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Abstract
With growing demands for higher image quality in the fields of film, video post-production, image restoration, art creation, 
and computer vision, color transfer between images has become an important research area. Based on previous research 
on color transfer techniques, this paper proposes a color transfer method for images based on saliency features, aiming at 
automatic color migration between them. Transferring colors based on the saliency features of the input image can avoid 
the problem of unnatural color of the output image due to mixing of colors from different regions. First, the local variances 
of both the original and reference images are calculated, serving as a temporary saliency feature map. This is followed by 
obtaining a refined saliency feature map after undergoing processes such as minimization filtering, binarization, expansion, 
and iteration. Subsequently, color is transferred between the saliency and non-saliency regions of the original and reference 
images. To avoid the generation of pseudo-contours, the image is then refined using base projection. Finally, an output image 
is obtained by fusing the base-projected image with the outcome from Reinhard’s method, ensuring the output retains its 
naturalness and consistency. We conducted experiments with different types of images such as natural landscapes, buildings, 
and art paintings. The experimental results show that the method proposed in this paper not only retains the intricacies of 
the original image but also offers fuller and more realistic color renditions.

Keywords Color images · Color transfer · Saliency features · Color components

1 Introduction

In the field of visual arts, color is a crucial element that not 
only brings life and vibrancy to a work, but also a medium to 
convey emotions, ideas, and messages. Color transfer refers 
to the process where the color palette of one image (termed 

the “original image”) is adapted to that of another, known as 
the “reference image”. Such techniques for color images are 
widely used in different fields, enhancing everything from 
images and videos to the aesthetics of artifacts and artworks, 
image correction for further processing [1]. For example, in 
film and TV special effects, color transfer can change the 
color scheme of a scene, enhancing its emotional expression 
or setting a special atmosphere. In the domain of advertising, 
these techniques can help make brand features, leading to 
more captivating visuals. For image restoration, color trans-
fer can repair damaged or outdated images, rendering them 
more natural and appealing. Given its multifaceted utility, 
color transfer is a versatile asset in image processing that can 
be applied in several fields for solving various image-related 
problems. Therefore, various color transfer methods have 
been proposed to enhance the intricacy and accuracy of such 
effects. Researchers have carried out studies on color trans-
fer methods [2–22],with some based on traditional image 
processing [2–10], while others leverage the power of deep 
learning [11–22].

In 2001, Reinhard et  al. [2] proposed a global color 
transfer method based on the statistical information of 
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color spaces. This method adjusts the pixel values of the 
original image, presenting a simple and effective algorithm. 
However, when applied to colorful reference images, it can 
lead to blending of color regions, resulting in unnatural out-
comes. Despite these shortcomings, the simplicity of the 
approach ensured that it was integrated into subsequent 
studies. Pitie et al. [3] proposed a new idea: matching an 
N-dimensional distribution with another by estimating a 
continuous transformation. Essentially, they constructed a 
color mapping model to fit the color relationship between 
the original and reference images. While this method adeptly 
preserves the structure of the original image, post-processing 
is necessary for color matching to remove noise and visual 
artifacts. Revisiting the domain in 2011, Reinhard et al. [4] 
proposed an incremental color transfer method, catering to 
images with different dynamic ranges. To address artifacts 
in the iterative distribution transfer (IDT), Ueda et al. [5] 
employed the results of Reinhard’s method. By adaptively 
mixing the two methods they obtained color results more 
similar to the reference image, although issues with pseudo-
contours persisted. In 2014, Hwang et al. [6] proposed a 
color transfer method based on moving least squares, nota-
ble for its advantage of being applicable to a wide range 
of situations. Whether faced with differences due to cam-
era parameters, shooting times, or illumination conditions, 
this method proved resilient. However, it requires a large 
number of feature points as control points, implying that 
the target and source images must share the same scene, 
which may be limited in practical applications. Research-
ers such as Grogan [7, 8], leaned into a shape alignment-
based approach. While it focuses on a localized approach, 
its implementation is time-intensive. In recent years, Wu 
et al. [9] proposed a new color transfer method using sali-
ency feature mapping. This addressed the problem of color 
region mixing evident in Reinhard’s method and achieves 
certain results. In 2022, Xu et al. [10] proposed a new IDT-
based color transfer approach. Relying on color component 
projection, they adjusted weights to suppress pseudo-colors 
and improve the color similarity.

