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Abstract
Using a combination of the finite element method (FEM) applied in COMSOL Multiphysics and the machine learning (ML)-
based classification models, a computational tool has been developed to predict the appropriate amount of power flow in 
a plasmonic structure. As a plasmonic coupler, a proposed structure formed of an annular configuration with teeth-shaped 
internal corrugations and a center nanowire is presented. The following representative data mining techniques: standalone 
J48 decision tree, support vector machine (SVM), Hoeffding tree, and Naïve Bayes are systematically used. First, a FEM is 
used to obtain power flow data by taking into consideration a geometrical dimensions, involving a nanowire radius, tooth 
profile, and nanoslit width. Then, we use them as inputs to learn about machine how to predicate the appropriate power flow 
without needing FEM of COMSOL, this will reduce financial consumption, time and effort. Therefore, we will determine 
the optimum approach for predicting the power flow of the proposed structure in this work based on the confusion matrix. 
It is envisaged that these predictions’ results will be important for future optoelectronic devices for extraordinary optical 
transmission (EOT).
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1 Introduction

The optical excitation of surface plasmon polaritons 
(SPPs) in metallic nanostructures is of fundamental inter-
est and is essential for various applications such as opti-
cal data storage, optical lithography, and hyperlens [1–3]. 
This is mainly attributable to the low-dimensional nature 
of SPPs which represent the coupled modes of an elec-
tromagnetic waves and free charges on a surface metallic 
nanostructures. In addition, their capability to maintain 
the field confined tightly at short wavelength and not con-
strained by optical diffraction limit [4–9]. In particular, the 
emphasis of research area is which the comparatively lim-
ited light–SPP coupling is improved, which leads to more 
beneficial applications. Since then, numerous interesting 
topics have arisen that are related to plasmonic structures, 

involving circular aperture arrays [10, 11], array of nano-
holes [12, 13], annular aperture arrays [14, 15], and single 
aperture [16, 17], have been studied to investigate the SPPs 
excitation. In addition, increasing the effectiveness of this 
phenomenon necessitates the use of various geometric 
structures for intense and highly localized SPPs around 
the nanoslit [18, 19]. The theoretical direction on SPPs 
excitation is critical for studies into the practical appli-
cation of plasmonic nanostructures. The analytical solu-
tion of SPPs excitation phenomena on plasmonic nano-
structures of simple geometries can be obtained readily. 
However, the lack of an accurate solution for configura-
tions with irregular geometries and anisotropic plasmonic 
characteristics restricts the analytical method's widespread 
application. To overcome this issue, a variety of numerical 
analysis techniques such as finite element method (FEM), 
finite-difference time-domain (FDTD), and discrete dipole 
approximation (DDA) have been developed to determine 
the SPPs excitation phenomenon. These methods allow 
for accurate optical behavior harvesting from plasmonic 
nanostructures of any configuration, but usually only 
after extensive calculation operations. The obvious con-
flict between numerical simulation's accuracy and rapidity 
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restricts its application in disciplines requiring assistance 
from numerous theoretical models. With the advent of free 
database creation, ML, as a subset of artificial intelligent 
methods has been extensively employed in the progress 
of novel materials. The common idea of ML methods is 
finding patterns in an input data set by applying computa-
tional algorithms. Currently, considered approaches which 
exploit the ML in investigating the properties and phe-
nomena related with SPPs. Joshua Baxter et al. [20] apply 
ML to predict of new colors using the simulation and 
experimental data. They predict colors from laser param-
eters by leveraging the data set linking laser parameters 
to real, physical colors. also predict colors from nanopar-
ticle geometries using the data set linking the simulation 
geometries to computed colors. Jing He et al. [21] uti-
lized the machine learning method, to establish a map-
ping between the far-field spectra/near-field distribution 
and dimensional parameters of three types of plasmonic 
nanoparticles including nanospheres, nanorods, and dim-
mers. Arzola-Flores and Gonzalez [22] propose an investi-
gation using ML tools, for predicting the wavelength of the 
dipole Surface plasmon resonance (SPR) of Concave Gold 
Nanocubes of different sizes and depths of the concavi-
ties dispersed in water. Emilio Corcione et al [23] study 
the applicability of ML methods of regression for sensor 
calibration and explore the limitations of surface-enhanced 
infrared absorption glucose sensing from the measured 
reflectance spectra for plasmonic nanoantenna glucose 
sensing. Among the previously mentioned plasmonic 
structures, the modeling with the corrugation on a surface 
is of high importance, as it allows light-surface coupling, 
which provides a light collection system that has a high 
level of efficiency and light steering and has given them 
a high importance for certain applications, for instance, 
high-power applications [24], THz optical sensing [25], 
nonlinear optical processes [26], photochemistry [27], 
highly integrated plasmonic circuits [28], and biophoton-
ics [29]. Even though plasmonic features of nanostructures 
have garnered a great deal of attention in the literature, 
to the best of our knowledge, limited studies have been 
carried out on the crucial topics of power flow which rep-
resent the signal features of SPPs in real applications. In 
this paper, we present a study using ML-based classifi-
cation methods and FEM of COMSOL Multiphysics, to 
predict the time-averaged power flow in a nanoplasmonic 
coupler. This proposed construction is an annular design 
with teeth-shaped interior corrugations and a nanowire at 
its center. The structure is distinctive because it combines 
the features of annular and corrugated designs. Firstly, by 
modifying the tooth profile, such as the teeth number, teeth 
height, teeth obliquity angle, and the teeth rotation angle, 
the interactions with the structure's interior walls enable 

