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Abstract
Temporal phase unwrapping based on phase-encoding is a technique widely used in 3D measurement for its high-speed 
advantage. However, eliminating fringe order jump error induced by the system’s luminance nonlinearity is still a key chal-
lenge. We propose a fringe order jump error self-correction method to address this issue. First, we encode the shifting phase 
and stair phase separately and combine them into the same pattern based on four-step phase shifting. This allows us to calcu-
late the fringe order and wrapped phase simultaneously and avoid the overlapping of two set phases. Then, we add auxiliary 
patterns to obtain information on the order-located period’s odd-evenness characteristic. Theoretically, we demonstrate that 
under the influence of the nonlinear effect, the order calculation value for a particular period fluctuates between the ideal 
values of two adjacent orders. Thus, the correct order value can be directly determined by acquiring the period characteristic 
information, without the need for complex error compensation. Simulations demonstrate that the method performs good 
robustness where random noise and luminance saturation exist simultaneously in addition to system nonlinearity. Our experi-
ments confirm the effectiveness of this method for high-accurate and fast fringe order determination.

Keywords Fringe order correction · System nonlinearity · Phase-coded · Phase measuring profilometry

1 Introduction

Fringe projection profilometry [1] (FPP) is a typical 3D opti-
cal non-contact measurement method that has been widely 
applied in quality inspection, reverse engineering, medical 
systems, and other fields [2–4]. Numerous research studies 
on this method have emerged due to its high accuracy and 
low-cost advantages. A custom system includes a projector 
and a camera. Encoding fringe patterns are projected onto 
the object, and the deformed patterns are captured simul-
taneously [5]. The corresponding decoding absolute phase 
reflects the object's surface depth. Thus designing specific 
patterns is a crucial task during the measurement process. 
According to the pixel position information coded in the 
pattern, the coding methods consist of spatial and tempo-
ral coding [6]. Temporal coding methods calculate phase 
pixel by pixel, which can avoid effects between adjacent 
pixels. They can be used to measure complex surfaces and 

discontinuous objects [7]. Frequently used encoding meth-
ods include phase-shifting, Gray-code, and De-Bruijn cod-
ing methods. N-step phase-shifting coding is derived from 
phase shift interference (PSI) techniques [8], and is usually 
adopted for temporal phase coding. Phases are obtained by 
performing an inverse tangent operation on a group of vary-
ing sinusoidal patterns owing to a different fixed phase-shift-
ing value. Calculated phases lose the period information, 
so they are clipped to [-π, π] which are called the wrapped 
phases. The corresponding fringe order information must be 
incorporated to acquire the absolute phases. Multiple algo-
rithms have evolved, such as the phase-shifting Gray code, 
multi-frequency shift, and phase encoding methods [9–11]. 
These methods take phase-shifting codes as a basis and add 
additional code words or frequencies to recover the matching 
period for the absolute phase.

Compared with the above methods, the phase-coding 
technique is remarkably robust to surface contrast, ambient 
light, and camera disturbances, as well as for its outstanding 
balance between pattern numbers and accuracy of fringe 
order calculation. This method directly embeds the fringe 
order information into the N-step coding phase by uniformly 
quantizing the phase in a range of [0, 2π] with a stair-like, 
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which has the same period number as the phase-shifting 
pattern. However, the brightness of commercial projector 
and the response of imaging device are usually adjusted in 
advance to have gamma nonlinearities in order to emulate 
the physics of a cathode ray tube (CRT) monitor [12]. Thus 
the nonlinear intensity response of the projector-camera 
system introduces periodic phase error that significantly 
affect the accuracy of fringe order calculation [13]. Since 
the fringe order information is encoded as a form of phase 
in the phase-coding method, the error brings uncertainty in 
determining the fringe order. Several improved methods of 
phase coding have been presented to solve the above prob-
lems. Luo [14] proposed a modified phase-coding method 
in that stair phases are embedded into five-step phase-shift 
sinusoidal patterns. Yang [15] utilized the special relation-
ship among the four unconstrained patterns to calculate the 
fringe order. Tian [16] designed a particular coding sequence 
in the coding stage (0, π) to increase the number of code 
words. Zou [17] adopted composite cyclic grayscale val-
ues to distinguish the same cyclic codewords and integrated 
them into new fringe order sequences for effective phase 
unwrapping. Ma [18] used mathematical morphology opera-
tions to obtain fringe orders from one additional code pat-
tern. Wu [19] presented a two-wavelength phase-shifting 
method in which using the long wavelength component to 
compute the fringe orders. Chen [20] proposed a fringe order 
retrieval method based on quantized phase coding and con-
nected region labeling. They labeled the connected regions 
of different codes and assigned 3-digit codes between the 
current period and its neighbors to restore the correct fringe 
order. Chen [9] presented a two-digit phase-coding strategy 
to match the phase-shifting patterns to the two-digit code-
word encoded in the phase-coding patterns.