As the field of computer vision has advanced, methods 
based on statistics and machine learning have come into their 
own. Methods based on probabilistic models [11–13] have 
been adept at modeling color distributions, yielding more 
accurate transfer results. However, advent of deep learn-
ing has ushered in new possibilities for color transfer. Deep 
learning methodologies [14] aim to transform the transfer 
problem into a nonlinear regression problem, seeking to 
obtain the appearance mapping relationship between original 
and reference images [15]. Utilizing advanced architectures 
such as convolutional neural networks [16–19] (CNNs) and 
generative adversarial networks [20–22] (GANs), research-
ers have managed to learn more complex color mapping and 
transfer laws, achieving higher quality results.

While these strategies have achieved some success in 
dealing with different image types and application scenarios, 
there are still many directions worth exploring and enhance-
ment. Color transfer faces many technical challenges. A 
pressing concern is aligning color distributions across 
different images to ensure naturalness and consistency of 
the transfer. Further, evading the inadvertent introduction 
of artifacts and distortions during color transition remains 
paramount.

In this paper, the image region exhibiting minimal pixel 
value fluctuations is designated as the “salient region”. 
Conversely, the region undergoing maximal pixel shifts is 
termed the “most significant region”. Predominantly, the 
color of the salient region of the reference image is trans-
ferred to the salient region of the original image, while the 
non-salient region of the reference image is transferred to 
the non-salient region of the original image. Most of the 
time, the resultant image post-color transfer has good pic-
ture quality. Therefore, we divide the original and reference 
images into salient and non-salient regions, completing 
color transfer correspondingly between these salient regions. 
Our methodology involved calculating the local variances 
of both images, establishing a temporary saliency feature 
map. This was followed by refining the saliency feature 
map through minimization filtering, binarization, expan-
sion, and iterations. Subsequent steps encompassed trans-
ferring colors between the salient and non-salient regions 
of both the images. To suppress the generation of contours, 
we employed base projection. Finally, the final output image 
was derived by fusing the base-projected image with the 
resulting image derived using Reinhard et al.’s method.

2  Color transfer method of Reinhard [2]

This section delves into a seminal technique in the field of 
color transfer: the method proposed by Reinhard et al. [2].

Introduced in 2001, Reinhard et al.’s method seeks to 
equalize the color distributions of the original and reference 
images. By mapping them into a common color space, the 
color distributions of both the images can be better aligned 
to achieve color transfer. The steps are outlined as follows: 
(1) Convert the original and reference images to the YUV 
color space. (2) Compute the mean and the standard devi-
ation for the original and reference images. (3) For each 
pixel of the original image across every channel, subtract 
the mean value of the original image, multiply by the ratio 
of the standard deviations of the reference to the original 
image, and then add the mean value of the reference image. 
(4) Transform the processed original image back to the color 
space to get the final result. This can be mathematically rep-
resented by Eq.(1):
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where C ∈ {Y ,U,V} , �(src)

C
 and �(ref )

C
 denote the mean of each 

channel of the original and reference images, and �(src)

C
 and 

�
(ref )

C
 denote the standard deviation of each channel of both 

the images. Reinhard et al.’s approach stands out for its sim-
ple and intuitive concept, which is easy to understand and 
implement. Although Reinhard et al.’s method holds a place 
in the field of color transfer as a classic algorithm, it has 
certain shortcomings when dealing with complex scenes and 
preserving details. Therefore, this paper delves deeper into 
Reinhard et al.’s method, aiming to uncover more efficient 
and accurate color transfer methods.

3  Proposed method

In this paper, we propose a color transfer method for color 
images based on saliency features, and the flowchart of the 
method in this paper is shown in Fig. 1.

