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Abstract
The fundamental formula in an optical system is Rayleigh diffraction integral. In practice, we deal with Fresnel diffraction 
integral as approximate diffraction formula. Fresnel transforms and inverse Fresnel transforms have been formulated sys-
tematically and defined as a bounded additive, a unitary operator in Hilbert space. To investigate the band-limited effect in 
Fresnel transform plane, we seek the function that its total power in finite Fresnel transform plane is maximized, on condi-
tion that an input signal is zero outside the bounded region. This problem is a variational one with an accessory condition. 
This leads to the eigenvalue problems of Fredholm integral equation of the first kind. The kernel of the integral equation is 
of Hermitian conjugate and positive definite. Moreover, we prove that the eigenfunctions corresponding to distinct eigen-
values have dual orthogonal property. By discretizing the kernel and integral range to seek the approximate solutions, the 
eigenvalue problems of the integral equation can depend on a one of the Hermitian matrix in finite-dimensional complex 
value vector space. We use the Jacobi method to compute all eigenvalues and eigenvectors of the matrix. We consider the 
application of the eigenvectors to the problems of the approximating any functions. We show the validity and limitation of 
the eigenvectors in computer simulations.

Keywords Fresnel transform · Eigenvalue problem · Dual orthogonal property · Jacobi method

1 Introduction

The solution of many optical problems in a scalar diffraction 
can be obtained using either the Rayleigh diffraction integral 
or the Fresnel–Kirchhoff diffraction integral. In practice, we 
deal with Fresnel diffraction integral as approximate diffrac-
tion formula. The Fresnel transform of optical image has 
been formulated mathematically and presented as a convo-
lution formulation which is a description of Fresnel diffrac-
tion [1–4]. Up to now, moreover, Fresnel transforms and 
inverse Fresnel transforms have been formulated systemati-
cally and defined as a bounded additive, a unitary operator 

in Hilbert space. It has been revealed the algebraic and topo-
logical property by mean of a functional analytic method. 
Furthermore, the set of Fresnel transform operator has the 
group property [5–7]. In recently, it is used in image pro-
cessing, optical information processing, optical waveguides, 
computer-generated holograms, phase retrieval techniques, 
speckle pattern interferometry and so on [8–15].

The extension of optical fields through an optical instru-
ment is practically limited to some finite area. This leads 
to the spatially band-limited problem. The effect of a band 
limitation has been studied for an optical Fourier transform. 
Sampling theorems have been derived by band-limited effect 
in Fourier transform plane and applied to some application 
areas. The sampling function systems are orthogonal system 
in Hilbert space and can be considered as coordinate system 
in some functional space. In sampling theorem, it is impor-
tant to develop the orthogonal or orthonormal functional 
systems. In the literature, there are many examples of band-
limited function in Fourier transform, its applications and 
references therein [16–18]. Band-limited effects in Fresnel 
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diffraction plane and Rayleigh–Sommerfeld equation have 
been investigated using Fourier transform in which it was 
based on the angular-spectrum method [19–22]. However, 
the band-limited effect in Fresnel transform plane is not 
revealed sufficiently.

In this paper, the band-limited effect in Fresnel trans-
form plane is investigated. For that, we seek the function 
that its total power in finite Fresnel transform plane is maxi-
mized, on condition that an input signal is zero outside the 
bounded region. This problem is a variational one with an 
accessory condition. This leads to the eigenvalue problems 
of Fredholm integral equation of the first kind. The kernel 
of the integral equation is of Hermitian conjugate and posi-
tive definite. Therefore, the eigenvalues are real nonnegative 
numbers. Moreover, we prove that the eigenfunctions corre-
sponding to distinct eigenvalues have dual orthogonal prop-
erty. By discretizing the kernel and integral range to seek the 
approximate solutions, the eigenvalue problems of the inte-
gral equation can depend on a one of the Hermitian matrix in 
finite-dimensional complex value vector space 

(
ℂ

k, k < ∞
)
 . 

We use the Jacobi method to compute all eigenvalues and 
eigenvectors of the matrix. We consider the application of 
the eigenvectors to the problems of the approximating any 
functions. We show the validity and limitation of the eigen-
vectors in computer simulations.

