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Abstract
Gesture recognition using cameras capable of capturing detailed images for gesture recognition is not feasible in many places 
due to concerns regarding privacy and information leakage. To address this problem, we have proposed a method of capturing 
shadow pictures using single-pixel-imaging to realize privacy-conscious gesture recognition. As an implementation method 
of single-pixel-imaging in public spaces, we have studied using a high-frame-rate LED display as a light source. By using a 
high-frame-rate LED display, random patterns can be latent while the observer perceives an apparent image. However, the 
image reconstructed by single-pixel-imaging using a high-frame-rate LED display is influenced by the apparent image, mak-
ing gesture recognition difficult. In this study, we show that the influence of the apparent image can be removed by restoring 
the restored image using deep learning with a convolutional network called U-Net, and high classification accuracy with a 
small number of illuminations by using LeNet to classify restored images.
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1  Introduction

With the recent advancements in information and commu-
nication technology, information displays have become per-
vasive in our daily lives. By combining these information 
displays with gesture recognition technology, it becomes 
possible to create interactive information interfaces that can 
switch images on the display based on the user’s gestures. 
Examples of gesture recognition applications include patient 
monitoring, anomaly detection using surveillance cameras, 
master–slave operations for robots, and sign language recog-
nition [1]. To perform gesture recognition, various devices 
are used, such as stereo high-speed cameras [2], stereo infra-
red cameras (Leap Motion) [3], and Time of Flight (ToF) 
3D cameras (Kinect) [4]. However, using cameras capable 
of capturing detailed images for gesture recognition is not 
feasible in many places due to concerns regarding privacy 
and information leakage. Examples of such places include 

personal spaces like toilets and bathrooms, as well as pub-
lic spaces. Particularly in bathrooms, it is not possible to 
use electrostatic sensors, and voice recognition is difficult 
due to water sounds. To address this problem, research has 
been conducted on methods such as reducing the resolution 
of captured images [5] and performing masking operations 
outside the required areas [6]. We have proposed a method 
of capturing shadow pictures using single-pixel-imaging to 
realize privacy-conscious gesture recognition [7].

Single-pixel-imaging is a technique that utilizes spatially 
modulated illumination and a single light detector to capture 
images [8]. It allows imaging under low-light conditions and 
with light sources other than visible light, making it appli-
cable in a wide range of scenes. To perform single-pixel-
imaging, a modulable light source is required, and various 
displays already present in public spaces can serve as suit-
able light sources. We have previously proposed single-
pixel-imaging using a high-speed modulable LED display 
for banner advertisements and news display [9]. In this case, 
the content of the banner display can be directly utilized as 
the spatial light intensity distribution of the light source [10]. 
Alternatively, by embedding random patterns while main-
taining the apparent image recognizable to observers [11], 
it becomes possible to achieve a balance between digital 
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signage display and imaging without constraints on the 
content. However, this approach presents a challenge where 
the reconstructed images through single-pixel-imaging are 
influenced by the apparent image, making gesture recogni-
tion difficult [12].

To solve this problem, we propose to use deep learning 
to restore the original image from which the apparent image 
has been removed from the reconstructed image of single-
pixel-imaging. Although deep learning has been proposed 
to reduce the number of illumination times for single-pixel-
imaging [7], this study aims to achieve both reduction of 
illumination times and removal of apparent images. Prelimi-
nary results of this study were presented at LDC2023 [13]. 
The purpose of this paper is to investigate the classifica-
tion accuracy of reconstructed single-pixel-imaging images 
with latent random patterns in the illumination by removing 
the influence of apparent images through deep learning. To 
achieve this, a neural network, U-Net, is used to train pairs of 
reconstructed and original images, and the image is restored 
by the network. LeNet was then used to determine the clas-
sification accuracy of the restored image.

