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Abstract
The response of light in a nonlinear dispersive medium is governed by the nonlinear Schrödinger equation (NLSE). In 
general, for higher order group velocity dispersion (GVD) with frequency-dependent gain or absorption, NLSE is numeri-
cally solved using the split-step Fourier method. Extended NLSEs including the effects of higher order GVD, frequency-
dependent gain and frequency-dependent absorption comprise higher order derivative terms. In this paper, an algorithm to 
solve partial differential equations with any higher order derivative term is described. A program based on this algorithm 
was used to solve optical pulse propagation equations in a nonlinear medium with higher order GVD, frequency-dependent 
gain and saturable absorption.

Keywords Numerical computation · Nonlinear Schrödinger equation · Higher order derivative · Higher order group 
velocity dispersion · Frequency-dependent gain

1 Introduction

The dynamics of light–matter interactions in a nonlinear 
medium with group velocity dispersion (GVD) is governed 
by the nonlinear Schrödinger equation (NLSE), which is 
derived from Maxwell’s equations under standard approxi-
mations. In the absence of higher order GVD, the analytical 
solutions of NLSE have previously been reported [1, 2], such 
as a basic soliton, which maintains its shape while propa-
gating and N-solitons, which split and sharpen periodically 
while propagating. Analysis of NLSE is necessary for not 
only studies of solitons but also for design for ultrashort 
pulse lasers such as femtosecond lasers, for which solitons 
are utilized.

However, for light propagation in actual mediums or in 
optical fibers, it is often desirable to consider higher order 
GVD, frequency-dependent gain, or frequency-dependent 
absorption in addition to first-order GVD and third-order 
nonlinear interactions. Higher order GVD causes defor-
mation of pulse shape; moreover, ultra-short-pulse lasers 

require broad gain in frequency domain. Therefore, for 
design of short pulse lasers, it is important to consider fre-
quency-dependency of gain to confirm that gain mediums 
have sufficient gain width. Moreover, saturable absorption 
plays an important role in mode-locked laser oscillators. In 
such cases, the analytical solutions of NLSE do not exist; 
therefore, a numerical calculation is used. It is conveni-
ent to use the Fourier components of field to analyze the 
effects of higher order GVD, frequency-dependent gain, and 
frequency-dependent absorption. On the contrary, the time-
domain finite-difference method is suitable for analyzing the 
effects of third-order nonlinear interactions, saturable gain, 
and absorption. Therefore, combining these two methods a 
technique, which is known as the split-step Fourier method 
(SSFM), is generally used to solve NLSE numerically [3–6]. 
Field evolution is computed by repeated Fourier transform 
and its inverse in SSFM.

Although Fourier transform is assumed to be a slow 
process, it has been reported that using the fast Fourier 
transform algorithm in SSFM makes the process quicker 
compared to using the differential method for solving NLSE 
[3, 4]. Contrary reports have suggested that the differen-
tial method, in particular, the implicit–explicit method is 
robust, and its computation speed is at par with SSFM for 
ordinary NLSE [7]. With the recent surge in fast numerical 
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computation libraries for linear algebra, obtaining sufficient 
computation speeds using the time-domain differential 
method solely is possible. Moreover, because differential 
equations are written explicitly, the time-domain computa-
tion is useful for analyzing them.

The consideration of higher order GVD, frequency-
dependent gain, or frequency-dependent absorption in 
NLSE requires the inclusion of higher order derivative 
terms, as discussed in the following section. In particular 
for narrow gain or absorption, the requisite derivative order 
may become larger than 10. The analytical solutions of 
extended NLSE incorporating third-order derivative terms 
corresponding to second-order GVD have been reported 
previously [8, 9]. However, to the best of my knowledge, 
no reported solutions of NLSE incorporating derivative 
terms of order > 3 for frequency-dependent gain or absorp-
tion are present. For partial differential equations, a general 
Runge–Kutta method to compute higher order derivatives 
[10] and a numerical computation method including higher 
order derivatives for the boundary value problem using a 
computational mesh [11] have been reported. However, for 
algorithms described in these studies, the order of deriva-
tives is fixed and ≤ 5; therefore, the analysis of partial differ-
ential equations with condition-dependent derivative order 
is not feasible.