The method proposed in this paper aims at more accu-
rate color migration while preserving the distinct style of 
the image. First, we obtain a temporary saliency feature 
map of the input image by calculating pixel variance in the 
CIEL∗a∗b∗ color space. Second, an enhanced saliency feature 
map is obtained based on the temporary map through appro-
priate methods such as binarization. Third, according to the 
obtained saliency feature map, both the original and refer-
ence images are divided into salient and non-salient regions. 
Color transfer is then performed in these corresponding 
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(src)
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(src)
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)
�
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C

�
(src)

C

+ �
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C
,

regions, and their results are summed. Fourth, we produce a 
projection image by projecting the color components of the 
original image and adjusting weights to process the summed 
results. Finally, the outputs from Reinhard’s method and the 
projection are fused. In our experimental section, we apply 
our method alongside previous methods applied to several 
images. The efficacy of this method is then verified through 
objective evaluation.

Figure 1 provides an in-depth view of the framework of 
the proposed algorithm, elucidating aspects such as the deri-
vation of temporary saliency feature map, the method of the 
saliency feature map and the algorithm for the region divi-
sion and color transfer processes, projection result image, 
and final fusion result image.

3.1  Temporary saliency feature map

Humans often effortlessly determine the significance of 
image regions, naturally focusing their attention toward sig-
nificant parts [23]. Therefore, calculating the salient image 
sections is crucial. The CIEL∗a∗b∗ color space contains all 
the colors that the human eye can perceive, and this color 
space calculates the variance of the image to better handle 
the differences between different colors in the local space. 
Therefore, in this paper, we first convert the original and 
reference images in Fig. 1 to the CIEL∗a∗b∗ color space. 
Pixel variance is then computed, as described by Eq. (2), to 
obtain the temporary saliency feature maps for both images. 
These variance values are subsequently normalized between 
0 and 1 utilizing the tanh function.

Fig. 1  Flowchart of method proposed in this paper: a original image, 
b reference image, c temporary saliency feature map of original 
image, d temporary saliency feature map of reference image, e sali-
ency feature map of original image, f saliency feature map of refer-

ence image, g image after sub-region transfer, h resulting image of 
Reinhard et al.’s method, i Resulting image of base projection, j final 
output image
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where Si;� denotes the set of pixels in a window centered at 
ith pixel with chessboard distance � of 2, and |||Si;�

||| is the 
number of pixels in the window. The region with a distance 
of � = 2 from the central pixel refers to the 5x5 area centered 
at that pixel. 
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ith pixel, and L∗
j
 , a∗

j
 , and b∗

j
 denote the values of each channel 

in the jth pixel in the window. � is set to 15, and M(v)

i
 is taken 

as the value of the i-th pixel in the temporary saliency fea-
ture map. Figure 3 presents the temporary saliency feature 
maps, M(src) and M(ref ) , obtained by converting the original 
and reference images from Fig.  2. M(src) and M(ref ) are 
obtained from Eq. (3).

3.2  Saliency feature map

The resulting temporary saliency feature maps for the origi-
nal and reference images are computationally processed as 

Fig. 2  Input image: a original image, b reference image

Fig. 3  Temporary saliency feature map: a original image, b reference image
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depicted in the flowchart in Fig. 4 to derive the saliency fea-
ture maps. Within our proposed method, the temporary sali-
ency feature maps M(src) and M(ref ) were initially subjected 
to a minimum filter. This step ensures that the thresholds do 
not surge excessively in the following binarization process. 
The minimum filter is represented as follows:

where MIN(⋅) returns the minimum value of the set of pixels 
Si;� within a window by centering pixel i with chessboard 
distance � of 2. Substituting M(src) and M(ref ) yields M�(src) 
and M�(ref ) . The results of this minimum filtering process, 
M

�(src) and M�(ref ) , are then binarized, dividing the results 
into significant and non-significant regions.

where BF(⋅) is the binarization function, and 
⟨
M

′⟩ is the 
average of the temporary saliency feature maps after mini-
mum filtering. As a threshold for binarization, M� (src) and 
M

�(ref ) are used. The purpose of expansion is to remove non-
significant pixels (or black pixels in a white region) from 