it to capture extra energy. Second, nanowire's illumining 
mechanism precisely converts light to SPPs.

2  Simulation structure and data analysis 
methods

A schematic illustration of the simulated configuration is 
depicted in Fig. 1[30]. The design consists of annular con-
struction with nanoslit positioned at its top and a nanowire 
positioned in structure's center. The teeth produce grooves 
along the structure's internal sidewalls by cutting the inner 
wall.

A TM polarization plane wave illumination with an inci-
dence wavelength of λ = 500 nm around a nanowire. Under 
this illumination, SPP modes can excite and propagate sur-
round the nanowire. Corrugations primarily backscatter 
excited SPPs, which are subsequently confined and focused 
in nanogrooves and nanoslit. SPPs that propagated within 
the structure would interact with the accumulated SPPs. 
The following parameters indicate the geometrical dimen-
sions: outer, inner, and root radii of the structure are R0, 
Ri, and Rt, respectively, and nanowire radius is denoted by 
Rw. Here, R0 = 6.21 µm, Ri = 5.07 µm, and Rt = 5.85 µm are 
remain unchanged. The nanoslit width is denoted by Ws, 
where Ws < λ, this leads to the nanoslit behaving as a dif-
fractive element, and its near-field effects become signifi-
cant. The tooth profile is described as outlined below: n, 
Ht, and Wt, respectively, stand for the number, height, and 
width of teeth. α denotes the oblique angle of teeth, while 
θ denotes the rotation angle of teeth. The metallic material 
in the design is silver (Ag), It’s a popular material for the 
design of plasmonic devices, it has a relatively low absorp-
tion coefficient in the visible spectrum, which means that it 
can efficiently scatter and confine light in the near-field with-
out significantly attenuating it. The interior dielectric mate-
rial is simulated as a homogeneous  SiO2 with a refractive 
index of n = 1.464. The wavelength-dependent permittivity 
and the material parameters are specified by experimental 
data of Johnson Christy [31], presented in COMSOL. The 
data set was obtained through a two-dimensional numerical 
implementation of the COMSOL Multiphysics, based on the 
FEM [30], where the designer try with a set of different data 
at each time for a set of parameters that have a basic effect 
on obtaining the appropriate the time-averaged power flow 
(Pavg). The data set includes 150 record samples, each of 
them has eight attributes and one class with two possible yes 
or no. The data set description, attributes, statistical analysis, 
and their values are shown in Table 1 and the visualization 
of all attributes is shown in Fig. 2.