In conclusion, the above improved phase coding methods 
expand the number of codewords and enhance the matching 
efficiency between the wrapped phase and order, sometimes 
in the presence of imperfections during the measurement. 
However, some methods require surrounding pixel infor-
mation as a background to obtain the correct fringe order 
with a complex computation process. This operation will 
increase the probability of incorrect decoding and reduce 
the robustness of the corrected algorithm. Besides, many 
types of research have emerged for suppressing the nonlinear 
effect of the whole system [21–23]. Li proposed to calibrate 
the nonlinearity of the system by projecting pre-designed 
intensity patterns. Guo deduced a nonlinear phase error 
model and proposed an iterative pixel-by-pixel parameters 
compensation method. However, these methods are cumber-
some and computationally complex. Meanwhile, they do not 
combine with specific coding methods to simplify calcula-
tion operations and improve algorithms efficiency.

This paper presents a high-accuracy and robust fringe order 
jump error self-correction method to directly determine the 

correct fringe order. Four-step shifting and coding phase are 
encoded separately and combined into one intensity pattern. 
Therefore, the wrapped phase and fringe order can be obtained 
simultaneously to avoid the influence of the two sets phase 
overlapping. Five patterns are needed during this process. 
Then, two auxiliary patterns are added to provide the order-
located period property information. Through symbolic opera-
tions of the auxiliary patterns, the odd-evenness characteristic 
of the order-coded phase period is obtained. Furthermore, the 
theoretical analysis shows that the order calculation value for 
a particular period fluctuates between the ideal values of two 
adjacent orders under the influence of system nonlinear effect. 
By judging whether the corresponding wrapping phase is in an 
odd or even period, the fringe order can be directly corrected 
without sophisticated error compensation calculations.

The structure of the papers is as follows: Sect. 2 introduces 
the principle of the fringe order error self-correction method 
and an analysis of order calculation error. Section 3 reports a 
simulation of the proposed method under different nonlinear 
intensity responses. In Sect. 4, experimental results are pre-
sented, comparing the proposed method with the traditional 
phase-coding method to demonstrate its effectiveness and 
robustness. Finally, Sect. 5 provides the conclusion.

2  Principle

2.1  Traditional phase‑coding method

Fringe patterns in the traditional phase coding method are 
classified into two groups [24], the common N-step shifting 
phase and the pixel-by-pixel matching order-coding phase, 
as shown in Fig. 1. The periods of the two sets patterns are 
the same. The intensities of four-step phase-shifting pattern 
are represented as:

where n = 1,2,3,4. A and B are the ambient light and fringe 
modulation. (x, y) denotes the camera image pixel. φ is the 
wrapped phase reflecting the profile of the object to be meas-
ured. Define phase shift �n = 2�(n − 1)∕4.

According to the least-square algorithm, the wrapped 
phase is expressed as:

The wrapped phase loses the matched period information. 
To recover the absolute phase, corresponding order-encoded 
patterns are designed as:

(1)In(x, y) = A + B cos(�(x, y) + 2�(n − 1)∕4)

(2)�(x, y) = arctan

∑

Ic
n
(x, y) sin �n

∑

Ic
n
(x, y) cos �n

(3)Is
n
(x, y) = A + B cos(�(x, y) + �n)
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The cue of fringe order is successively embedded in the cod-
ing phase as the stair phase, presented as follows:

where h is the number of pixels per fringe period. N is the 
number of fringe periods. The function floor () is the down-
round function.