(4)M�
i
= MIN{Mi ∣ j ∈ Si;�},

(5)
M

��

i
= BF(M

�

i
),

BF(z) =

{
255, z ≥

⟨
M

�⟩
,

0, otherwise,

the more salient regions in the binarization result due to 
improper delineation. Conversely, erosion serves to remove 
white pixels from the black regions. In this paper, the win-
dow size of both expansion and erosion was set at 7 × 7 . The 
number of iterations was five for expansion and seven for 
erosion. The erosion intensity was twice that of expansion 
to balance the expansion of the black area into the white area 
during the minimum filtering. This ensures a more accurate 
color conversion within the relevant regions. The saliency 
feature maps obtained in this step are SM(src) and SM(ref ) , as 
shown in Fig. 5.

3.3  Region division and color transfer

This section aims to transfer colors between regions that 
receive the same level of attention to the human eye and 
avoid the problem of mixing color regions. Since the color 
transfer step uses Reinhard’s method, this part operates in 
the YUV color space. Figure 6 shows the comparison of the 
output of Reinhard’s method using CIEL∗a∗b∗ and YUV 
color space. The first and second rows are the original and 
reference images, and the third and fourth rows are the out-
put images using Reinhard’s method in CIEL∗a∗b∗ and YUV 
color space respectively.

Fig. 4  Flowchart for calculating saliency feature map

Fig. 5  Saliency feature map: a original image, b reference image
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From the comparison result, it can be seen that the output 
image in YUV color space is more natural and the colors more 
closely match the color distribution of the reference image. 
The criterion for division is the average, ⟨SM⟩ , of all the pixel 
values of the saliency feature map.

According to Eq. (6), the original image I(src) and the refer-
ence image I(ref ) are divided into significant and non-signifi-
cant regions, where I(src) and I(ref ) are substituted into Ii in Eq. 
(6), the original image is then divided into significant, I(src)

y
 , 

and non-significant, I(src)
n

 , regions and the reference image 
is also divided into significant, I(ref )y  , and non-significant, 

(6)
�

Iy;i = Ii, SMi ≥ ⟨SM⟩,
In;i = Ii, SMi < ⟨SM⟩.

I
(ref )
n  , regions. Next, color transfer is performed in the cor-

responding region using the Reinhard method, which avoids 
the problem of mixing the mean values of each region and 
gives a more natural appearance to the color of the resulting 
image. The color transfer of the corresponding region was 
performed according to Eq. (7).

where C ∈ {Y ,U,V} , �(src;C)
y

 , and �(ref ;C)
y  denote the standard 

deviation of each channel in regions I(src)
y

 and I(ref )y  . m(src;C)
y

 
and m(ref ;C)

y  denote the means of I(src)
y

 and I(ref )y  , respectively. 
The formula is calculated as shown in Eq. (8).

(7)I
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y;i
= (I

(src;C)

y;i
− m(src;C)

y
)
�
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y

�
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y

+ m(ref ;C)
y

,

Fig. 6  Comparison of effect images for Reinhard et al. method in YUV and CIEL∗a∗b∗ color spaces
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where S(src)
y

 is the set of pixels with SM(src) = 255 in the 
original image, and |||S(src)y

||| represents the total number of this 

set. S(ref )y  is the set of pixels with SM(ref ) = 255 in the refer-
ence image, and |||S

(ref )
y

||| represents the total number of this 
set.

Similarly, the color transfer in the non-salient region 
operates as follows:

where �(src;C)
n

 and �(ref ;C)
n  denote the standard deviation of 

each channel in regions I(src)
n

 and I(ref )n  , respectively. m(src;C)
n

 
and m(ref ;C)

n  denote the mean of each channel in regions I(src)
n

 
and I(ref )n  , respectively. The calculation is further detailed in 
Eq. (10).

where S(src)
n

 is the set of pixels with SM(src) = 0 in the original 
image, and ||S(src)n

|| represents the total number of this set. S(ref )n  
is the set of pixels with SM(ref ) = 0 in the reference image, 
and |||S

(ref )
n

||| represents the total number of this set. The results 
of the saliency and non-saliency regions are summed accord-
ing to Eq. (11). Following this, the color space is reverted to 
RGB to derive the result of I(SM) after color transfer, as 
shown in Fig. 7. It is evident that the summed image shows 
false contours due to color differences between the regions. 
This problem will be dealt with in Sect. 3.4.