2  Fresnel transformation

Assume that we place a diffracting screen on z = 0 plane. 
The parameter z represents the normal distance from the 
input plane. Let (�, �) be the coordinate of any point in input 
plane. Parallel to the screen at z > 0 is a plane of observa-
tion. Let (x, y) be the coordinate of any point in this latter 
plane. If f (�, �) represents the amplitude transmittance in 
Hilbert space, then the Fresnel transform is defined bywhere 
k is the wave number and i =

√
−1 . The inverse Fresnel 

transform is defined by
Figure 1 shows a general optical system and its coordinate 

system.

3  Spatial band‑limited signal

We assume that an input signal is zero outside the bounded 
region R and total power of g(x, y) is limited in the bounded 
region S. In Fig. 1, we showed that R is rectangular region 
in input plane and S is a rectangular region in diffraction 
plane. In this section we seek the function f(ξn) that maxi-
mizes the total power of g(x, y) provided that the total power 
in R is fixed.

3.1  Fredholm integral equation of the first kind

To simplify the discussion, we consider only one-dimen-
sional Fresnel transform. The one-dimensional Fresnel 
transform is defined by

where we set the wave number unit. The inverse Fresnel 
transform is defined by

Assume that f (�) is limited within the finite region R 
on the ξ-plane and its total power PR , namely the inner 
product of the function, is constant:

where f ∗(�) denotes the complex conjugate function of f (�) . 
Assume that g(x) is the Fresnel transform of the function 
f (�) which is bounded by a finite region R , that is,

Then, the total power PS of g(x) in the bounded region 
S is

(3)F(x, z) =
1√
i2�z

∞∫
−∞

f (�) exp

�
i

2z
(x − �)2

�
d�,

(4)f (�) =

√
i

2�z

∞∫
−∞

F(x, z)exp

{
−

i

2z
(x − �)2

}
dx.

(5)

PR =
∞∫

−∞
|f (�)|2d� = ∫

R

|f (�)|2d�

= ∫
R

f (�)f ∗(�)d� = const.

(6)

g(x) =
1√
i2�z

∞∫
−∞

f (�) exp

�
i

2z
(x − �)2

�
d�

=
1√
i2�z ∫

R

f (�)exp

�
i

2z
(x − �)2

�
d�.

Fig. 1  A general optical system and its coordinate system. S and R 
are bounded rectangular region
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where the kernel function  Ks
(.,.) is defined by

We seek the function f (�) that maximizes PS provided 
that the total power PR is fixed. This problem is a varia-
tional one with an accessory condition. We use the method 
of Lagrange multiplier to solve this problem. Let us define 
two functions G(�) and H(�) as following:

We want to maximize the function H(�) , subject to the 
constraint G(�) . Setting λ the Lagrange multiplier, Lagran-
gian is defined by

We set the gradient of Lagrangian to zero, that is,

where ∇ indicate the gradient. By Eqs. (7), (9) and (10), we 
obtain

We conclude that

This is the Fredholm integral equations of the first kind. 
The light in diffraction plane spread, but for the spatial band-
limited function f (�) , the functional system in object plane 
which maximizes the light energy of the Fresnel transform 
g(x) in the bounded region satisfies this integral equation in 
analytically. In order to raise resolving power or resolution in 
general optical instruments, it is necessary to maximize the 

(7)

PS = ∫
S

�g(x)�2dx = ∫
S

g∗(x)g(x)dx

= ∫
S

1√
−i2�z

∫
R

f ∗(�)exp

�
−

i

2z
(x − �)2

�
d�

×
1√
i2�z

∫
R

f
�
��
�
exp

�
i

2z

�
x − ��

�2
�
d��dx

= ∫
R

∫
R

KS

�
�, ��

�
f ∗(�)f

�
��
�
d��d�,

(8)
KS

(
�, ��

)
=

1

2�z
exp

{
−

i

2z

(
�2 − �

�2
)}

× ∫
S

exp

{
i

z

(
� − ��

)
x

}
dx.

(9)G(�) ≡ �
R

f (�)f ∗(�)d� − const.

(10)
H(�) ≡ �

S

|g(x)|2dx

= �
R

�
R

KS

(
�, ��

)
f ∗(�)f

(
��
)
d��d�.

(11)L(�) ≡ H(�) − λG(�).

(12)∇L(�) = ∇H(�) − λ∇G(�) = 0,

(13)∫
R

KS

(
�, ��

)
f ∗(�)f

(
��
)
d�� − λf (�)f ∗(�) = 0.