Similarly, α is the stair phase that can be calculated as

Thus, the fringe order can be obtained. Where round () rep-
resents the rounding function.

(4)�(x, y) = floor
(

x

h

)

×
2�

N

(5)�(x, y) = arctan

∑

Is
n
(x, y) sin �n

∑

Is
n
(x, y) cos �n

(6)m(x, y) = round (N × �(x, y)∕2�)

Then the absolute phase Φ(x, y) can be calculated accord-
ing to the fringe order m(x, y) and the wrapping phase φ(x, 
y).

2.2   Fringe order error self‑correction method

The intensity of captured patterns depends on digital light 
processing rather than the object. Thus, when the received 
intensity is distorted, the fringe order calculated from the 
received intensity operation will be affected. Many factors 
influence the captured image intensity and cause errors. The 
significant error comes from the nonlinear intensity response 
of the digital projector-camera optical system [25]. It results 
in non-sinusoidal waveforms for the captured fringe patterns, 
causing the additional phase calculation error for widely 

(7)Φ(x, y) = �(x, y) + 2� × m(x, y)

Fig. 1  Principle of the traditional phase coding method
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employed phase-shifting algorithms [26]. Ae Ref [27] men-
tioned, the phase error due to saturation also has the same 
characteristics as nonlinearity. Thus, the additional phase 
calculation error under the influence of luminance saturation 
is similar to that of system nonlinearity.

To remove the order calculation error generated by sys-
tem luminance nonlinearity, a self-correction method is pro-
posed to retrieve the correct order directly. The procedure 
of the proposed method is described in Fig. 2. Five patterns 
in the first row are used for calculating the wrapped phase 
and corresponding fringe order pixel-by-pixel accurately. 
The wrong fringe order occurs under the system’s nonlinear 
effect. The two patterns in the second row provide the order 
period property. Distorted phase fringe order sequence can 
be corrected with a self-correction strategy. The erroneous 

located period property and assigning the correct number 
directly, the wrong fringe order can be self-rectified directly 
and quickly.

The traditional four-step phase-shifting phase-coding 
method requires projecting eight patterns during the measure-
ment. In order to improve accuracy while reducing the number 
of patterns, a composite phase coding method is presented. 
This coding method separately encodes the four-step shift-
ing and coding phases into the same pattern, avoiding over-
lap between the two phase sets during decoding calculation. 
Moreover, the wrapped phase and fringe order are achieved 
at the same time. The composite phase-coding patterns are 
expressed as follows:

Fig. 2  Principle of the proposed method

stair phase floats near the ideal value but not exceeds the 
last and next period’s ideal value. Because each adjacent 
period has different parity features, by distinguishing the 

(8)
Ic
i
(x, y) =

{

A + 0.5B cos(�(x, y) + 2�(i − 1)∕4) + 0.5B cos(�(x, y) + 2�(i + 1)∕4) i = 1 − 4

A − 0.5B sin(�(x, y)) − 0.5B cos(�(x, y)) i = 5

where A and B are the ambient light and fringe modulation. 
φ(x, y) represents the wrapped phase. α(x, y) represents the 
stair phase. Figure 3 shows the intensity distributions of one 
cross section for the designed patterns sequentially.
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The wrapped phase can be calculated from the following 
form:

The coding phase is calculated in a similar way to the 
wrapped phase. Fringe order m(x, y) and absolute phase Φ(x, 
y) can be calculated the same as Eqs. (6)–(7).