3.4  Base projection

False contours are generated between the salient and non-
salient regions of the sub-region transferred image. False 
contours are created when the similar or same color appears 
as a different color. The base projection generates the same 
coefficients through the same basis, so the projected colors 
are also the same. Therefore, in this study, the problem of 
false contours in images after subregion transfer can be fixed 
using the base projection method. Concurrently, the base 
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.

projection ensures consistent colors in the original image 
are translated uniformly. Figure 8 shows the flowchart for 
the base projection.

Wi t h in  t he  RGB  co lo r  space ,  12  bases 
Base =

{

R,G,B,R2,G2,B2,R0.5,G0.5,B0.5,R ∗ G,R ∗ B,G ∗ B
} were obtained 

based on the RGB components of the original image, and all 
elements of Base are multiplied by 100. The derived projec-
tion image is represented as I �(SM) . The results of the color 
component projection were obtained according to the linear 
equation in Eq. (12).

where xi(l) denotes the l-th base of the i-th pixel. k is the pro-
jection coefficient that is solved by constructing the objec-
tive function from Eq. (13).

Here, k ∈ ℜ means that k contains 12 real numbers and n is 
the number of pixels in the image. Figure 9 shows the results 
obtained for the base projection section.

3.5  Image fusion

Occasionally, the resultant image after base projection 
exhibits artifactual colors in specific regions. To suppress 
these pseudo-colors, this study employed the saturation of 
the original image as a weight in the fusion between the 
base projection result image and the resultant image from 
Reinhard et al. Lower color saturation in the original image 
indicates that the altered color is close to neutral; thus, there 

(12)I
�(SM)

i
=

∑
l∈Base

k(l) ⋅ xi(l),

(13)k̃ = argmin
k∈

[
n∑
i=1

(I
�(SM)

i
− I

(SM)

i
)
2

]
.

Fig. 7  Image after sub-region transfer
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is no need for color transfer, focusing on regions with peak 
saturation.

For fusion, the color information from the resultant 
image I(R) of the Reinhard et al. technique and the result-
ant image I �(SM) obtained in Sect. 3.4 are combined, utiliz-
ing the saturation information of the original image I(src) , to 

obtain the final image I(out) . The original image is converted 
to CIEL∗a∗b∗ color space, and the saturation information 
of the original image was calculated as a weighted value 
according to Eq. (14) [24] for the compounded weighting 
of the I(R) and I �(SM) images.

Equation (15) aims to prioritize the use of Reinhard’s results 
in low-saturation regions and the projected image I �(SM) 
results in high-saturation regions.

4  Experimental results

In this section, we delve into the experimental design and 
provide an in-depth analysis of the evaluation metrics for our 
proposed method. For the experiments, we selected some 
photos commonly used in the field of color transfer. This 
assortment encompassed a diverse range of images, from 
natural landscapes and architectural buildings to artistic 

(14)wi = tanh(
√
a2 + b2∕�),

(15)I
(out)

i
= [(1 − wi)I

(R)

i
+ wiI

�(SM)

i
].

Fig. 8  Flowchart of base projection

Fig. 9  Base projection results
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paintings. In the tuning experiments of the parameters, 
we carried out tuning experiments for the parameter � in 
Sect. 3.1, the number of iterations for erosion and expan-
sion in Sect. 3.2, and the parameter � involved in Sect. 3.5, 
respectively.

Firstly, Fig. 10 illustrates the effect of the parameter � on 
the temporary saliency feature map at different values. Tak-
ing the input image in Fig. 10 as an example, the temporary 
saliency feature map should have the parts of mountains and 
grass as salient regions and the parts of sky as non-salient 
regions. Observing Fig. 10, it can be noticed that when the 
parameter � is 5, the part of the sky in subfigure (b) will have 
too many white pixels. When the parameter � is 25, the part 
of grass in subfigure (f) will have too many black pixels. The 
same trend is observed for most of the images; therefore, by 
way of compromise, we choose to set the parameter � to 15, 
which can be applied to all the experimental images.