The following representative data mining techniques: 
standalone J48 decision tree, support vector machine (SVM), 
Hoeffding Tree, and Naïve Bayes are systematically used 
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to perform the prediction of the Pavg in the plasmonic cou-
pler. The C4.5 algorithm is a classification model, which 
results a decision tree founded on the information entropy 
theory [32]. It is an improvement of Ross Quinlan’s earlier 
ID3 algorithm also described in Waikato Environment for 
Knowledge Analysis (Weka), as J48, J standing for Java. 
C4.5 is referred to as a statistical classifier since it produces 
decision trees that are used for classification. The J48 for 
C4.5 algorithm implementation includes additional features 
such as treating missing values, pruning the decision tree, 
continuous attribute value ranges, and derivation of rules. 
This algorithm builds a decision tree by depending a training 
data set such as the ID3 algorithm, utilizing the information 
entropy concept. The information entropy can be calculated 
as,

where p(i|t), denotes the records fraction that belongs to 
class i at a specified node t, while c denoted the classes num-
ber. When entropy is a measure of the randomness or unpre-
dictability of a system the variance between the entropy of 
the data set before and after splitting on a particular feature 
is known as information gain which calculated as,

SVM is a well-known algorithm for supervised 
learning. [33], which is employed for regression and 

(1)Entropy = −

c−1∑

i=0

p (i|t) log2 p(i|t)

(2)Gini(t) = 1 −

c−1∑

i=0

[p(i|t)]2

Fig. 1  a Schematic configuration of design, b The tooth cross-section [30]

Table 1  The visualization of 
data set

S.NO Attributes Attributes type Range of attribute Mean Standard 
deviation of 
attribute

1 RW Numeric 50–500 (nm) 275 144.095
2 Nt Numeric 20–38 29.333 5.754
3 Ht Numeric 213–405(nm) 287.267 59.094
4 α Numeric 0.35 (rad) 0.349 0
5 ɵ Numeric 90–180 (deg.) 120.6 42.777
6 Ws Numeric 70 (nm) 70 0
7 Pavg Numeric 0.25–4732.44 (W/m2) 513.2 875.445
8 Class Class label Yes, no



457Optical Review (2023) 30:454–461 

1 3

classification problems. However, it is applied to clas-
sification problems in ML. The objective of the SVM 
algorithm is finding the hyperplane that best separates 
different classes in a given data set. In a binary classifi-
cation task, the hyperplane is the decision boundary that 
separates the two classes, maximizing the margin between 
the two closest data points from different classes. We can 
consider This accurate decision as a hyperplane. SVM 
selects the maximum points and vectors contribute to the 
hyperplane formation. These cases are known as support 
vectors, and the corresponding algorithm is known as 
SVM. Considering Fig. 3, which depicts the classifica-
tion of two distinct groups using a decision hyperplane 
or boundary.

In a data stream environment where it is impractical to 
keep all data, the most challenging aspect of constructing 
a decision tree is reusing instances to estimate the appro-
priate splitting attributes. Instead of reusing instances, 
Domingos and Hulten [34] presented the Hoeffding Tree, 
a decision tree algorithm for data streams that waits for 
more instances to emerge. The most intriguing aspect of 

the Hoeffding Tree is that it constructs a tree that evidently 
converges to the tree constructed by a batch learner with 
sufficient data. The pseudo code of the Hoeffding