Herein, I propose an algorithm to solve partial differen-
tial equations with any higher order derivative terms, such 
as extended NLSE to account for higher order GVD, fre-
quency-dependent gain, and frequency-dependent absorp-
tion. Moreover, I attempt to perform numerical computa-
tions for systems related to ultra-short-pulse laser oscillators 
that exhibit frequency-dependent gain, saturable absorption, 
GVD, and third-order nonlinear interactions. In such sys-
tems, the frequency dependency of gain mediums such as 
Ti:sapphire crystals or Yb:YAG crystals affects the pulse 
shape, particularly the pulse duration, because the amplifi-
cation of ultra-short pulses requires a broad gain spectrum. 
Conversely, saturable absorptions using semiconductor 
saturable-absorber mirrors or organic dyes suppress the 
amplification of noise. Furthermore, GVD and nonlinear 
interactions shape the pulse into a basic soliton. In the pre-
sent work, some computational results with known analyti-
cal solutions, i.e., basic solitons, N-solitons, and similaritons 
are also shown to confirm the accuracy and stability of the 
proposed algorithm.

2  Formalization of the extended nonlinear 
Schrödinger equation

Although the derivation of NLSE is described in some 
textbooks [3, 12], to incorporate the effect of higher order 
GVD, frequency-dependent gain, and frequency-dependent 

absorption in NLSE, we must start from Maxwell’s equa-
tions. Let E(z, t) , D(1)(z, t) and PNL(z, t) be the electric field, 
linear electric displacement produced by the linear polari-
zation field, and nonlinear polarization caused by nonlinear 
interaction, respectively, at the position z along the direction 
of propagation and at time t. Using Maxwell’s equations, the 
light beam propagation is given by

where c and �0 are the speed of light and vacuum electric 
permittivity, respectively. Here, it is assumed that the fields 
vary slowly along the x and y directions; therefore, derivative 
terms along these directions are neglected. Although this 
approximation is not valid for optical fibers, we can obtain 
an equation that has the same form as that of Eq. (1) by the 
separation of variables. To analyze pulse behavior, we define 
envelope E(z, t) of E(z, t) as

where e and k are the unit vector along the electric field and 
wavenumber corresponding to � , respectively. In the linear 
interaction term in Eq. (1), after the Fourier transformation 
of the envelope, we separate electric permittivity, which is 
a function of � , into its real part �(1)(�) and imaginary part 
�
�(1)(�) . The imaginary part contributes to the amplifica-

tion or absorption of the electromagnetic field, whereas the 
real part relates to the refractive index and its dispersion. 
Furthermore, by expanding �(1)(�) and ��(1)(�) around � , 
we transform the terms using inverse Fourier transforma-
tion again. Moreover, for the nonlinear term in Eq. (1), we 
assume self-phase modulation with third order nonlinear 
permittivity � (3) . Thus, Eq. (1) is written as

See “Appendix” for details regarding the derivation. In the 
above Eq. (3), the first two terms on the left and the term on 
the right correspond to the increments of the electric field 
proceeding with group velocity vg , the effect of group veloc-
ity dispersion, and that of the third-order nonlinear interac-
tions, respectively. All these terms appear in the ordinary 
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NLSE. The additional third term on the left represents the 
effect of higher order GVD. Furthermore, the fourth term 
on the left is the frequency-dependent gain or absorption.

The effect of the fourth term in Eq. (3) can be under-
stood by considering the case without GVD and nonlinear 
interactions. In this case, using Eq. (26) again, we have

where g(� + �) is defined as

We convert E(z, t) in Eq. (4) to frequency component E(z,�) 
using Eqs. (22) and (2), and transform the coordinate system 
to another one with relative velocity vg such that z� = z and 
t� = t − v−1

g
z . It is important to note that the frequency com-

ponent E�(z�,�) in the new coordinate system is E(z,�) mul-
tiplied by a phase factor e−iv

−1
g
z� . Therefore, we get 

�E�(z�,� + �)∕�z� = g(� + �)E�(z�,� + �) , whose solution 
is

where E′
0
 is the value of E�(z� = 0,� + �) . Therefore, 

g(� + �) can be interpreted as a measure of gain or absorp-
tion for the field component of angular frequency � + �.