Next, Fig. 11 shows the effect of the number of iterations 
of erosion versus expansion on the saliency feature maps, 
with subfigures (b) to (e) showing the saliency feature maps 
after 2, 3, 4 and 5 iterations of erosion and expansion, in that 
order. The experimental results show that for most of the 
images, the features of the input image can be extracted and 
highlighted more effectively when the number of iterations 
is set to 5. Therefore, considering the generality and robust-
ness of the method, we choose an iteration number of 5.

Finally, we conducted parameter � tuning experiments 
during the fusion phase to investigate the effect of differ-
ent parameter values on the results. The graphical result 
generated at different parameter values are plotted for a 
side-by-side comparison in Fig. 12. From our experiments, 

it became evident that the setting for parameter � will have 
some effect on the results for a given image set. In Fig. 12, 
the first column is the output image and the second to sixth 
columns represent a portion of the output image, labelled 
with dashed boxes, showing the different output effects for 
parameter � values of 10, 20, 30, 40, and 50, respectively, 
in that order. Observations indicate that clarity improves 
incrementally with values of � ranging from 10 to 30. 
Pixelation is not seen in this range and is most notice-
able in the first and second rows. However, as � gradually 
increases from 30 to 50, the entire image progressively 
darkens, which is most obvious in the third row. Given 
these observations, we choose � = 30 as the optimal value, 
producing the most favorable result.

To maintain a standard of comparison, we applied our 
method to an identical set of photographs as those utilized 
by Reinhard et al., Pitie et al., Ueda et al., Wu et al., and Xu 
et al. The comparative results of these methods, for a total of 
eight distinct image sets, are exhibited in Fig. 13.

In the illustration provided in Fig. 13, the original image 
(displayed in the first row) and the reference image (in the 
third row) exhibit different color distributions. The second 
row is the fusion weight maps with the weights of the fused 
parts of Sect. 3.5 as the image output, these weight maps 
adeptly elucidate the specific image regions we focused on 
during the color fusion process. Brighter sections of the 
image focus on the results of the projected image I �(SM) , 
whereas the darker areas incorporate the outcomes from the 
method of Reinhardt et al. However, our proposed method 
manages to produce a color distribution that not only appears 
more natural but also mirrors the colors of the reference 

Fig. 10  Temporary saliency feature maps of the output at different values of parameter � : a input image, b �=5, c �=10, d �=15, e �=20, f �=25

Fig. 11  Saliency feature maps for different number of iterations: a input image, b 2, c 3, d 4, e 5
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image. At the same time, the intricacies and details within 
the images are preserved maintained.

We have focused on preserving the color of the original 
image, which has historically been susceptible to distortion 
in previous methods. Taking image group 4 as an exam-
ple, Fig. 14 shows a zoomed-in perspective. This close-
up reveals that the output images from methods by Pitie 
et al., Ueda et al., and Xu et al. undergo noticeable color 
shifts, leading to an unnatural appearance of the wall seg-
ment. While Wu et al.’s method exhibits improved color, 
a pronounced black area is still evident. This recurring 
appearance of black pixels in the output is attributed to the 
unsuitability of parameter criteria chosen by Wu et al. for 
demarcating regions across diverse image types. The results 
from Wu et al. bear similarities to those by Reinhard et al. 
Figure 15 shows a detail view of the results of the method 
herein compared to the results of Reinhard. The first column 
is the output image, and the second and third columns are 
the portions of the output image in which the method of this 
paper and the method of Reinhard et al. mark dashed boxes, 
respectively. The results of the method in this article are 
similar to those of the method of Reinhard et al. However, 
a detailed comparison indicates a difference in brightness: 
Reinhard et al.’s outcomes are visibly dimmer. Our method, 
on the other hand, produces vibrant, authentic colors and 
faithfully conserves the colors in the reference image.

