by the control is originated from the original 

system dynamics. 
The stability of the laser output power in semiconduc-

tor laser with optical feedback is investigated by the 
linear stability analysis in Sect. 2.3. The imaginary part 
of a solution in Eq. (15) gives a frequency of a stable or un-

stable oscillation in the original system. Therefore, we 
use this frequency as a control parameter. By choosing 
the injection current as a control parameter, the 
sinusoidal modulation is applied as follows; 

J=Jb {1 +a* cos (27c f*t)}, (19) 
where f~ is the frequency determined from one of the 
linear modes and a* is the amplitude of the modulation 
which must be small enough. Whether the control may 
go well or not depends on the extent of the basin of the at-

tractor for that frequency. Figure 10 shows an example 
of the controls at the parameter values of J= I .1Jth, 
r= 1.50/0 , and L = 25.5 cm. The control frequency and am-

plitude are 1.25 GHZ and m=0.021, respectively. A 
chaotic waveform in Fig. 10(a) is controlled to a period-
one oscillation as shown in Fig. 10(b) and noise of the 
laser output power in low frequency region is much 
reduced. The parameter values for the control are cho-
sen as for the best control. The method is rather robust 
and a finite range of the parameter value exists for suc-
cessful control, for example, the control is succeeded 
within the range of several tens to a hundred of MHZ 
around the chosen frequency, but the extent of the attrac-
tor (the amplitude of the oscillation) after the control was 

varied depending on the modulation frequency and ampli-
tude . 

The method of chaos control proposed here can be ap-
plied to the noise suppression in the laser output power. 
Figure 11 shows a numerical result for the noise suppres-

sion by the proposed chaos control at L=15 cm, 
J= 1.3Jth, and r=2.50/0. In this case, the modulation fre-

quency is taken to be f~ = 2.38 GHZ and the modulation 
depth is m = 0.0346. However, the actual modulation 
depth that takes into account for the laser threshold 
becomes mJb/(Jb-Jth)=0.150. This modulation depth 
may not be small in a sense of chaos control with negligi-

ble perturbation. In Fig. 11, the RlN in the lower fre-
quency region less than I GHZ is increased more than 20 
dB/Hz (dashed line) in the presence of the external opti-
cal feedback compared with the solitary laser level (solid 
line). Then, by the control, the noise level is lowered as 
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much as 10 dB/Hz (dotted line). 
In actual, a high frequency injection current modula-

tion has been employed to suppress feedback induced 
noise in semiconductor laser in optical data storage sys-
tems based on the empirical basis.65,66) However, the 
modulation depth is much larger than that of our method 
and a laser is sometimes brought blow the threshold by 
the modulation. The modulation frequency is also deter-
mined empirically in those system. Experimental verifica-
tion of the proposed chaos control here is now under 
way. The problem is how to determine the modulation 
frequency in actual experiments since the exact device 
parameters for a semiconductor laser used must be 
specified in advance. In our preliminary experiments, by 
carefully choosing the state of chaos in the laser output 
power, the control was succeeded with certain integer 
multiples of a frequency which is very close to the exter-
nal cavity mode.67) But the modulation depth was still 
large (for example, around m = 0.1) and the controlled 
modes were rather higher periodic states. 

Recently, self-oscillating laser is interested as a future 

device in a DVD source in optical data storage systems. 
It can oscillate without an inj ection current modulation in 

the presence of external optical feedback due to s satura-

Fig. 11. Numerical result for the noise suppression by the chaos 
control at L = 15 cm, J= 1.3Jth, and r=2.50/0 . Modulation frequency 
is taken to be f^ = 2.38 GHZ and the modulation depth is m = 0.0346. 
Solid line: solitary laser, dashed line: with optical feedback, and 
dotted line: after the control. 

ble absorber installed in the laser active region.68) The 

chaos control algorithm introduced here may give an im-
portant information to design such a device. The injec-
tion current is not only a control parameter in our chaos 
control. Equivalently, direct optical modulation may be 
one of possible ways to control chaos. We have proposed 
such a control by introducing an extra external mirror in 
the optical path as a control mirror,69) but the situation 

was not so simple in this case since the dynamics is much 
complicated compared with a single mirror case.70,71) Any-

way, the control was sometimes successful in that sys-
tem, but the original dynamics was considerably changed 
due to a large modulation depth. 
4.3 Chaos Synchronization and Chaos Communications 