Fig. 2  The visualization of all attributes

Fig. 3  Decision boundary and margin of SVM [34]
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where R represents the range of random variable, δ is refers 
to the probability of the estimation not being within ϵ of its 
an expected value, and n is the number collection of exam-
ples at the node. In information gain, the entropy range is 
[0,…,log nc] for nc refers to class values. Even though use 
of Hoeffding's bound in this case is erroneous, as previously 
shown, most applications continue to use it. Reasonable out-
comes may be attributable to an overestimation of the genu-
ine probability of error in the majority of circumstances. 
A Hoeffding Tree, from massive data streams a decision 
tree induction algorithm is able for learning in any time, 
considering that the distribution generating examples does 
not change over time. A theoretically enticing aspect of 
Hoeffding trees that is not provided by other incremental 
decision tree learners is its solid performance guaranted. 
By Using Hoeffding bound, it is possible to demonstrate 
that its output is approximately identical to that of a non-
incremental learner given an infinite number of examples. 
Given the class label y and the assumption that the attributes 
are conditionally independent, a nave Bayes classifier [35] 
determines the class-conditional probability. The follow-
ing is a formal description of the conditional independence 
assumption:

where each attribute set X = {X1,  X2,…, Xd) consists of d 
attributes. With the conditional independence assumption, 
we just need to determine the conditional probability of 
each Xi, given Y, rather than estimating the class-conditional 
probability for each combination of X. The latter method is 
more useful since it can produce a reliable probability esti-
mate using a smaller training set. The naive Bayes classifier 
determines the posterior probability for each class Y in order 
to classify a test record:

Since P (X) is fixed for every Y, it is sufficient to 
choose the class that maximizes the numerator term, 

P(Y)
d∏

i = 1

P
�
Xi|Y

�
 . In the next two subsections, we describe 

several approaches for estimating the conditional proba-
bilities P (X i |Y) for categorical and continuous 
attributes.

(3)� =

√
R2 ln 1∕�

2n

(4)P(X|Y = y) =

d∏

i=1

P
(
Xi|Y = y

)

(5)
P(X�Y) =

P(Y)
d∏
i=1

P
�
Xi�Y = y

�

P(X)

3  Results and discussion

The evaluation of ML model is important as building it, 
because we work on new or previously unseen data, so 
the evaluation should be thorough and versatile to create 
a reliable and tough model. Here, we are depending on 
some concepts (Accuracy, sensitivity, Specificity, ROC 
Area, and Error Rate) to evaluate. After we obtained a data 
from COMSOL, load it to Weka, applied cross-validation 
with tenfold data and used four classification techniques 
to predicate if the amount of parameters (attributes) which 
the designer chose is leading to the appropriate power flow 
or not. Accuracy is one metric, accuracy and the fraction 
that predict the model got right as formally, accuracy can 
be define as:

Binary classification in terms of positives and negatives 
can be calculated as follows:

where, TP is true positive that refers to observations total 
number to the positive class which have been correctly pre-
dicted, FP is number of false positives represent the observa-
tions total number which have been predicted to belong to 
the positive class, but , actually instead, belong to the nega-
tive class, TN is true negative, number of observations that 
belong to the negative class and have been predicted cor-
rectly. and FN is false negative, is observations total number 
of that have been predicted as negative class but it is belongs 
to the positive class. Sensitivity is the metric that, evaluates 
ability of classification model to predict true positives of 
each available category and can be obtained as :

Specificity is the evaluation of models capability to pre-
dict a true negatives of all available categories. These met-
rics could be applied on any categorical model

The area under the receiver operator characteristic curve 
(ROC) is metric used to evaluate the problems of binary 
classification, it is a probability curve plots TPR opposed to 
FPR at several threshold values. The area under the curve 
(AUC) is the measurement of the capability of a classifier to 
identify among the classes and it is used as summary of the 
ROC curve. Error rate is inversely proportional to accuracy 
(1-accuracy).

(6)Accuracy =
Number of correct predictions

Total number of predictions

(7)Accuracy =
TP + TN

TP + TN + FP + FN

(8)Sensitivity =
TP

TP + FN

(9)Specificity =
TN

TN + FP
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Figure 4 shows the comparison between the classification 
the methods which used in this predication model, for J4.8 
has the highest accuracy with value 99.3333% that indicate 
the models is making large number of correct predication, 
while has the lowest error rate equals 0.6667% indicates that 
the model is making a small number of incorrect predica-
tion, for Hoeffding and Naïve Bayes have the high accu-
racy 96.6667% and 97.3333% and low error rate 2.6667% 
and 3.3333%, For SVM it considered a good accuracies 
(92.6667%) and acceptable error rate (7.3333%) but it is 
not the best to make the predication for this model.