For a bandpass filter that attenuates the field by 
a factor of ff(� + �) for unit distance, substituting 
E�(z�,� + �) = ff(� + �)E�

0
 and z� = 1 , Eq. (6) becomes 

ff(� + �) = eg(�+�) ,  or g(� + �) = log ff(� + �) .  For a 
Gaussian filter shape, ff(� + �) = e−�

2∕2�2
f  ; therefore, 

we can write g(� + �) = −�2∕2�2
f
 . Moreover, the fre-

quency dependency of gain by laser transition atoms such 
as Ne atoms in He–Ne lasers or Nd atoms in Nd:YAG 
lasers reflects the distribution of these atoms shifted by 
the Doppler or Stark effects. Since gain for the power 
is proportional to the difference of population inver-
sion, using distribution function fg(�) of the difference 
of population inversion, the power P(�) is written as 
dP(�)∕dz� = gpfg(�)P(�) , therefore

where P0 and gp are the initial value of the power and the 
proportional constant of gain, respectively. Since P(�) is 
proportional to |E(z�,�)|2 , to satisfy Eq. (7), we put

Comparing this equation with Eq. (6), we can obtain

(4)
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where we defined the gain constant gc = gp∕2 for the field. 
In the case of homogeneous broadening owing to the finite 
lifetime of atoms, g(� + �) is also proportional to the broad-
ening form function. Similarly, for atomic absorption in a 
medium, we can write g(� + �) = −afa(� + �) , where a and 
fa(� + �) are constant absorption and the absorption form 
function, respectively. Using the above terms, we have

A commonly used form function is a Gaussian function 
which is expressed as f (� + �) = exp(−�2∕2�2) . Using 
mathematical induction, it can be easily proved that

The above Gaussian form function can be used for the term 
�n�2�

�(1)(�)∕��n in Eq.(3).
It is well established that in a saturable gain medium, 

power P is given by �P∕�z� = 2g0P∕(1 + P∕Psat) , where 
g0 and Psat are small signal gain and saturation power, 
respectively. Under the condition that �E(z�, t�)∕�z� is 
proportional to E(z�, t�) for small E(z�, t�) , we derive 
�E(z�, t�)∕�z� = g0E(z

�, t�)∕(1 + P∕Psat) . Hence, we can 
express saturable gain as

Because the effective lifetime of an atomic laser transi-
tion is much longer than the pulse duration of commonly 
used high-repetition short-pulse lasers, it is pertinent 
to consider the time mean value Pav instead of P, where 
Pav = (1∕Trep) ∫ Trep

o
Pdt and Trep is the repetition interval. 

Similarly, for saturable absorption, we can write

where a0 and Esat are small signal absorption and saturation 
field, respectively.

To obtain the response of a field using Eq. (3), it is con-
venient to transform the variables to non-dimensional ones 
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pulse duration. Therefore, Eq. (3) becomes
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Here �c is a constant loss factor. In Eq. (15), the positive and 
negative signs in cn represent negative and positive group 
velocity dispersions, respectively. Furthermore, an and bn 
are defined as

where � = T2|�v−1
g
∕��|−1 ,  � = gcT

2|�v−1
g
∕��|−1 and 

� = aT2|�v−1
g
∕��|−1 . For saturable gain or absorption, �0 and 

�0 are defined in a similar manner such that Eqs. (12) and 
(13) remain valid. The algorithm proposed in the following 
section aims to solve Eq. (14).

Although the Gaussian function in Eq. (11) is repre-
sented by the Taylor series expansion, it converges slowly, 
in particular for 𝜂 > 𝜎 . For example, � = sech� ⋅ ei�∕2 , 
which is one of the solutions of Eq. (14) for c2 = i∕2 , 
cn = 0(n ≠ 2) and A = i|�|2 , is a soliton pulse and has large 
Fourier components in the range 𝜔 < 6 . If the Taylor series 
corresponding to Eq. (11) does not converge sufficiently at 
these angular frequencies, the numerical solution diverges. 
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This is the primary reason for the inclusion of higher order 
derivative terms in Eq. (14).