Another important aspect is the ability to retain details. 
The second image group focuses on the texture and minute 
details of the original image. Figure 16 displays detailed 

views from various methods. Compared to others, both 
Pitie et al. and Ueda et al. exhibited severe distortions in 
the sun part of their output images. Furthermore, while 
the method by Wu et al. has discernible black areas, Xu 
et al.’s approach performs somewhat better, though it still 
yields a slightly blurred sky region. In stark contrast, our 
method is able to better preserve the detailed features 
from the original image, such as texture and sharp edges, 
making the output image visually clearer. To evaluate the 
performance of the different methods, we used objective 
evaluation metrics: Kullback–Leibler Divergence (KLD) 
[25], False Color Index (FCI) [10], and Structural Simi-
larity Index Measure (SSIM) [26]. The KLD quantifies 
the difference in color distribution between reference and 
output images.

where P and Q are the color histograms of the reference 
image and the output image, respectively. FCI evaluates the 
prevalence of pseudo-colors in the transferred output image.

where ΔEij =

√
(Li − Lj)

2 + (ai − aj)
2 + (bi − bj)

2, and the 
values of � and � are 5 and 15. SSIM measures the structural 

(16)KLD(P||Q) = ∑
i

Pi ln
Pi

Qi

,

(17)

FCI =
n∑
i=1

n∑
j=i+1

Φij,

Φij =

�
1, ΔE

(src)

ij
< 𝜉 and ΔE

(out)

ij
> 𝜂

0, otherwise
,

Fig. 12  Detailed images of output results for different values of parameter �
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Fig. 13  Plot of the results of method proposed in this paper alongside Reinhard et al., Pitie et al., Ueda et al., Wu et al., and Xu et al. The first 
row is the original image, the second row is the fusion weight image and the third row is the reference image

Fig. 14  Diagrams representing individual details of red-boxed portion of Fig. 13: a Reinhard et al. method, b Pitie et al. method, c Ueda et al. 
method, d Wu et al. method, e Xu et al. method, f our method
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similarity between the transferred output and the original 
images.

where �(src) and �(out) denote the means the original and 
output images, (�(src))2 and (�(out))2 denote the variances of 
the original and output images, �(src,out) is the covariance 
between the original and output images, and C1 and C2 are 
constants to avoid the case where the denominator is zero.

Table 1 shows the KLD values for output images pro-
duced by different methods. The data suggest that the KLD 
values of the proposed method are intermediate in compari-
son to other methods. Specifically, Pitie et al., Ueda et al., 
and Xu et al.’s methods possess KLD values smaller than 
ours, while the KLD values from Reinhard et al. and Wu 
et al. are larger than that of the KLD method of the method 

(18)

SSIM(src, out) =
(2�(src)�(out) + C1)(2�

(src,out) + C2)

((�(src))
2
+ (�(out))

2
+ C1)((�

(src))
2
+ (�(out))

2
+ C2)

,

proposed in this paper. However, it is worth noting that the 
KLD metric does not fully reflect the color distribution simi-
larities between output and reference images, because the 
KLD metrics do not take into account factors such as color 
saturation and luminance, and therefore a combination of 
other metrics is needed to assess the quality of the output 
image in a more comprehensive way.

Table 2 shows the pseudo-colors calculated from the out-
put images of different methods. We have highlighted the 
lowest value for each row. Our method consistently regis-
tered lower FCI values compared to other methods and have 
the smallest average value. This indicates that our proposed 
method produces fewer pseudo-colors in its output images, 
thus enhancing the resultant image’s quality.

To assess image generation quality, we employed the 
SSIM, which measures structural similarities between the 
output images of different methods and the original images. 
Table 3 shows the SSIM values associated with each method 

Fig. 15  Detailed images of the 
results of this paper’s method 
compared to Reinhard’s results

Fig. 16  Diagrams representing various details of yellow boxed portion of Fig. 13: a Reinhard et al. method, b Pitie et al. method, c Ueda et al. 
method, d Wu et al. method, e Xu et al. method, f Our method
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for different image sets, with the maximum value in each 
row duly marked.