(14)∫
R

KS

(
�, ��

)
f
(
��
)
d�� = λf (�).

light energy. In signal processing, it is possible to represent 
the input signal on the functional system that maximizes the 
total power in Fresnel transform plane. Solving this equation 
depends on eigenvalue problems of the integral equation. 
From now on, we deal with the eigenvalue problem of this 
integral equation. This equation corresponds to some modi-
fication of the integral equation for prolate spheroidal wave 
functions. The integral equation and differential equation 
for the prolate spheroidal wave functions have been general-
ized and revealed its properties. Moreover, discrete prolate 
spheroidal wave functions have derived and their mathemati-
cal properties have been investigated [23–29]. The prolate 
spheroidal wave function has been applied to some problems 
[30, 31].

According to Eq. (7), we can write

Therefore, the kernel KS

(
�, �′

)
 of the integral equation is 

positive definite.
To prove the eigenvalues of above integral equation are 

nonnegative, it is necessary to show �� ≥ 0 . In this case, λ 
is an eigenvalue, � is an eigenvector and ∥ ⋅ ∥ indicates the 
norm in Hilbert space [32]. Therefore, by replacing f (�) with 
�(�) and taking Eq. (14) into consideration, we can write

Therefore, the eigenvalues of the integral equation are 
nonnegative and real number.

Denoting the largest eigenvalue of Eq. (14) by �max , then 
the maximum PS−max of Eq. (7) becomes

Theorem 1 For the spatial band-limited function �(�) , the 
optimum function that maximizes the power of the Fresnel 
transform g(x, z) in the bounded region S equals the eigen-
function corresponding to the largest eigenvalue of Eq. (14).

Let us consider the kernel of the integral equation. If 
object plane and Fresnel transform plane are bounded 
by finite regions, the kernels of the integral equation are 

(15)

�
R

�
R

KS

�
�, ��

�
f ∗(�)f

�
��
�
d��d�

= �
S

������

1√
i2�z

�
R

f (�)exp

�
i

2z
(x − �)2

�
d�

������

2

dx ≥ 0.

(16)

� �
R

��(�)�2d�

= �
R

�
R

KS

�
�, ��

�
�∗(�)�

�
��
�
d�d��

= �
S

������

1√
i2�z

�
R

�(�) exp

�
i

2z
(x − �)2

�
d�

������

2

dx

≥ 0.

(17)PS ≤ PS−max = �maxPR.
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calculated analytically as the kernel function. We set the 
finite region S in Fresnel transform plane −a ≤ x ≤ a:

Let us consider the complex conjugate of the kernel of 
the integral equation:

Therefore, the kernel is of Hermitian symmetry.

3.2  Dual orthogonal property

If �m and �n are distinct eigenvalues of the above integral 
equation, i.e., m ≠ n , and �m , �n are corresponding eigen-
functions, we can express them as the following integral 
formulas:

Let us consider the complex conjugate of the kernel of 
the integral equation:

From Eq. (8), we have

(18)

K[−a,a]

(
�, ��

)
=

1

2�z
exp

{
−

i

2z

(
�2 − �

�2
)}

×
a∫

−a
exp

{
i

z

(
� − ��

)
x

}
dx

=
1

�(� − ��)
exp

{
−

i

2z

(
�2 − �

�2
)}

×sin

(
� − ��

z
a

)
.

(19)

K[−a,a](�, �
�) =

1

�(� − ��)
exp

{
i

2z

(
�2 − �

�2
)}

×sin

(
� − ��

z
a

)

=
−1

�(�� − �)
exp

{
−

i

2z

(
�
�2 − �2

)}

=
1

�(�� − �)
exp

{
−

i

2z

(
�
�2 − �2

)}
sin

(
�� − �

z
a

)

×(−1) sin

(
�� − �

z
a

)

= K[−a,a]

(
��, �

)
.

(20)∫
R

KS

(
�, ��

)
�m

(
��
)
d�� = �m�m(�).

(21)∫
R

KS

(
�, ��

)
�n

(
��
)
d�� = �n�n(�).

(22)
K∗
S

(
�, ��

)
=

1

2�z
exp

{
i

2z

(
�2 − �

�2
)}

× ∫
S

exp

{
−
i

z

(
� − ��

)
x

}
dx.