The nonlinear intensity response of the projector-cam-
era system deviates from its ideal distribution, leading to 
periodic errors in the calculation of fringe order infor-
mation encoded as a form of phase. Hence false fringe 
order calculation are more likely to occur. However, the 
fringe order error can be self-corrected with the help of 
order-located period property information. To this end, 
we generate two additional patterns based on the second 
and fourth fringe with π phase shifts of adjacent periods. 
The intensities of two patterns are expressed as follows:

(9)�(x, y) = arctan
Ic
2
(x, y) − Ic

4
(x, y)

Ic
3
(x, y) − Ic

1
(x, y)

(10)�(x, y) = arctan
Ic
1
(x, y) + Ic

3
(x, y) − 2Ic

5
(x, y)

Ic
2
(x, y) + Ic

4
(x, y) − 2Ic

5
(x, y)

(11)
Ic
6
(x, y) =

{

A + 0.5B sin(�(x, y)) − 0.5B sin(�(x, y)) mod [floor (x∕h), 2] = 0

A − 0.5B sin(�(x, y)) − 0.5B sin(�(x, y)) mod [floor (x∕h), 2] = 1

(12)
Ic
7
(x, y) =

{

A − 0.5B sin(�(x, y)) − 0.5B sin(�(x, y)) mod [floor(x∕h), 2] = 0

A + 0.5B sin(�(x, y)) − 0.5B sin(�(x, y)) mod [floor(x∕h), 2] = 1

Auxiliary phase φi(x,y) can be obtained as

The basic phase φ(x,y) in Eq. (9) and the above auxil-
iary phase φi(x,y) have different distributions in the odd or 
the even period. The two phases have equal values in the 
odd period, and in the even period, the two phases have 
exactly opposite values.

To distinguish the properties of the period in which the phase 
is located, define S(x,y) as the sign operation of two phases.

The result of the symbol operation can reflect the phase 
period characteristic. Thus, the fringe order of the corre-
sponding wrapped phase can be self-corrected directly. The 
procedure for fringe order self-correction is summarized as 
follows. Figure 4 shows the detailed steps for this process.

Step 1: The camera captures the modulated seven pro-
jected patterns. Calculate wrapped phase φ(x,y) in Eq. (9), 

(13)�i(x, y) = arctan
Ic
6
(x, y) − Ic

7
(x, y)

Ic
3
(x, y) − Ic

1
(x, y)

(14)

S(x, y) =

{

sign
[

�(x, y) × �i(x, y)
]

�(x, y) ≠ 0&�i(x, y) ≠ 0

sign
[

�(x + 1, y) × �i(x + 1, y)
]

else

Fig. 3  The intensity of one cross section for designed patterns sequentially
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coding phase α(x,y) in Eq. (10), auxiliary phase φ(x,y) 
in Eq. (13) and sign operation S(x,y) in Eq. (14) pixel by 
pixel.

Step 2: Record the number of adjacent periods for the 
order-located period of stair phase: n and (n + 1).

Step 3: When S(x,y) equals 1. If n is odd, the order here is 
rectified to (n + 1). If n is even, the order here is n.

When S(x,y) is equal to  – 1, if n is odd, the order here is n. 
Otherwise, if n is even, rectify the order here to (n + 1).

2.3  Order calculation error analysis

The system nonlinearity factor introduces errors in the fringe 
order decision. The intensity of a non-sinusoidal pattern is 
usually modeled as suffering from gamma distortion [28]. In 
this paper, the intensity distribution of the captured pattern 
is expressed as follows:

where I0 and I1 are corresponding ambient light and fringe 
modulation. φ and α represent the wrapped phase and the 

(15)I = I0 + I1 cos� + I1 cos �

stair phase. Considering the gamma effect, the intensity dis-
tribution of the captured distorted pattern is expressed as

With the power theorem of the cosine function, the above 
formula can be simplified as follows:

According to Eq. (10), erroneous stair phase can be calcu-
lated as follows:

The result in Eq. (18) is the sum of the ideal stair phase 
and stair phase error. Therefore, the stair phase error can be 
calculated as the following:

According to k. Liu et al. [29], the relationship between 
Bk+1 and Bk can be expressed as:

Thus, the stair phase error can be represented as:

(16)

I� =
(

I0 + I1 cos�
)�

∞
∑

m=0

[

�(� − 1)⋯ (� − m + 1)

m!
cosm �

]

= I
�

0

∞
∑

m=0

[

�(� − 1)⋯ (� − m + 1)

m!
cosm � × cosm �

]

(17)

I� = I0 + I1 cos� + I1 cos � +

∞
∑

k=2

Ik × cos(k × �) × cos(k × �)

(18)

