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Abstract
This paper proposes a 3D reconstruction scheme for monocular cameras based on an improved line structure cursor position-
ing method and the Scheimpflug principle to overcome the limitations of current calibration methods for line-structured light 
3D reconstruction and binocular stereo vision matching. Unlike the traditional line structure cursor positioning method, the 
line-structured light is projected on a blank area of a high-precision chessboard target to avoid the low corner point extraction 
accuracy caused by the intersection of the structured light strip and the chessboard target. The 3D coordinates of the point in 
the camera coordinate system can be obtained by combining the linear equation between the origin and the center point of the 
light stripe on the target and the plane equation of the target. The light plane equation is obtained through data fitting on the 
basis of the 3D information of the light stripe center of two or more pictures. The experimental system allows the position 
relationship of the light source, lens, and complementary metal oxide semiconductor to meet the Scheimpflug conjugate’s 
clear imaging conditions for improving the visual range of the measurement system. Results show that the measurement 
system obtains good measurement accuracy and robustness.
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1 Introduction

Line-structured light is widely used in 3D contour detec-
tion of object surfaces because of its noncontact feature, 
large measurement range, and fast response [1, 2]. The cali-
bration accuracy of the line-structured light determines the 
measurement accuracy of the system [3]. At present, the line 
structure cursor positioning technique proposed by Huynh is 
commonly used to fit the light plane using the principle of 
cross ratio invariance [4, 5]. This method uses the collinear 
corner points of three known coordinates on the chessboard 
target and utilizes the principle of cross ratio invariance to 
find the intersection coordinates of the three points. A light 
plane equation is fitted after obtaining the point coordinates 
of multiple light planes. This calibration method is simple, 
fast, and highly accurate. However, it requires intersecting 
the line-structured light with the chessboard target, and has 

certain limitations in extracting the target corner points and 
the center line of the light stripe [6, 7].

This paper proposes an improved line structure cursor posi-
tioning method to address the above-mentioned limitations. 
The line-structured light is projected on the blank area of the 
chessboard target, and the central feature point of the light 
stripe is extracted [8, 9]. A straight line equation between the 
feature point and the origin of the camera coordinate system 
can be obtained using the internal parameters of the cam-
era and the normalized image plane. The plane equation of 
the chessboard target can be obtained from its rotation and 
translation matrices relative to the camera coordinate system 
[10]. The 3D coordinates of the feature points in the camera 
coordinate system can be obtained using the two above equa-
tions, and then the 3D coordinates of all feature points can 
be determined [11, 12]. At least two chessboard targets with 
different attitude pictures under line-structured light projec-
tion are required to fit the light plane rather than using one 
picture. The chessboard target is replaced with a displacement 
platform and the object to be measured. The 3D topography 
of the object surface is restored by taking multiple pictures, 
coordinate transformation, and data fitting on the basis of the 
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advantages of the large measurement range of the Scheimpflug 
principle [13–15].

2  Measurement principle

2.1  Scheimpflug principle

The imaging optical path used by the measurement system 
is shown in Fig. 1, where OcXcYcZc is the camera coordinate 
system, Ouv is the pixel coordinate system, and OwXwYwZw 
is the world coordinate system. The distance from Oc to Os is 
the focal length, � is the angle between the imaging and lens 
planes, and � is the angle between the light and lens planes. 
The line-structured light is projected by a laser light source to 
a blank area on the plane of the chessboard target. The laser 
light, lens main plane, and complementary metal oxide semi-
conductor (CMOS) intersect at point Ol . The imaging formula 
is expressed as:

where l  and l′ are the object and image distances of P , 
respectively, and l0 and l′

0
 are the object and image distance 

of point Q , respectively. On the basis of the similarity of 
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Equation  (3) is the mathematical expression of the 
Scheimpflug principle. For the light path that meets the 
Scheimpflug condition, any object moving in the direction of 
the light plane can become a clear image on the imaging plane 
[13, 14].

As shown in Fig. 1, the point corresponding to point P on 
the imaging plane is P′ , and the point corresponding to point 
Q on the imaging plane is Q′.The distance between P and Q 
is h , and the corresponding distance on the imaging plane is 
x . The geometric relationship of h and x can be expressed as:

The system resolution calculated using Eq.  (4) is 
expressed as:

where dh
dx

 is the physical distance corresponding to a sin-
gle pixel. The smaller the dh

dx
 , the higher will be the system 

accuracy.
As shown in Fig. 2, increasing � and decreasing � can 

improve the resolution of the system, and the resolution is 
maximum when �+� is around 60◦ . Therefore, � should be 
decreased and � should be increased to satisfy this condition 
during the measurement. Thus, � is chosen between 50◦ and 
65◦ because the proposed calibration method aims to control 
� within 6◦.