Therefore, we obtain

and the integral kernel KS

(
�, �′

)
 is of Hermitian symmetry. If 

we multiply the both sides of Eq. (20) by �∗
n
(�) and integrate 

with respect to over R , we obtain

After taking the complex conjugate of Eq. (21), we mul-
tiply the both sides by �m(�) and integrate with respect to 
over R , we obtain

From Eqs. (26) and (24), we obtain

Since the left side of Eq.  (25) and the right side of 
Eq. (27) are equal and �n is real number, we have

For �m ≠ �n , we conclude

That is to say, �m(�) and �n(�) are orthogonal on R . 
If m = n , the orthogonal condition can be shown by 
Eq. (14), Mercer’s theorem [33] and the complete ortho-
normal eigenfunctional systems which are derived by the 
eigenfunctions.

Let us consider the extension of the domain of ξ into 
one-dimensional Euclidean space E . Now, we can redefine 
the following integral equation:

(23)

KS

(
��, �

)
=

1

2�z
exp

{
−

i

2z

(
�
�2 − �2

)}

× ∫
S

exp

{
i

z

(
�� − �

)
x

}
dx

=
1

2�z
exp

{
i

2z

(
�2 − �

�2
)}

× ∫
S

exp

{
−
i

z

(
� − ��

)
x

}
dx.

(24)K∗
S

(
�, ��

)
= KS

(
��, �

)
,

(25)
∫
R

∫
R

KS

(
�, ��

)
�m

(
��
)
�∗
n
(�)d��d�

= �m ∫
R

�m(�)�
∗
n
(�)d�.

(26)
∫
R

∫
R

K∗
s
(�,)�m(�)�(�

�)d��d�

= �∗
n
∫
R

�m(�)�
∗
n
(�)d�.

(27)
∫
R

∫
R

KS

(
��, �

)
�m(�)�

∗
n

(
��
)
d��d�

= �∗
n
∫
R

�m(�)�
∗
n
(�)d�.

(28)
(
�m − �n

) ∫
R

�m(�)�
∗
n
(�)d� = 0.

(29)∫
R

�m(�)�
∗
n
(�)d� = 0.
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Then, for the eigenfunctions�m , and�n , m ≠ n , we have

We need to consider the integral part about the kernel:

Using the delta function �(⋅) , as shown in the Appendix, 
such that

the above equation can be expressed by the following form:

Substituting Eq. (34) into Eq. (32), we have

(30)∫
R

KS

(
�, ��

)
�
(
��
)
d�� = ��(�)� ∈ E.

(31)

∞∫
−∞

�m(�)�
∗
n
(�)d�

=
1

�m�n
∫
R

∫
R

�m

(
��
)
�∗
n

(
���

)

×
∞∫

−∞
KS

(
�, ��

)
K∗
S

(
�, ���

)
d�d��d���

(32)

∞∫
−∞

KS

(
�, ��

)
K∗
S

(
�, ���

)
d�

=
1

(2�z)2
exp

{
i

2z

(
�
�2 − �

��2
)}

×
∞∫

−∞
∫
S

∫
S

exp

{
i

z

(
� − ��

)
x −

i

z

(
� − ���

)
x�
}
dxdx�d�

× ∫
S

∫
S

exp

{
−
i

z

(
��x + ���x�

)}

=
1

(2�z)2
exp

{
i

2z

(
�
�2 − �

��2
)}

×
∞∫

−∞
exp

{
i

z

(
x − x�

)
�

}
d�dxdx�.

(33)δ
(
x − x�

)
=

1

2�z

∞∫
−∞

exp

{
i

z

(
x − x�

)
�

}
d�,

(34)

1

2�z
exp

{
i

2z

(
�
�2 − �

��2
)}

× ∫
S

∫
S

exp

{
−
i

z

(
��x + ���x�

)}
δ
(
x − x�

)
dxdx�

=
1

2�z
exp

{
i

2z

(
�
�2 − �

��2
)}

× ∫
S

exp

{
−
i

z

(
�� − ���

)
x

}
dx

= K∗
S

(
��, ���

)
.

If the functional systems 
{
�m(�)

}
 are orthogonal on E , 

these also are orthogonal on R . Therefore, the orthogonal 
functional systems have dual orthogonal property.

4  Numerical computations

It is difficult in general to seek the strict solution for the 
eigenvalue problem of the integral equation. Therefore, we 
desire to seek the approximate solutions in practical exact 
accuracy [34]. By discretizing the integral equation, we 
deal with an eigenvalue problem of a matrix. We apply the 
eigenvectors of a matrix to the problems of approximation 
of any functions in computer.