3  Numerical computation algorithm

Our next aim is to solve Eq. (14). To calculate the differ-
ential equation including higher order derivatives, we use 
the differential method, in which solutions at slightly for-
warded � are iteratively calculated using the approximation 
of the derivative by difference. We expand �(� + ��, �) and 
�(� − ��, �) around � , and the difference of which can be 
expressed as

Substituting this term in Eq. (14), and using the notation, 
where � at � = i�� and � = j�� can be expressed as �i

j
 , we 

obtain
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where N is an even number. The above equations can be 
written in a matrix form as

where the terms of the order O
(
��N+1

)
 are neglected. The 

above equation can be written in a more simplified form as 
C = AB , where

We now consider that the values of �i
j
 at i = 0 and i = 1 are 

known. Using medium properties, cn and A
(
�1
j

)
 are obtained 

using Eq. (15). As A and C are given by (21), we can solve 
(20) for B . Using a computer program to perform the com-
putation to solve simultaneous linear equation is suitable. 
Substituting the value of �l�(�, �)∕�� l|� in Eq. (18) and cal-
culating A
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j

)
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 from �i

j
 for i = 1 , we can calculate �i
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all j at i = 2 . Furthermore, using �i
j
 at i = 1 and i = 2 , we can 
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j
 for i = 3 , and we can repeat this procedure to 
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j
 at any i. The algorithm described here follows the 

leap frog method, which is one of the explicit methods, 
because �i+1

j
 is calculated by adding the effect of derivative 

terms with respect to � to �i−1
j

 in Eq. (18).
The approximation to replace derivatives by differences 

can lead to errors in numerical computations. For example, 
an error of the order of ��3 emerges at every � step as can 
be seen in Eq. (18). Furthermore, an error around �� of the 
order of ��N+1 also appears, because the terms of O

(
��N+1

)
 

in Eq. (20) are neglected. Even if cn = 0 for n > N , computa-
tion errors can be reduced using a larger N. Despite the fact 
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that N is considered to be even, we can calculate odd order 
partial differential equations by replacing N with N + 1.

4  Results and discussion

I wrote a FORTRAN program based on the algorithm dis-
cussed in the previous section. FORTRAN is useful owing 
to the abundance of libraries available for numerical calcula-
tions and the usability of complex numbers. To solve (20), I 
used the open source libraries, OpenBlas and Lapack, which 
are linear algebra packages. I compiled and executed the pro-
gram on the FreeBSD operating system. A Gaussian shape 
was considered for a band pass filter, frequency-dependent 
gain, and frequency-dependent absorption in the program. 
The derivative order with respect to � was automatically 
determined so that the Gaussian function error at the maxi-
mal frequency (calculated using the sampling theorem) 
was less than the threshold value. The boundary conditions 
assumed were � = 0 at maximum and minimum �.

Initially, I calculated the pulse behavior by solving ordi-
nary NLSE with negative GVD and third-order nonlinear 
interaction only, i.e., ��∕�� = (i∕2)�2�∕��2 + i|�|2� . This 
equation can be obtained using an = 0 , bn = 0 , �c = 0 and 
cn = i∕2 ⋅ �2,n in Eqs. (14) and (15). A well-known analytical 
solution of this equation is � = sech� ⋅ ei�∕2 , which is a 
soliton that propagates while keeping the form of |�|2 . I used 
this soliton solution as the initial condition at � = 0 . A rep-
resentative calculation result is shown in Fig. 1, where 
�� = 4�∕16,000 , the range of � is ±12 , and the number of � 
points is 512. In this figure, |�|2 for every 2000� of � is 
shown, and is shifted in the � and � direction to make it easy 
to visualize. As is well known, in explicit methods, calcula-
tion results sometimes diverge by calculation mode. This can 
be avoided using the filter method [13–15]. In this method, 

ξ=0
ξ=2000π

ξ=20000π

-20 -10   0  10  20  30  40

  0

  1

  2

  3

  4

τ

|φ
|2

Fig. 1  Computation results of basic soliton. The computation is stable 
until � = 20,000�



467Optical Review (2021) 28:462–470 

1 3

after calculating �i+1
j

 from Eq. (18), �i
j
 is replaced by 

�i
j
= (1 − �f)�

i
j
+
(
�f∕2

)(
�i+1
j

+ �i−1
j

)
 , which is then used 

to calculate �i+2
j

 , where a small number �f represents mixing 
rate. In computing the result in Fig. 1, I used the method, 
where �f = 10−4 . Consequently, the computation was stable 
at � = 20,000� and higher. Conversely, in the case, where 
the filter method was not used, but the same parameters as 
those for the computation of Fig. 1 were utilized, the calcula-
tion diverged at � = 220� . To investigate the effects of �f , I 
calculated the basic soliton for various �f , where �� , the 
range of � and �� were the same as those used in the com-
putation for Fig. 1. Table 1 shows Im�i

j
 at � = 200� and 

� = 0 that should be zero, and the normalized error of the 
integral value of |�i

j
|2 at � = 200� . The latter can be 

expressed as 
�∑

�

����2 − ��(� = 0)�2��∕∑� ��(� = 0)�2 . 
These errors decrease with a decrease in �f . However, for 
�f = 10−5 , the shape of |||�i

j

|||
2

 was found to be distorted at 
� = 160� , and it diverged at � = 320� . This divergence may 
be due to a very small mixing amount �f . This suggests that 
a careful selection of �f is necessary to obtain sufficient mix-
ing with minimal computation error. In explicit methods, it 
is also known that the use of a ratio ��∕�� that is too small 

causes divergence. In the case for �� = 4�∕1600 , the com-
putation diverged at � = 0.3�.

I also obtained the response of the N = 3 soliton and 
a similariton. The N = 3 solitons was obtained using the 
same parameters as those utilized for the basic soliton but 
with initial condition � = 3sech(�) . An N = 3 soliton pulse 
shows the periodic repetition of splitting and sharpening, 
which is confirmed by our computation results, as shown in 
Fig. 2. Here, for �� = 4�∕160,000 , the number of � points 
is 1024 and �f = 10−4 . Furthermore, for �� = 4�∕16,000 , 
the number of � points is 512 and �f = 10−4 , thereby the 
computation diverged. This implies that �� and �� must be 
small for the N = 3 soliton owing to the large variation rate 
of � in � and �.

A well-known asymptotic solution at � → ∞ [16, 17] 
is a similariton, which grows while maintaining a similar 
parabolic shape during propagation. The similariton was 
obtained in a system with positive GVD, third order non-
linear interaction, and constant gain, where an = 0 , bn = 0 , 
�c = 0.5 , and cn = −i∕2 ⋅ �2,n in Eqs. (14) and (15). A repre-
sentative computation result is shown in Fig. 3, where the 
range of � is chosen as ± 48 because of the increase in the 
similariton pulsewidth.

Finally, I analyzed the development of random noise in 
systems that exhibit third-order nonlinearity and GVD, along 
with frequency-dependent saturable gain and absorption. 
Here, consider the case, where �� = 4�∕64,000 , 
−48 ≤ � ≤ 48 , and the number of � points is 512. For the 
frequency dependency of gain, a Gaussian shape of width � 
= 2.9 was assumed. Using this value of � in Eq. (11), 
��nfg(�)∕��

n|� was calculated, which was then used in Eq. 
(16). Using the sampling theorem, the derivatives with respect 
to � were calculated up to the eighth order to reduce error in 
the maximum frequency of the Gaussian shape. I chose �0 to 
be 2.6 and Psat to be 2.7 for the present analysis. Saturable 

Table 1  Calculation error at � = 200� for �
f

�
f

Im�(� = 0) Normal-
ized error of ∑

� ���2

10−2 − 0.193 − 6.19 × 10−4

10−3 − 0.0192 − 6.17 × 10−5

10−4 − 0.00176 − 6.17 × 10−6

10−5 − 1.03 0.0657
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Fig. 2  Computation results of N = 3 soliton. The pulse repeats, split-
ting and sharpening periodically
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Fig. 3  Computation results of similariton. The pulse grew while 
maintaining a similar parabolic shape
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absorption was assumed to be independent of frequency with 
�0 = 2.0 and �sat = 0.01 . Moreover, I chose �c = −1.5 to 
account for constant loss. For an initial condition, Gaussian-
distributed random complex numbers of 1024 points with 
standard deviation of 0.0013 were generated, which were then 
assigned to �0

j
 and �1

j
 . I performed computations for several 

initial conditions, and a representative result is shown in 
Fig. 4. Although the random noise is amplified at small � , it 
grows into a hyperbolic secant shape pulse at larger � . This 
was a general observation for any given initial condition. A 
practical system, with parameters in a similar range, is a 
soliton laser oscillator.