Chaos synchronization is another topic that interests 
many researchers. In two similar chaotic systems, two 
outputs may be synchronized with each other, when 
chaotic signal from one 0L them is transmitted to the 
other.72) In optics, synchronization of chaotic laser sys-

tems was successfully demonstrated in solid state lasers 
and C02 Iasers.73,74) Since the time scales of the phenom-

ena are the order of microsecond in those laser systems 
and it is very easy to observe the waveforms electronical-
ly. To realize chaos synchronization, parameter values of 

two systems must be chosen close enough, however they 
must not always be exactly equal with each other. Chaos 
synchronization is rather robust and the effects of 
parameter mismatch for successful synchronization were 
studied. The allowance of the parameter mismatch de-
pends not only on a system employed but also the values 
of the system parameters and it ranges from several per-
cent to tens of percents for the original parameter values. 

By using two feedback induced chaotic systems in semi-
conductor lasers as a transmitter and a receiver, chaotic 
synchronization can be achieved.75,76) But the external 
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Fig. 12, Numerical result of chaos synchronization. Laser output 
powers of the transmitter (a) and the receiver (b). (c) correlation plot 

between the output powers of the transmitter (horizontal axis) and 

the receiver (vertical axis). Time ofE;sets are taken arbitrary, 
External mirror reflectivity in the transmitter is 20/0 and amount of 
the optical injection to the receiver is 20/0 , The control mirror in the 

receiver system is not presented, 

mirror to introduce optical feedback in the receiver sys-

tem may not be always required to realize chaos syn-
chronization, because the laser can be synchronized sim-
ply by the injection locking from an external light.77) 
Figure 12 shows a numerical result of chaos synchroniza-
tion for such a case. Figures 12(a) and (b) are chaotic 
waveforms of the transmitter and receiver, respectively, 
and Fig. 12(c) is the correlation plot between the two 
waveforms . The time offsets in' the figue are taken ar-

bitrary. In Fig. 12, the two lasers operate under almost 
the same parameter conditions and the external mirror 
reflectivity in the transmitter was 20/0 . The amount of the 

optical injection to the receiver was 20/0 . However, the 

synchronization was succeeded within the injection 
range from I to 20/0. 

Chaos synchronization can be used for secure com-
munications. Even though the method of chaos syn-
chronization has a robustness, it is not easy to syn-
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chronize chaotic systems without knowing the system 
and the values of the system parameters. It is also not 
easy to reconstruct chaotic attractor at a receiver site 
without knowing such information. Namely, using sys-
tem parameters as keys, chaotic communications are real-
ized with high security. In actual, Goedgebuer et al.78,79) 

has proposed chaotic communication systems and done 
some experiments. The system is an opto-electronic feed-

back one and is composed of a semiconductor laser 
source with nonlinear wavelength control feedback to 
the injection current. They have transmitted a piece of 
music and successfully reconstructed it. In the system, 
the message to be transmitted was superimposed with 
the injection current to the semiconductor laser in the 
transmitter and the signal level was about one-hundredth 
of the chaotic variations . For such a small transmitted 
message, the laser output of the receiver system only 
reproduces chaotic variations equal or similar to the 
transmitter. Then, subtracting the receiver signal from 
the transmitter signal, the message is reproduced. Their 
system is an opto-electronic hybrid system so that the 
bandwidth is limited by the time response of the elec-
tronic circuits. Roy et al. proposed a chaotic communica-
tion system which consists of EDFA (erbium-doped fiber 
amplifier) nonlinear feedback loops and realized 126 
Mbits/s data transmission.80) 

5. Other Topics and Applications of Chaos 

Various types of semiconductor lasers have been 
proposed up to now. Chaotic dynamics in semiconductor 
lasers discussed here are also applicable to those lasers 
as far as the dynamics are described by the same laser 
rate Eqs. (4)-(6). The same or similar chaotic dynamics 
are expected for Fabry-Perot bulk laser, MQW Iaser, or 
DFB Iaser, though the phenomena depend on specific 
structures of lasers or device parameters. But, for other 
types of semiconductor lasers such as VCSELs, the dy-
namics become somewhat different from above lasers 
since the rate equations must include spatial and polariza-
tion effects. The internal reflectivity of light in the laser 

cavity in VCSELS is very high as much as 990/0 or 
more. But the short internal cavity length makes the ex-
ternal feedback effects significant. The optical feedback 
effects in VCSELS have been studied by several research-
ers.81-84) In the applications of VCSELs, for example, a 