4.1  Discretization of the kernel function

By discretizing the kernel function and integral range 
at equal distance and using the values of the discrete 
sampling points, the integral equation can be written as 
follows:

where i, j are the natural number, 1 ≤ i ≤ M . The matrix Kij 
is the Hermitian matrix if the kernel is discretized evenly 
spaced and M = N . Therefore, the eigenvalue problems of 
the integral equation depend on one of the Hermitian matrix 
in finite-dimensional vector space. In general finite-dimen-
sional vector spaces, the eigenvalues of Hermitian matrix are 
real numbers, and then, eigenvectors from different eigens-
paces are orthogonal [35].

However, the diagonal elements of our matrix can be of 
indeterminate form. Therefore, we seek the limit value. If 
� = �� , we can write

We can replace � − �� with X:

(35)

∞∫
−∞

�m(�)�
∗
n
(�)d�

=
1

�m�n
∫
R

∫
R

�m

(
��
)
�∗
n

(
���

)
K∗
S

(
��, ���

)
d��d���

=
1

�m
∫
R

�m

(
��
)
�∗
n

(
��
)
d��.

(36)
N∑

j=1

Kijxj = �xi,

(37)

lim
�→��

K[−a,a]

(
�, ��

)

= lim
�→��

1

�
exp

(
� − ��

) sin
{

a

z

(
� − ��

)}

� − ��
.
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We use the Jacobi method [36] to compute all eigen-
values and eigenvectors of the matrix. The Jacobi method 

(38)

lim
�−��

K[−a,a]

(
�, ��

)
= lim

X→0

1

�
exp(0)

sin
{

a

z
X
}

X

=
1

�
exp(0) lim

X→0

sin
{

a

z
X
}

a

z
X

a

z

=
1

�

a

z
lim
X→0

sin
{

a

z
X
}

a

z
X

=
a

�z
.

is a procedure for the diagonalization of complex sym-
metric matrices, using a sequence of plane rotations 
through complex angles. All eigenvectors computed by 
the Jacobi method are of orthonormal vectors automati-
cally. Now, we set M = N = 100 . Figure 2 shows the eigen-
values in descending order if z = 27 , S = [−15.0, 15.0] , 
R = [−15.0, 15.0] . They are nonnegative and real number. 
In Fig. 3, (a) shows real part and imaginary part of the 
eigenvectors for the largest eigenvalue. (b) is the eigenvec-
tors for second large eigenvalue. (c) is the eigenvectors for 
third large eigenvalue. (d–f) are eigenvectors for 4th–6th 
large eigenvalue. Because of 100-dimensional complex-
valued vector space 

(
ℂ

100
)
 , there are 94 eigenvectors 

except for these. These eigenvectors are the orthonormal 
bases in ℂ100.

4.2  Approximation of any functions

We consider the application of the eigenvectors to the 
problem of approximating any functions. Theoretically, 
we deal with a problem of expressing an arbitrary element 
on a finite N-dimensional Hilbert space HN with an ortho-
normal basis. For any element u in HN , using orthonormal 
basis 

{
�n

}N

n=1
 , we can writeFig. 2  Plot of the eigenvalues in descending order. S = [−15.0, 15.0] , 

R = [−15.0, 15.0] , z = 27.0

Fig. 3  Plots of real part and imaginary part of the eigenvectors for the largest eigenvalue a. b Eigenvectors for second large eigenvalue. c Eigen-
vectors for third large eigenvalue. d-f Eigenvectors for 4th–6th large eigenvalue. S = [−15.0, 15.0] , R = [−15.0, 15.0] , z = 27.0
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where ⟨⋅ , ⋅⟩ is an inner product [32]. Now, we set N = 100 . 
Let us consider the set in ℂ100 of all 100-tuples:

where u1, u2,⋯ , u100 are complex number.
First, let us consider a following real value test function:

By discretizing the test function evenly spaced at 100 
points, we created test vectors in 100-dimensional real-
valued vector space 

(
ℝ

100
)
 . It was confirmed that these test 

vectors can be expressed by the eigenvector expansions. Fig-
ure 4 illustrates the mean square error versus the number of 
eigenvectors. The normalized mean square error is defined 
by

where uk is the sum in Eq. (39) up to k , u is the original vec-
tor and ∥ ⋅ ∥2 is the �2-norm. From Fig. 4, we can see that 
the error decreases with increasing number of eigenvectors 
used in the expansion.