�� = arctan
I
c�

1
(x, y) + I

c�

3
(x, y) − 2I

c�

5
(x, y)

I
c�

2
(x, y) + I

c�

4
(x, y) − 2I

c�

5
(x, y)

= arctan

Bsin� −
∞
∑

k=2

Bk × sin(k × �) × cos(k × �)

Bcos�� −
∞
∑

k=2

Bk × sin(k × �) × cos(k × �)

= arctan

2B sin � −
∞
∑

k=2

Bk × sin(2k × �)

2B cos � −
∞
∑

k=2

Bk × sin(2k × �)

(19)

Δ� = arctan
tan �� − tan �

1 + tan �� tan �

=
B2 × sin 4� × (cos � + sin �)

2B − B2 × sin 4� × (cos � + sin �) − B3 × sin 6� × (cos � + sin �)

(20)
Bk+1

Bk

=
� − k

� − k + 1

(21)
tanΔ𝛼 =

sin 4𝛼 × (cos 𝛼 + sin 𝛼)

(𝛾+2)2

𝛾(𝛾−1)
− sin 4𝛼 × (cos 𝛼 + sin 𝛼) −

𝛾−2

𝛾+3
× sin 6𝛼 × (cos 𝛼 + sin 𝛼)

<
sin 4𝛼 × 𝛾(𝛾 − 1)

(𝛾 + 2)2
≪ 𝛼

Fig. 4  Flow chart of phase order self-correction
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The characteristic of the stair phase error is observed in 
Fig. 5. We can see that the wrong fringe order of the particular 
period lies between the ideal phase value of the last and next 
period under the influence of the system’s nonlinearity.

3  Fringe order self‑correction simulation

Simulation is conducted to confirm the efficiency of the pro-
posed fringe order self-correction method. In this section, we 
set three conditions. The first condition is the existence of 
luminance nonlinearity. The second condition is the existence 
of random noise with luminance nonlinearity. The third condi-
tion is the existence of luminance saturation and random noise 
with luminance nonlinearity. Patterns have a resolution of 500 
500 pixels with a period of 35 pixels.

3.1  Simulation under different nonlinear intensity 
responses

γ described in Eq. (16) simulates the different nonlinear inten-
sity responses of the digital projector-camera optical system. 
γ is set from 0.5 to 2.5 by an interval of 0.5 except for 1. The 
intensity distribution is express as follow:

Figure 6 proves the whole process visually. The pat-
tern intensity under the system intensity impact of differ-
ent gamma value is shown in the first row. The intensity 
distribution is non- sinusoidal, introducing high-frequency 
sinusoidal harmonics. The second row shows the relatively 

(22)
Δ𝛼 = tanΔ𝛼 −

tanΔ𝛼3

3
+

tanΔ𝛼5

5
−

tanΔ𝛼7

7
+…

≈ tanΔ𝛼 < 𝛼min =
2𝜋

N

(23)I1(x, y) = (0.5 + 0.25 cos(�(x, y)) + 0.25 cos(�(x, y)))�

ideal and distorted stair phase, i.e., the case with system 
nonlinearity. It's discovered that the calculated stair phase 
fluctuates around the ideal phase but does not exceed the 
ideal phase values of the previous and the next period. 
Accordingly, the shown fringe order calculation in the third 
row has some deviation values fluctuating from  – 1 to 1. 
After applying the fringe order self-correction strategy, the 
corrected order is shown in the fourth row. It is observed 
that the false order values are eliminated, and the robustness 
of the phase unwrapping process is promoted. The results 
confirm that the proposed fringe order error self-correction 
algorithm can efficiently remove the effect of nonlinearity on 
the fringe order decision and give the correct value directly 
without complex computation.