2 � Principle

2.1 � Single‑pixel‑imaging 
with random‑dot‑embedded apparent images

The principle of the single-pixel-imaging with random-
dot-embedded apparent images is shown in Fig. 1. The 
encoded images are displayed on an LED display at a suffi-
ciently high frame rate, so the observer perceives an appar-
ent image that integrates the encoded images. The light 
transmitted through the subject is measured by a single 
detector and reconstructed using the principle of single-
pixel-imaging with 2D encoding images and 1D tempo-
ral signals. The reconstruction of single-pixel-imaging is 
expressed by

where ΔI(x, y, n) is the deviation between the light inten-
sity I(x, y, n) and the mean ⟨I(x, y, n)⟩ of the n-th 2D encod-
ing images in the coordinates (x, y) . ΔA(n) is the deviation 
of average value of 1D temporal signals. A(n) can also be 
given by

where T(x, y) denotes the transmission function [14]. 
Thus, the reconstructed image from n-th measurements 

(1)

G(x, y, n) = ⟨ΔI(x, y, n)ΔA(n)⟩
= ⟨

�
I(x, y, n) − ⟨I(x, y, n)⟩

��
A(n) − ⟨ΔA(n)⟩

�
⟩

= ⟨I(x, y, n)A(n)⟩ − ⟨I(x, y, n)⟩⟨A(n)⟩

(2)A(n) = ∬ T(x, y)I(x, y, n) dxdy

Fig. 1   Principle of single-pixel-
imaging with apparent image 
latent with random pattern
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can be obtained from 2D encoded images displayed on 
the LED display and the 1D temporal signal measured by 
a single detector. The reconstructed images are influenced 
by noise and apparent images, making gesture recognition 
difficult.

2.2 � Encoding of apparent images

The LED display is updated at a sufficiently high frame rate 
so that the observer perceives an integrated image of latent 
random patterns. This principle has been confirmed with 
LED displays at 960 fps [11]. Encode m frames to latent 
random patterns in the apparent image. The latent random 
pattern satisfies:

where V(x, y) be the pixel value of the apparent image at 
coordinate (x, y) and E(x, y, n) be the pixel value of the n-th 
coded image [15].

(3)V(x, y) ≡
m∑

n=1

E(x, y, n)

In this study, the apparent image was also encoded to 
satisfy Eq. (3). The apparent image used in the experiment 
was a binary image with pixel values (190,255) as shown 
in Fig. 2. When m = 2 is used as an example of encoding, 
Fig. 3 shows two coded images of Fig. 2. Table 1 shows the 
composition of pixel values by encoding two images. By dis-
playing these two images at high speed on an LED display, 
the observer perceives the apparent image shown in Fig. 2.

2.3 � U‑Net

Structure of U-Net is shown in Fig. 4. U-Net is a convolu-
tional neural network (CNN) that is good at capturing and 
restoring features of input images [16]. In the convolutional 
process, a filter-based convolution is performed on the input 
to output a feature map. Maxpooling reduces the resolu-
tion of the input by extracting the maximum value in the 
filter and aggregating it into one. Then, unpooling brings 
the resolution back to the original. These processes enable 
capturing the features of an object. However, since the posi-
tional information of the object is lost in these processes, 
the feature maps before the convolution is concatenated 
to complement the positional information, which is called 
skip-connection.

U-Net was developed for medical image segmentation 
and was also used in this study because it is suitable for 
single-pixel-imaging that contains a lot of noise.

Fig. 2   Apparent image

Fig. 3   Two encoded images

Table 1   Composition of pixel values by two encoded images

Original 
pixel 
value

Number of 
pixel value 0

Number of 
pixel value 
190

Number of 
pixel value 
255

Total 
encoded 
images

190 1 1 0 2
255 1 0 1 2
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2.4 � LeNet

Structure of LeNet is shown in Fig. 5. LeNet is a network 
model suitable for image classification that consist of CNN 
[17]. This network performs classification by repeating the 
convolutional layer and the max-pooling layer, and then 

Fig. 4   Structure of U-Net

Fig. 5   Structure of LeNet

Table 2   Composition of pixel values by 20 encoded images

Original 
pixel 
value

Number of 
pixel value 0

Number of 
pixel value 19

Number of 
pixel value 65

Total 
encoded 
images

190 10 10 0 20
255 9 10 1 20

Fig. 6   A part of 20 encoded images
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repeating the affine layer. In this paper, we added layers for 
image augmentation to compensate for the lack of training 
data.