From the table data, it is evident that the proposed 
method exhibits higher SSIM scores in seven image sets, 
with improvements of 2%, 15%, 8%, 6%, and 9% over the 
mean values from Reinhard et al., Pitie et al., Ueda et al., Xu 
et al., and Wu et al., respectively. This implies the superior-
ity of our method in preserving image structure and details. 

Notably, our approach excels at retaining edge information 
and offers higher fidelity in areas with complex textures. 
This adherence to the original image’s structural similarity 
contributes to the elevated SSIM scores.

In conclusion, the experimental results clearly demon-
strate our method’s supremacy, especially when assessed 
using the SSIM metric. Additionally, our method is 
more computationally efficient and easy to employ than 

Table 1  KLD of output images 
for each method

The smallest value is shown in bold in each row

Reinhard et Pitie et al. Ueda et al. Wu et al. Xu et al. Ours
al. method [2] method [3] method [5] method [9] method [10]

Image Group 1 25.1 22.6 22.1 30.6 25.1 23.9
Image Group 2 33.2 19.8 22.7 30.6 36.9 32.7
Image Group 3 38.8 37.5 37.0 30.6 38.6 38.6
Image Group 4 39.4 38.7 37.7 39.2 36.1 39.1
Image Group 5 35.4 33.9 34.7 34.9 35.4 35.7
Image Group 6 37.5 32.1 36.7 33.5 37.5 37.2
Image Group 7 35.7 34.1 33.8 34.8 35.7 35.2
Image Group 8 37.6 32.7 31.7 35.2 36.3 37.5
avg 35.3 31.4 32.1 33.7 35.2 35.0

Table 2  FCI of output images 
for each method

The smallest value is shown in bold in each row

Reinhard et Pitie et al. Ueda et al. Wu et al. Xu et al. Ours
al. method [2] method [3] method [5] method [9] method [10]

Image Group 1 13787 534160436 134844930 3762619 13787 13722
Image Group 2 491171797 2266459150 2204284375 5162283 1640147810 223378811
Image Group 3 3637337 377120595 228296368 18453842 17303511 2485067
Image Group 4 0 4895980523 1706383907 219633138 1245892799 3
Image Group 5 5043 12723255 4260822 785513 10406 2388
Image Group 6 21 2899817 70461 0 71715 0
Image Group 7 59496 129088879 97608246 4393680 9002494 20
Image Group 8 43424916 35819525 31832496 28461521 47208987 42389217
avg 67289049.6 1031781523.0 550947700.6 35081574.5 369956438.6 33533653.5

Table 3  SSIM of output images 
for each method

The largest value is shown in bold in each row

Reinhard et Pitie et al. Ueda et al. Wu et al. Xu et al. Ours
al. method [2] method [3] method [5] method [9] method [10]

Image Group 1 0.921 0.718 0.855 0.857 0.921 0.929
Image Group 2 0.805 0.663 0.686 0.735 0.578 0.826
Image Group 3 0.829 0.679 0.796 0.802 0.806 0.831
Image Group 4 0.903 0.609 0.801 0.832 0.758 0.934
Image Group 5 0.837 0.753 0.822 0.795 0.836 0.839
Image Group 6 0.792 0.825 0.791 0.842 0.778 0.811
Image Group 7 0.862 0.686 0.749 0.758 0.77 0.907
Image Group 8 0.574 0.512 0.542 0.557 0.5 0.624
avg 0.815 0.681 0.755 0.772 0.743 0.838
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deep-learning-based methods. These findings reaffirm our 
method’s prowess in upholding image structure and intri-
cacies, marking a significant advancement in the realm of 
image generation.

5  Conclusion

This paper proposes a method based on the idea of dividing 
the region for color transfer using saliency feature maps. 
Our experimental results show that this approach adeptly 
maintains the detailed features of the original image. Simul-
taneously, it imparts more vibrant and authentic colors and 
displays superior fidelity in complex texture regions.

Looking ahead, we aim to refine the current process, 
seeking to optimize steps without losing the existing accu-
racy. We are also invested in enhancing the precision of ref-
erence image color transfers through improved color space 
matching.

Data availability The code, data, and materials used or analysed dur-
ing the current study are available from the corresponding author on 
reasonable request.
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