Second, let us consider a following real value test func-
tion which is real-valued hyperbolic cosine function:

By discretizing the test function in the same way, we cre-
ated a test vector in ℝ100 . Figure 5 illustrates the mean square 
error versus the number of eigenvectors. From Fig. 5, we 
can see that the error decreases with increasing number of 
eigenvectors used in the expansion.

(39)u =

N∑

n=1

u,�n�n,

(40)u =
(
u1, u2,⋯ , u100

)
,

(41)f1(x) =

{
cos (x)

sin (x)
, x ∈ [0, 2�[ .

(42)NMSE(k) =
uk − u2

u2
,

(43)f2(x, c) = cosh(cx), c ∈ {1, 2, 3}.

Third, let us consider a following complex value test 
function:

By discretizing the test function in the same way, we cre-
ated a test vector in ℂ100 . Figure 6 illustrates the mean square 
error versus the number of eigenvectors. From Fig. 6, we 
can see that the error decreases with increasing number of 
eigenvectors used in the expansion.

4.3  Discrete Fresnel transforms of the eigenvectors

By discretizing the function and using the sampling theorem 
in Eqs. (3) and (4), we can derive one-dimensional discrete 
Fresnel transform [5, 37], such that

There exists an inverse discrete Fresnel transform, which 
is

(44)f3(x, c) = exp(icx), c ∈ {1, 2, 3}.

(45)

F(l) =
1√
iN

N−1�

k=0

f (k)exp
�
i�

N
(k − l)2

�
, (l = 0, 1, 2,⋯ ,N − 1).

Fig. 4  Plots of the normalized mean square error versus the number 
of eigenvectors. Real-valued function cosine(x) and sine(x) were con-
stituted by the eigenvector expansions

Fig. 5  Plots of the normalized mean square error versus the number 
of eigenvectors. Real-valued hyperbolic cosine cosh (cx) was consti-
tuted by the eigenvector expansions. Cϵ{1,2,3}

Fig. 6  Plots of the normalized mean square error versus the number 
of eigenvectors. Complex-valued function exp(icx) was constituted by 
the eigenvector expansions. Cϵ{1,2,3}
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The eigenvectors which computed in Sect. 4.1 are the ortho-
normal systems in input plane. It can be considered to be a 
coordinate system. To confirm the appearance of the eigenvec-
tors in Fresnel transform plane, we computed one-dimensional 
discrete Fresnel transform. In Fig. 7, (a) shows real part and 
imaginary part of the eigenvectors for the largest eigenvalue, if 
z = 20.0 , S = [−15.0, 15.0] , R = [−15.0, 15.0] . (b) and (c) are 
second large eigenvector and third eigenvector, respectively. 
(d) is discrete Fresnel transform of (a). (e) and (f) are discrete 
Fresnel transform of (b) and (c), respectively. From Fig. 7, we 
can see that a real part and an imaginary part become similar 
form in discrete Fresnel transform plane.

4.4  Extension to two‑dimensional case

We consider the extension of the eigenvector expansions to 
two-dimensional image. Assume that a matrix V is written in 
the form

(46)

f (k) =

√
i

N

N−1∑

l=0

F(l)exp
{
−
i�

N
(k − l)2

}
, (k = 0, 1, 2,⋯ ,N − 1).

(47)V =
[
v1v2v3 ⋯ vN

]
,

where the elements {vi
}N
i=1

 are the eigenvectors which are 
computed in Sect. 4.1 and column vectors. Then, V  can be 
of unitary and its column vectors form an orthonormal set 
in ℂN with respect to the complex Euclidean inner product. 
Assume that the matrix A is an image that has been sampled 
and quantized and is of a square matrix of size N × N  . A 
general linear transformation on an image matrix A can be 
written in the form

The transpose of V  is denoted by Vt . The inverse trans-
form of Eq. (48) can be written in the form

We define the standard unit vectors in ℝN.

The matrix B whose elements are bst can be expressed as

The matrix A can be reconstructed by the following 
equation:

(48)B = VtAV .

(49)A = VBVt.

(50)
e1 = (1, 0,⋯ , 0), e2 = (0, 1, 0,⋯ , 0),⋯ , eN = (0,⋯ , 1).

(51)B =
(
bst

)
=

N∑

i=1

N∑

j=1

et
i
ejB, s, t ∈ [1, 2,⋯ ,N].