3 � Experiments

3.1 � Reconstruction of single‑pixel‑imaging

Hand gesture images were reconstructed using single-
pixel-imaging with random patterns and single-pixel-
imaging with apparent images. The SSIM value is a 
measure of structural similarity, and the closer the value 
is to 1, the higher the similarity. The apparent images were 
encoded into 20 images, and the pixel value composition 
of the 20 encoded images is shown in Table 2 and a part 
of 20 encoded images are shown in Fig. 6. The order in 
which these are displayed is random for each pixel. Hand 
gesture images are 18,000 images of 40 × 40 pixels and are 
simulated on a computer. Composition of the hand gesture 
images is shown in Table 3 and hand gesture images are 
shown in Fig. 7.

3.2 � Elimination of apparent image with U‑Net

To remove the influence of the apparent image, the recon-
structed image was restored by learning with U-Net. By 
using pairs of original gesture images and reconstructed 
images from single-pixel-imaging, U-Nets were trained 
to remove the influence of apparent image. To obtain the 
transition of the SSIM value in response to changes in the 
number of illuminations in the reconstructed image, Net-
work settings were the same, and training was performed 
for each number of illuminations. Training was performed 
using the Neural Network Console (NNC) provided by 
Sony. Dataset structure of U-Net is shown in Table 4, 

Network settings of U-Net is shown in Table 5, and U-Net 
implemented on NNC is Fig. 8.

3.3 � Classification of hand gesture

We performed learning to classify the restored images using 
LeNet. Restored images were given labels corresponding to 
gestures. Training was performed using the labeled restored 
images. Network settings were the same and training was 
performed for each number of illuminations. Training was 
performed using NNC. Dataset structure of LeNet is shown 
in Table 6, Network settings of LeNet is shown in Table 7, 
and LeNet implemented on NNC is Fig. 9. In “ImageAug-
mentation” layer, input images are rotated, and in “Random-
Shift” layer, patterns are increased by shifting left and right.

Table 3   Composition of gesture 
images

Rock Scissors Paper Total

6000 6000 6000 18,000

Fig. 7   Images of hand gesture

Table 4   Dataset structure of U-Net

Training data set Validation data 
set

Test data set

Rock 4000 1200 800
Scissors 4000 1200 800
Paper 4000 1200 800
Total 12,000 3600 2400

Table 5   Network setting of 
U-Net

Updater Adam

Update interval 1
Weight decay 0
α (Learning rate) 0.001
Beta1, beta2 0.9, 0.999
Batch size 64
Epoch 100
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4 � Result

4.1 � Reconstruction of single‑pixel‑imaging

Figure 10 shows reconstruction results of single-pixel-
imaging with random patterns and single-pixel-imaging 
with apparent images, and Fig. 11 shows the SSIM values 
of single-pixel-imaging with random patterns and single-
pixel-imaging with apparent images.

Figure 10 shows that the reconstruction results of the 
random pattern and the apparent image are clearer when 
there is more illuminations, and noisier when there is less 
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Fig. 8   U-Net implemented on NNC

Table 6   Dataset structure of LeNet

Training data set Validation data 
set

Test data set

Rock 500 200 100
Scissors 500 200 100
Paper 500 200 100
Total 1500 600 300

Table 7   Network setting of 
LeNet

Updater AMSGrad

Update interval 1
Weight decay 0
α (Learning rate) 0.001
Beta1, beta2 0.9, 0.999
Batch size 64
Epoch 100
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Fig. 10   Reconstruction results of single-pixel imaging with random patterns and single-pixel-imaging with apparent images

(a) random pattern
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Fig. 11   SSIM value for reconstructed image of a random pattern and 
b apparent image

(a) 10000 illuminations

(b) 100 illuminations
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Fig. 12   Learning curves of U-Net for 10,000 illuminations and 100 
illuminations in single-pixel imaging using apparent images
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Fig. 13   Restoration result of a random pattern and b apparent image

(a) random pattern

(b) apparent image
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Fig. 14   SSIM value for restored image of a random pattern and b 
apparent image
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illuminations. The single-pixel-imaging using the apparent 
image shows the influence of the apparent image.