Furthermore, a computation result with the same 
parameters as those utilized for the computation for Fig. 4 
except �0 = 4.7 and �g = 1.6 is shown in Fig. 5. Here the 

frequency-domain gain width �g is 1/1.8 times as large as 
that utilized for Fig. 4, and the peak value of gain is 1.8 
times as large as that utilized for Fig. 4; therefore, the 
total gain is the same as that for Fig. 4. In computation of 
Fig. 5, three pulses were generated. In general, ultra-short 
pulses have to possess frequency-domain components 
over wide frequency range; moreover, bottom frequency-
domain components far from the center frequency cancel 
time-domain components far from the center of the pulse. 
Although, in the system for Fig. 5, the stable pules shape, 
which is a basic soliton, was determined by GVD and third 
order nonlinear interaction, the required components far 
from the center frequency could not grow because of insuf-
ficient gain width. Therefore, extra pulses were not sup-
pressed, as a result, multi pulses were generated. Since 
single pulse generation is generally desired in design for 
mode-locked lasers, and gain width of actual gain medi-
ums is finite, computation taking frequency-dependent 
gain into account is meaningful.

I used the differential method to analyze pulse behav-
ior in systems with a frequency-dependent gain. Here, 
the selection of suitable values for the parameters �� , �� , 
and the range of � was essential. We ignored the factor [
1 + (2i∕�)�∕�t − �2∕�t2

]
 in the nonlinear interaction term 

of Eq. (23). Because the factor includes derivatives with 
respect to t and operates |E(z, t)|2eE(z, t) , it is difficult to 
include the factor in cn in Eq. (14). However, the derivative 
order is at most second; therefore, if it is necessary to take 
this factor into account, we can include it in A in Eq. (14). 
Moreover, third-order nonlinear interactions with response 
delay is obtained by the replacement of |E(z, t)|2 with 
∫ t

−∞
R(t�)|E(z, t − t�)|2dt� in the nonlinear interaction term, 

where R(t) is the nonlinear response function [3, 6]. In this 
case, the term can also be included in A in Eq. (14) using, 
for instance, a trapezoidal approximation for the integral.

We started from a one dimensional wave equation (Eq. 1); 
therefore, variation of the electric field in the transverse 
direction was not considered. To include this effect, we have 
to add the term (�2∕�x2 + �2∕�y2)E(x, y, z, t)eikz−i�t in Eq. 
(23), where E(x, y, z, t) is the electric field that depends 
not only on z and t but also on x and y. In the computation, 
it is necessary to calculate 

(
�2∕�x2 + �2∕�y

)
E(x, y, z, t) for 

each � ; therefore, loops for x and y have to be included in 
the loop for � . Given the large array of E(x, y, z, t) and addi-
tional loops, the calculation time could be long. Although 
the explicit method has been used in the present work, the 
implicit method is generally considered more to be stable. 
Although the formalization of an implicit numerical compu-
tation method for solving differential equations with higher 
order derivative terms is challenging, its realization may 
result in a much more stable computation.
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Fig. 4  Computation results of the development of random noise. Ran-
dom noise grew into a hyperbolic secant shape pulse
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Fig. 5  Computation results of the development of random noise with 
insufficient gain width
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5  Conclusion

An algorithm to solve equations that include any higher 
order derivative such as extended NLSE for systems exhib-
iting third-order nonlinear interactions, higher order GVD, 
frequency-dependent gain, and frequency-dependent absorp-
tion was proposed. Using the proposed algorithm, it was 
shown that the development of random noise into a pulse 
shape can be calculated in a system including third-order 
nonlinear interactions, group velocity dispersion, frequency-
dependent saturable gain, and saturable absorption.