Fig. 7  Plots of real part and imaginary part of the eigenvectors for the largest eigenvalue a. b Eigenvector for second large eigenvalue. c Eigen-
vector for third large eigenvalue. S = [−15.0, 15.0] , R = [−15.0, 15.0] , z = 20.0. d-f Discrete Fresnel transforms of a-c, respectively
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This means the eigenvector expansion of an image.
To confirm the effectiveness of our eigenvectors, recon-

struction of an image from the expansion coefficients was 
carried out using Eq. (52). The original test image 1 which 
is a rectangular uniform distribution in the center region 
is shown in Fig. 8a. This image is discretized 100 × 100 
pixels and 8 bit/pixel . We computed expansion coefficients 
of the original image, using Eq. (48) and all eigenvec-
tors. The eigenvectors to use were computed on condi-
tion that z = 27 , S = [−15.0, 15.0] , R = [−15.0, 15.0] . The 
reconstructed image in Fig. 8b–f were computed using 
the coefficients and Eq. (52). The number of the eigenvec-
tors to reconstruct was varied from 10 to 100. From Fig. 8 
(b-f), we can see that the reconstructed image can approxi-
mate sufficiently to the original image with increasing the 
number of eigenvectors. The original test image 2 which 
is based on letters is shown in Fig. 9a. This image is the 
same size in the test image 1. The reconstructed image in 
Fig. 9b–f were computed on the same condition in Fig. 8. 
From Fig. 9b–f, we can see that the letter on reconstructed 

(52)A =

N∑

s=1

N∑

t=1

bstvsv
t
t
.

image can approximate gradually to the original image 
with increasing the number of eigenvectors.

The image matrix norm is defined by

The normalized mean square error is defined by

where Ak is reconstructed image using k eigenvectors and 
Ao is the original test image. Figure 10 illustrates the mean 
square error versus the number of eigenvectors in recon-
structed image of the original test image 1 and 2. From 
Fig. 10, we can see that NMSE decreased with increasing 
the number of eigenvectors.

5  Conclusions

We have investigated the band-limited effect in Fresnel trans-
form plane. For that, we have sought the function that its 
total power is maximized in finite Fresnel transform plane, 

(53)A =

(
N∑

i=1

N∑

j=1

a2
ij

)1∕2

.

(54)NMSE(k) =
Ak − Ao

Ao

,

Fig. 8  a The original test image 1 (100 × 100 pixels, 8 bpp) is a rec-
tangular uniform distribution. b-f These images are reconstructed by 
10, 25, 50, 75 and 100 eigenvectors, respectively

Fig. 9  a The original test image 2 (100 × 100 pixels, 8 bpp) is based 
on letters. b-f These images are reconstructed by 10, 25, 50, 75 and 
100 eigenvectors, respectively
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on condition that an input signal is zero outside the bounded 
region. We have showed that this leads to the eigenvalue 
problems of Fredholm integral equation of the first kind. We 
have proved that the kernel of the integral equation is of Her-
mitian conjugate and positive definite. We have also shown 
that the eigenfunctions corresponding to distinct eigenvalues 
have dual orthogonal property. By discretizing the kernel 
and integral range, the problem depends on the eigenvalue 
problem of Hermitian conjugate matrix in finite-dimensional 
vector space. Using the Jacobi method, we computed the 
eigenvalues and eigenvectors of the matrix. Furthermore, we 
applied it to the problem of approximating a function and 
evaluated the error. We confirmed the validity of the eigen-
vectors for finite Fresnel transform by computer simulations.

In two-dimensional case, a modified Fredholm integral 
equation of first kind can be derived using same method and 
condition. The orthogonal functional systems also have dual 
orthogonal property. It is difficult to compute all eigenvalue 
eigenvector by discretizing the equation. Since the matrix 
can be large scale. It is necessary to use other method.

In this paper, there are many parameters, especially, 
the input bounded region S, the band-limited areas R, the 
wave number k and the normal distance z. It is necessary to 
consist of orthogonal functional systems with the optimal 
parameters for finite Fresnel transform in application of an 
optical system. Moreover, in general, the matrix given by 
discretizing the kernel of the integral equation is not the Her-
mitian matrix. If so, it is difficult to compute all eigenvalues 
and eigenvectors accurately. It is also necessary to consider 
other computational methods for this.

Appendix

The delta function can be defined as follows [4]:

where

(55)δ(x) = lim
N→∞

Nsinc(Nx),

Noting thatwe can define SN(⋅) as following.

We conclude that

Data availability The authors confirm that the data supporting the find-
ings of this study are available within the articles.
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