Figure 11 shows that when the number of illuminations 
is 1000 or less, the SSIM values of the random pattern and 
the apparent image are comparable. When the number of 
illuminations exceeds 1000, the random pattern has a higher 
SSIM value.

4.2 � Elimination of apparent image with U‑Net

U-Net was trained to restore the reconstructed image. Learn-
ing curves of U-Net for 10,000 illuminations and 100 illumi-
nations in single-pixel-imaging using apparent images are 
shown in Fig. 12, and restoration result of random pattern 
and apparent image are shown in Fig. 13. SSIM values of 
the restored image using single-pixel-imaging with random 
patterns and the restored image of single-pixel-imaging with 
apparent images are shown in Fig. 14.

Figure 12 shows that the error value converges to a small 
value when the number of illuminations is set to 10,000. 

As the number of illuminations decreases, the error value 
gradually increases, and the error value for 100 illuminations 
is about ten times larger than that for 10,000 illuminations.

Figure 13 shows that the effect of the apparent image was 
removed by the U-Net restored image. In addition, it was 
confirmed that the gestures in the reconstructed image could 
be restored when the number of illuminations was 500 or 
more, but the reconstructed image could not be completely 
restored when the number of illuminations was 100.

Figure 14 shows that there is no difference in SSIM val-
ues between the restored image of single-pixel-imaging with 
random patterns and the restored image of single-pixel-
imaging with apparent images.

4.3 � Classification of hand gesture

LeNet was trained to classify the restored image. Learning 
curves of LeNet for 10,000 illuminations and 100 illumi-
nations in single-pixel-imaging using apparent images are 
shown in Fig. 15, and the relationship between the number 
of illuminations and classification accuracy of random pat-
tern and apparent image are shown in Fig. 16.

Figure 15 shows that the error value converges to a small 
value when the number of illuminations is set to 10,000. As 
the number of illuminations decreases, the error value gradu-
ally increases, and the error value for 100 illuminations not 
only decrease when the number of epochs increases, but also 
increase in some places.

Figure 16 show that classification accuracy depends on 
the number of illuminations. When the number of illumina-
tions was 300 or more, all restored images could be classi-
fied, and when the number of illuminations was less than 
200, the classification accuracy began to decrease. The clas-
sification accuracy was similar for both random patterns and 
apparent images.

5 � Discussion

Figures 12 and 15 show that there is a large difference in 
error values when comparing the error values resulting from 
10,000 illuminations and 100 illuminations, and there are 
apparent signs of over-learning in the case of 100 illumina-
tions. To solve this problem, it is considered necessary to 
improve the network and adjust parameters.

From Fig. 11, the difference in SSIM values between the 
reconstructed image of single-pixel-imaging with random 
patterns and the reconstructed image of single-pixel-imaging 
with apparent images can be seen. However, from Fig. 14, 
the SSIM values of the reconstructed image of single-pixel-
imaging with random patterns and the reconstructed image 
of single-pixel-imaging with apparent images are similar. 

(a) random pattern

(b) apparent image
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Fig. 16   The relationship between the number of illuminations and 
classification accuracy of a random pattern and b apparent image
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Also, from Fig. 16, the classification accuracy of the restored 
image of single-pixel-imaging using random patterns by 
LeNet and that of the restored image of single-pixel-imag-
ing using apparent images by LeNet are similar. There-
fore, using U-Net and LeNet in single-pixel-imaging with 
apparent images, it is possible to classify more than 80% of 
the restored images with more than 200 illuminations. We 
expect that the measurement with 200 illuminations and a 
3000 Hz LED display can realize gesture classification with 
a sampling rate of 15 fps.

6 � Conclusion

Reconstructed images by single-pixel-imaging using appar-
ent images are influenced by the apparent images, and it is 
difficult to classify gestures. Using U-Net for restoration and 
LeNet for classification, it is possible to classify all of them 
with more than 200 illuminations.
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