VCSEL array in integrated optical circuits for intercon-
nect, the feedback effects may be an important issue in 
the actual fabrication of the system. Since the device 
structure of VCSELS is much different from other lasers 
and the internal intensity reflectivity is much higher than 

other semiconductor lasers, different dynamics are ob-
served and the study is now under way. Also the dynam-
ics is somewhat related to other micro-cavity lasers. Fur-
thermore, chaos in such a small space is also related to 
quantum chaos85) and fruitful results are expected in this 

area. 
Another important area of chaotic dynamics is high 

power lasers. Strictly speaking, a laser field depends not 
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only on time but also on space, so that the laser rate equa-

tions must include spatial differential terms. When the 
laser field is restricted in a small area or equivalently it is 

assumed constant for space, the Eqs. (4)-(6) are valid. 
But, for a broad area laser or a flared laser, we must take 

the spatial effects into consideration. These lasers have 

been developed to attain high power semiconductor 
lasers. These lasers themselves are intrinsically unstable 
in time and space without any other external modulation 
and optical injection since they include spatial effects. 

The dynamic behaviors for these lasers are also an im-
portant issue from the Lundamental study of laser instabil-

ity and chaos. Fisher et al. have done several investiga-
tions for the dynamic behaviors of broad area lasers and 
demonstrated spatio-temporal dynamics in the laser out-
put power.86,87) The control of the laser output power in a 

broad area laser was also proposed based on optical feed-
back.88,89) A flared semiconductor laser has a tapered 
resonator structure and the device is fabricated for a 
high power laser. It also shows chaotic dynamics without 
external disturbances.90) The control of the laser output 

power has been proposed by a simple injection current 
modulation and a continuous control similar to the Pyra-
gas method discussed in Sect. 4.1.91) Another type of 
high power semiconductor laser is a laser diode ar-
ray.92~94) Totally high power laser is attained by such a 

device, but the problem is that each laser in array emits 
light independently or with a little correlation. There-
fore, it is difiicult to totally obtain a high intensity and a 

coherent beam. Sometimes it shows chaotic dynamics 
when lasers among array are coupled with each other. A 
laser array coupled with neighborhood elements can be 
described by a coupled map lattice equations which lead 
to well known chaotic spatio-temporal dynamics. To con-
trol the laser and obtain a high quality beam, the control 

methods introduced here may give important informa-
tion. 

Another topics of the applications of feedback induced 
chaos in semiconductor lasers are internal mode selec-
tion by chaotic search,95-97) Iinewidth controlling,98~100) in-

terferometer stabilization,lol) and heterody. ne detection 
of chaotic signals.63) The details of each toplcs are found 

in the literature. 

6. Conclusions 

This paper provided the phenomena of feedback in-
duced instability and chaos in semiconductor lasers and 
its recent applications based on chaos control and syn-
chronization. The study of the noise effects is still an im-

portant issue in semiconductor lasers and the irregularity 

of the output power was explained and understood by the 
chaotic behaviors . Stability and instability natures of the 

output power in semiconductor lasers with optical feed-
back are important not only for the fundamental study 
but also for system designs by using them as a light 
source. Recently, a variety of device structures for semi-

conductor lasers have been proposed and the dynamic be-
haviors for them in the presence of optical feedback have 
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been investigated. The chaotic dynamics of Fabry-Perot 
lasers were studied for these two decades and they were 
understood for some extent. But a lot of issues have still 
been left as future problems to be investigated, for exam-

ple, the origin of low frequency fluctuations concerning 
to one of the routes to chaos in semiconductor lasers with 

optical feedback is not fully understood. On the other 
hand, a little is known for the dynamics of new lasers 
such as VCSELS and broad area lasers in the presence of 
feedback. The study for the applications of chaos is 
started very recently and we have shown some examples 
of recent researches. Fruitful results are expected in 
these area since the optics is very fast in time and has 
parallelism of the processing in nature. The discussion 
here will give important information for other studies of 
instability and chaos in the field of optics such as in 
micro-cavity systems and other nonlinear optical devices. 
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