Appendix

Derivation of the extended nonlinear Schrödinger 
equation

In this appendix, we derive Eqs. (3) from (1). Assuming that 
the fields have frequency components only around � , using 
Fourier transform we can derive that

We also defined the real and imaginary parts of the lin-
ear electric permittivity as �(1)(�) and ��(1)(�) , respec-
tively. Gain and absorption can be obtained by consider-
ing the imaginary part of the permittivity [18]. Under the 
approximation of self-phase modulation for third order 
nonlinear interactions, the nonlinear term can be written as 
�2PNL(z, t)∕�t2 =

(
�2∕�t2

)
� (3)|E(z, t)|2eE(z, t)eikz−i�t ≈ −

�2� (3)|E(z, t)|2eE(z, t)eikz−i�t , where � (3) is the third-order 
nonlinear permittivity. In this equation, using the approxi-
mation of slowly varying E(z,  t), we omitted the factor [
1 + (2i∕�)�∕�t − �2∕�t2

]
 . However, this factor contributes 

to the self-steeping of the pulse [3, 19]; therefore, it needs 
to be adopted when the behavior of extreme short pulses 
is calculated. Using the ordinary approximation to neglect 
�2E(z,�)∕�z2 , and Eqs. (22) and (2), Eq. (1) becomes

(22)

E(z, t) = e∫ d�E(z,� + �)eikz−i(�+�)t,

D
(1)(z, t) = e∫ d�

[
�(1)(� + �) + i�

�(1)(� + �)
]

× E(z,� + �)eikz−i(�+�)t.

(23)

2ik
�E(z, t)

�z
eikz−i�t + ∫ d�

{
−k2 +

1

c2�0
(� + �)2

×
[
�(1)(� + �) + i�

�(1)(� + �)
]}

× E(z,� + �)eikz−i(�+�)t

= −
�2

c2�0
� (3)|E(z, t)|2E(z, t)eikz−i�t.

As E(z,� + �) is significant at small � only, we can expand 
�(1)(� + �) around � ; thus, the second term related to 
�(1)(� + �) in the curly bracket on the left hand side of Eq. 
(23) can be written as

For the term related to ��(1)(� + �) in Eq. (23), a similar 
equation results. Using mathematical induction, we can eas-
ily see that

U s i n g  t h e  r e l a t i o n s  k2 = �2�(1)(�)∕(c2�0)  a n d [
�2��(1)(�)∕�� + 2��(1)(�)

]
∕(c2�0) = �k2∕�� = 2k�k∕�� = 2kv−1

g
  in 

Eqs. (24) and (25), Eq. (23) becomes

where vg is the group velocity. Furthermore, comparing the 
equations obtained by differentiating Eqs. (22) and (2) with 
respect to t, we can obtain

Furthermore, differentiating the above equation n times with 
respect to t, we have

Substituting Eq. (28) in Eq. (26) and separating the n = 2 
term in the first summation on the left hand side of Eq. (26), 
we obtain Eq. (3).

(24)

(� + �)2�(1)(� + �) = (� + �)2
∑
n=0

1

n!

�n�(1)(�)

��n
�n

= �2�(1)(�) +

[
�2 ��

(1)(�)

��
+ 2��(1)(�)

]
�

+
∑
n=2

[
�2

n!

�n�(1)(�)

��n
+

2�

(n − 1)!

�n−1�(1)(�)

��n−1

+
1

(n − 2)!

�n−2�(1)(�)

��n−2

]
�n.

(25)

�n�2�(1)(�)

��n
=n!

[
�2

n!

�n�(1)(�)

��n
+

2�

(n − 1)!

�n−1�(1)(�)

��n−1

+
1

(n − 2)!

�n−2�(1)(�)

��n−2

]
.

(26)

2ik
�E(z, t)

�z
eikz−i�t + ∫ d�

×

[
2kv−1

g
� +

∑
n=2

1

n!

�nk2

��n
�n + i

∑
n=0

1

n!

1

c2�0

��2�
�(1)(�)

��n
�n

]

× E(z,� + �)eikz−i(�+�)t = −
�2

c2�0
� (3)|E(z, t)|2E(z, t)eikz−i�t

(27)
�E(z, t)

�t
= −i∫ d��E(z,� + �)e−i�t.

(28)
�nE(z, t)

�tn
= (−i)n ∫ d��nE(z,� + �)e−i�t.
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