3.2   Simulation under different noise level

In the second simulation, we fixed the gamma value as 1.5 
and added the random noise with Gaussian distribution 
to the pattern. the noise has a mean of zero and a stand-
ard deviation ranging from 0.01 to 0.04 by an interval of 
0.01.i.e. σnoise = [0.01:0.01:0.04]. The intensity distribution 
is expressed as follows:

Figure 7 proves the whole process visually. The pattern 
intensity under the influence of different random noise level 
with system intensity is shown in the first row. The inten-
sity distribution appears obvious burr superposition with the 
increase of noise standard deviation. The second row shows 
the relatively ideal and distorted stair phase. It's discovered 
that the calculated stair phase fluctuates around the ideal 
phase which has the same characteristic as the first simula-
tion. Accordingly, the shown fringe order calculation in the 

(24)
I1 = (0.5 + 0.25 cos(�(x, y)) + 0.25 cos(�(x, y)))1.5+�noise

Fig. 5  Distribution of the stair phase and fringe order
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third row has some deviation values fluctuating from  – 1 to 
1. After applying the fringe order self-correction strategy, 
the corrected order is shown in the fourth row. It is observed 
that the false order values are totally removed.

3.3  Simulation under different saturation level

In the third simulation, we fixed the gamma value as 1.5 and 
the standard deviation of noise as 0.01. We added the satura-
tion coefficient S to simulate the luminance saturation which 
ranges from 1.1 to 1.7 by an interval of 0.2. The intensity 
distribution is expressed as follows:

(25)
I1 =

{

S × (0.5 + 0.25 cos(𝜑(x, y)) + 0.25 cos(𝛼(x, y)))1.5+𝜎noise I1 < 1

1 I1 > 1

Figure 8 proves the whole process visually. The pat-
tern intensity under the influence of different luminance 
saturation level with random noise and system intensity 
is shown in the first row. The intensity distribution sig-
nificantly suffers from saturation with the increase of 
saturation coefficient. i.e. the intensity is limited to1. 
The second row shows the relatively ideal and distorted 
stair phase. It's discovered that the calculated stair phase 
fluctuates around the ideal phase but does not exceed the 
ideal phase values of the previous and the next period. 
Accordingly, the shown fringe order calculation in the 
third row has some deviation values fluctuating from -1 to 

Fig. 6  Theoretical simulation diagram. (1) Pattern intensity under the impact of system intensity. (2) Errorneous and ideal stair phase. (3) Error-
neous and ideal fringe order. (4) Corrected fringe order
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1 which has the same characteristic as the first simulation. 
After utilizing the fringe order self-correction strategy, 
the corrected order is shown in the fourth row. It is found 
that the false order values can also be totally eliminated.

These simulation results confirm that the proposed 
fringe order error self-correction algorithm can efficiently 
remove the effect on the fringe order decision where ran-
dom noise and luminance saturation exist simultaneously 
in addition to luminance nonlinearity. At the beginning of 
the measurement, we can check the intensity distribution 
of the captured pattern. When the captured intensity of 
pattern image distorts from the sinusoidal distribution due 
to the nonlinearity of the detector or intensity saturation, 
it will cause wrong fringe order calculation results. At 
this time, the proposed method is effective to this situa-
tion. The fringe order value can be self-corrected directly 
without complex computation.

4  Experiment

An FPP system was constructed to demonstrate the per-
formance of this novel method. The system contains 
a DLP projector with a resolution of 1140 × 912 and a 
camera with a resolution of 2048 × 1088. The pixel depth 
of the camera is 8 bits. The focal length of the lens is 
16 mm. The projector and camera were horizontally posi-
tioned on the optical platform, which were placed about 
450 mm in front of the tested objects. Two experiments 
were designed to prove the validity and accuracy perfor-
mance of the proposed method. The period of all generated 
patterns was 15 pixels. Both the traditional and proposed 
method were applied to measure a flat board regarded as 
the reference plane and two isolated objects in front of 
the board. The intensity distribution of the captured pat-
terns distorts under the impact of system nonlinearity and 

Fig. 7  Theoretical simulation diagram. (1) Pattern intensity under the impact of random noise with system intensity. (2) Errorneous and ideal 
stair phase. (3) Errorneous and ideal fringe order. (4) Corrected fringe order
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Fig. 8  Theoretical simulation diagram. (1) Pattern intensity under the impact of luminance saturation with random noise and system intensity. 
(2) Errorneous and ideal stair phase. (3) Errorneous and ideal fringe order. (4) Corrected fringe order