In Fig. 5, if the sensitivity equals one, it means that a 
change in the input variable will result in an equivalent 
change in the output variable. In other words, the output 
variable is highly responsive to changes in the input vari-
able, Here the sensitivity of J4.8 equals one that, means 
all required power flow level is correctly identify as high 
while, Naïve Bayes and Hoeffding get nearly > 0.96 thus, 
they considered as efficiency method and indicates a strong 
and semi direct relationship between the input and output 

(10)ErrorRate =
FP + FN

P + N

variables, SVM has 0.577 sensitivity that means just 50% 
of power flow identify as high which, indicates a moderate 
relationship between the input and output variables, with 
the output variable responding to changes in the input vari-
able, but not as strongly as J4.8, Naïve Bayes and Hoef-
fding. All about the specificity is a measure of how well 
a test can correctly identify negative, SVM and J4.8 the 
value of specificity equals one where succeeded to find 
all true negative in data set and did not produce any false 
positives. In other words, the test has perfect discrimina-
tion between positive and negative cases. However, it is 
important to note that a test with high specificity does not 
necessarily mean it is a good test overall, as other factors 
such as sensitivity and accuracy also need to be consid-
ered, Hoeffding and Naïve Bayes > 0.965 so their perfor-
mance is satisfactory to identify the low power in data set.

It is clear from Fig. 6. J4.8, Naïve Bayes and Hoeffding 
produced the highest AUC equal 0.996 hence, the per-
formance of these classification models at distinguishing 
between the positive and negative classes is outstanding 
which means these classifiers have perfect discrimination 
ability. AUC of SVM > 0.5 the ability of this model to 
characterize the positive and negative classes is very good 
but lower than other classifiers.

Fig. 4  Comparison classifica-
tion models depending on 
accuracy and error rate

Fig. 5  Comparison classifica-
tion models depending on 
sensitivity and specificity
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4  Conclusions

Numerical methods are commonly performed for finding 
the value of  Pavg that consume enormous computational 
resources, time and tedious procedures. We have determined 
a goal of predicting the  Pavg at nanoslit in a nanoplasmonic 
coupler. To achieve this the FEM of COMSOL is used to 
acquire the data set of Pavg considering the geometrical 
parameters of the plasmonic coupler. Thus, the same set of 
variables for cross validation (tenfold) was used with the 
following four different ML algorithms: standalone J48 deci-
sion tree, SVM, Hoeffding Tree, and Naïve Bayes. Although 
none of these algorithms have the same interior architec-
ture, we found after doing comparison between them, perfect 
accuracy in the prediction models is possible as the coef-
ficient of standalone J48 decision tree is 0.9933, the pos-
sibility of error is almost non-existent and the capability to 
find all high  Pavg is perfect because sensitivity equal one. 
Consequently, we have a good instance of the prediction 
based classification models with j48 algorithm. In fact, ML 
could be applied to a wide range of issues in materials sci-
ence and engineering, including the design and optimiza-
tion of new materials, the prediction of material properties, 
and the analysis of complex systems such as metamaterials 
[36–38]. ML algorithms can be used to analyze large data 
sets of material properties and performance metrics to iden-
tify patterns and relationships that can be used to guide the 
design and optimization of these materials. For example, 

ML based classification algorithms can be used to classify 
different types of hyperbolic metamaterials based on their 
optical properties or critical coupling behavior. By training a 
machine learning model on a data set of material properties 
and performance metrics, the model can learn to accurately 
predict the behavior of new materials and guide the design 
of more efficient and effective hyperbolic metamaterials. 
Overall, ML has the potential to revolutionize the field of 
materials science and engineering, enabling researchers to 
discover new materials and optimize their performance with 
unprecedented speed and accuracy.
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