Fig. 9  Captured patterns of the reference plane. a–c Proposed phase coding fringes. d–f Traditional phase coding fringes at the gamma coef-
ficient of 0. 9, 1.2, 1.5



446 Optical Review (2023) 30:436–453

1 3

Fig. 10  The fringe order calculation results of the 100th column. a–c Traditional phase coding method under the nonlinear effect. d–f Proposed 
phase coding method under the nonlinear effect

Fig. 11  During the proposed phase coding method, a–c The wrapped phase results. d–f The auxiliary wrapped phase results of the 100th column 
under the nonlinear effect



447Optical Review (2023) 30:436–453 

1 3

the calculation of the absolute phase map will be affected 
accordingly. To demonstrate the effectiveness of the pro-
posed method for different degrees of system nonlinear-
ity’s effect, set the captured camera image gamma coef-
ficient to 0. 9, 1.2, 1.5. We verify that the absolute phase 

fringe order can be efficiently corrected with the help of 
the self-correction method directly.

Seven generated patterns based on the proposed method 
and eight patterns based on the traditional phase-coding 
method were projected to measure the same flat board in 

Fig. 12  The fringe order diagram. (1) Traditional phase coding 
method under the nonlinear effect. (3) Proposed phase coding method 
under the nonlinear effect. The order distribution on one cross sec-

tion (2) Traditional phase coding method under the nonlinear effect. 
(4) Proposed phase coding method under the nonlinear effect
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the first experiment. The reference plane patterns were 
recorded by the camera. The fringe order and absolute phase 
of the reference plane were recovered according to the cor-
responding decoded method. A 500 × 500 pixels region was 

extracted to analyze the performance of the two methods. 
Figure 9 shows the captured patterns of the reference plane 
at the different image gamma coefficients.

Fig. 13  The reconstructed absolute phase of the flat board. (1) Tradi-
tional phase coding method under the nonlinear effect. (3) Proposed 
phase coding method under the nonlinear effect. The distribution on 

one cross section (2) Traditional phase coding method under the non-
linear effect. (4) Proposed phase coding method under the nonlinear 
effect
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The calculated fringe order of the 100th column is shown 
in Fig. 10. The first row displays the results under the tradi-
tional phase encoding method. Obviously, under the system 
nonlinearity impact, the distorted fringe order no longer fol-
lows a flat stepwise growth path but with frequent jumps dis-
tributed randomly. The number of wrong fringe order points 
increases with the deepening of the nonlinear degree. The 
error jump is from  – 1 to 1, demonstrating the theoretical 
proof of fringe order error in the above section. The wrapped 
phase and auxiliary phase results are shown in Fig. 11. We 
can see that the two set phases have the same distribution in 
the odd property period but the opposite distribution in the 
even property period. Thus, the period of a particular order 
can be located. After applying the self-fringe order correc-
tion strategy, the corresponding corrected absolute phase 
period order is shown in the second line. The order jump 
error is totally removed regardless of the degree of nonlinear 
influence.

The fringe order diagrams and distributions on one cross 
section of the traditional and self-corrected phase-coding 
are shown in Fig. 12. Due to received distorted intensity, the 
traditional method fringe orders have error transitions that 
incorrectly identify the fringe orders. In contrast, the pro-
posed method can correct the all-wrong orders and directly 
retrieve the orders map without the complex algorithm.

The corresponding absolute phase reconstruction results 
and distributions on one cross section of the flat board are 
shown in Fig. 13. There are several jump error points com-
pared to the surrounding orders because the fringe order 
calculated by the traditional method is misaligned, which 
does not correctly match the wrapped phase's exact position. 
Thus, the object reconstructed by the phase-coding method 
has apparent errors due to the jump errors. The accuracy of 
reconstruction results decreases and the error points increase 
with the deepening of the system’s nonlinear effect. In com-
parison, the error points can be wholly eliminated with the 

Fig. 14  (1-a) The measured scene under the exposure time of 0.2  s. 
(1-b) one of the captured images. The fringe order diagram under 
system nonlinearity (2-a) using traditional phase-coding method. 
(3-a) using proposed method. The unwrapped phase diagram under 
system nonlinearity (2-c) using traditional phase-coding method. 

(3-c) using proposed method. The fringe order distribution in one 
cross Sect.  (2-b) using traditional phase-coding method. (2-d) using 
proposed method. The unwrapped phase distribution in one cross 
Sect.  (3-b) using traditional phase-coding method. (3-d) using pro-
posed method
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proposed self-correction method, which indicates the robust-
ness of the method in restoring the absolute phase map.

In the second experiment, a complex scene including two 
isolated resin dolls in front of the boars was measured to 
validate the effectiveness of the proposed self-correction 
algorithm. The captured camera image gamma coefficient 
here is 1.2. We set the camera exposure time as 0.2 s and 
0.5 s. Figure 14(1-a)-(1-b) show the measured scene and a 
captured image under the exposure time of 0.2 s. Figure 15 
(1-a)–(1-b) show the measured scene and a captured image 
under the exposure time of 0.5 s. The arrangement of these 
two figures have the same meaning distribution. We com-
pared the measurement results between the proposed and 
traditional phase-coding methods. Part (2-a)–(2-d) show 
the diagram and one cross section of the fringe order. It 
is evident that under the system's nonlinear influence, 

unpredictable error points exist using the traditional method 
during the fringe order calculation. Under the luminance 
saturation with nonlinearity, The number of phase error 
points becomes more. However, the proposed method can 
automatically correct the order error and retrieve the correct 
order fast. Part (3-a)–(3-d) show the unwrapped phase before 
and after error correction. The distorted absolute phase dia-
gram has many irregular fuzzy points caused by incorrect 
order calculation. This result will seriously affect the effect 
of surface reconstruction. While these points can be removed 
after self-correction.

The reconstructed 3D shapes of isolated objects under 
two exposure times are shown in Figs. 16 and 17. The recon-
structed surface appears to have many abrupt error points, 
resulting in poor recovery accuracy. It has more error points 
under the impact of luminance saturation with nonlinearity. 

Fig. 15  (1-a) The measured scene under the exposure time of 0.5  s. 
(1-b) one of the captured images. The fringe order diagram under 
luminance saturation and nonlinearity (2-a) using traditional phase-
coding method. (3-a) using proposed method. The unwrapped phase 
diagram under same condition (2-c) using traditional phase-coding 

method. (3-c) using proposed method. The fringe order distribution in 
one cross section  (2-b) using traditional phase-coding method. (2-d) 
using proposed method. The unwrapped phase distribution in one 
cross section (3-b) using traditional phase-coding method. (3-d) using 
proposed method
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While using the proposed method for object reconstruction, 
two reconstructed surfaces are both smooth and continuous, 
and there are no obvious wrong jumping points. By compar-
ing the reconstruction effect, it is evident that the proposed 
self-correction order error method can eliminate the fringe 
order error where random noise and luminance saturation 
exist simultaneously in addition to system nonlinearity and 
achieve more accurate profile reconstruction.

5  Conclusion

In this paper, a self-correction method for fringe order 
jump error based on the phase-coding method is presented 
to directly determine the correct fringe order. The system’s 
nonlinear intensity response deviates from the original inten-
sity distribution. It brings the jump error to the fringe order 

calculation, eventually leading to reconstruction errors. The 
proposed method can automatically locate the odd-evenness 
of the erroneous order period and directly correct the fringe 
order jump error caused by system nonlinearity. The method 
works well where random noise and luminance saturation exist 
simultaneously in addition to system nonlinearity. Compared 
to the traditional phase coding method, our method compen-
sates for the drawback that fringe order is easily affected by 
system nonlinearity while maintaining the original advan-
tages. The proposed method has good anti-noise capability 
and robustness, effectively improving measurement accuracy 
based on phase-coding. In addition, the number of projected 
patterns is reduced by one, so that the measurement speed 
is increased. Simulation and experimental results verify the 
performance of the proposed method in terms of its high- pre-
cision 3D reconstruction.

Fig. 16  The reconstructed 3D shape under the exposure time of 0.2 s. a With traditional phase-coding method. b With proposed method. The 
order distribution of one cross-section. c With traditional phase-coding method. d With proposed method
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