2.2  Calibration principle

As shown in Fig. 1, the coordinate of point P on the laser 
strip in the camera coordinate system is 

(
xc, yc, zc

)T , and the 
coordinate in the world coordinate system is 

(
xw, yw, zw

)T . 
The projection of P in the pixel coordinate system is P′ . Let 
the coordinates of P′ in the camera coordinate system be (
x
′

c
, y

′

c
, z

′

c

)T . The XeOeYe plane is a virtual plane, which is 1 
unit away from the origin of the camera coordinate system, 
and the projection of point P on this plane is P′′ . Let P′′ be (
x′′
c
, y′′

c
, 1
)T in the camera coordinate system and (u, v, 1)T in 

the pixel coordinate system. On the basis of the calibration 
rule, we have:
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where M is the internal parameter matrix of the cam-
era, and R and T  are the rotation matrix and translation vec-
tor between the world and the camera coordinate systems, 
respectively [10]. The coordinates of point P′′ in the camera 
coordinate system can be obtained using Eq. (6):

The equations of the chessboard target plane in the world 
and camera coordinate systems are expressed as:

On the basis of Eqs. (7), (8), and (9), the plane equation 
of the chessboard target in the camera coordinate system 
can be obtained as:

In the camera coordinate system, the 3D coordinates of 
point P can be obtained from the straight line equations of 
points P and P′′ and the plane equations of the chessboard 
target, which can be expressed as:
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The 3D coordinates of all feature points on a calibration 
image in the camera coordinate system can be repeated. The 
position of the chessboard target is changed to obtain the 
3D coordinates of the center point of the light strip on at 
least two pictures in the camera coordinate system. Then, the 
equation of the light plane in the camera coordinate system 
can be fitted as:

The object to be measured is placed on a displacement 
platform for linear motion at a uniform speed and captured 
at every fixed distance. In the camera coordinate system, 
the 3D coordinates of the feature points on each picture can 
be obtained using Eqs. (12) and (13). Then, the 3D contour 
information of the object surface can be reconstructed [11, 
12].

3  Experiment and discussion

The experimental system device is shown in Fig. 3a. The 
camera used is Daheng VEN-134-90U3M, with a resolu-
tion of 1280 × 1024. The chessboard target uses a 13 × 10 
ceramic target. The lens, CMOS, and line laser generators 
are placed on sliding guides and intersect at one point. The 
angle between the lens main plane and the CMOS can be 
changed by changing the angle between the guide rails. The 
lines of the structured light are projected to a chessboard 
target. The position of the target is changed, and four photo-
plane calibration pictures are captured, as shown in Fig. 3b. 

(13)AlX + BlY + ClZ + D2 = 0

Fig. 2  a Effect of � and � on resolution; b effect of �+� on resolution
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The light source is turned off, and eight chessboard target 
pictures are captured at different positions to calibrate the 
camera [10, 11]. Then, the feature points in the center of 
the light strip on the chessboard target are extracted. In the 
camera coordinate system, the 3D coordinates of the center 
point of the light strip of the four pictures are obtained using 
the linear and the chessboard target plane equations. The 
light plane is fitted using the least square method.

The main methods used to extract the center of the light 
strip include the Steger algorithm, gray center of gravity, 
and direction template methods. The Steger algorithm has 
the highest extraction accuracy, but is the slowest among the 
three methods [16]. The two other methods have fast extrac-
tion speed, but their extraction accuracy is lower than that 
of the Steger algorithm. Table 1 lists the time required for 
several algorithms to process the same image [6–9].

The gray center of gravity method is developed on the 
basis of the extremum and threshold methods. This method 
adopts the principle of weighted average of pixels whose 
gray value is greater than the threshold value and less than 
the extremum as the center point of light stripe. In this man-
ner, although the gray value on the cross section of the light 
stripe fails to meet the strict Gaussian distribution, the gray 
center of gravity method can still extract the coordinates of 
the center point. Figure 4 shows the principle of gray center 
of gravity.

The first scan is performed along the cross section of the 
light stripe to obtain the pixel with the highest gray value. 

The maximum gray value is recorded as Gmax . Then, the 
threshold T is set based on Gmax . The difference ΔG between 
the threshold and maximum value is generally 10–20 based 
on experience. Then, whether the gray value of the pixel 
point on the cross section of the light stripe is greater 
than the threshold T  is determined. If so, the coordinate j 
and gray value I(i, j) of the point on the cross section are 
recorded. After the scan is completed, all gray values greater 
than the threshold are recorded. For the number of pixels L , 
the weighted average of the center points of the light stripes 
is calculated in accordance with Eq. (14).

Fig. 3  a Experimental device; b light plane calibration picture

Table 1  Extraction time of the 
three algorithms

Light strip center extraction algorithm Size of the picture (pixel × pixel) Time (s)

Gray center of gravity method 1280 × 960 0.085
Direction template method 0.245
Steger algorithm 6.544

Fig. 4  Principle diagram of gray center of gravity
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The threshold value of the gray center of gravity method 
differs on each cross section of the light stripe. Based on the 
gray distribution of different light stripe cross sections, the 
corresponding adjustments are performed to maximize the 
use of the gray value information near the extreme point. 
Based on the extreme value method and threshold value 
method, the adjustment is optimized, and the accuracy of 
extraction of the center point of the light stripe is improved. 
At the same time, compared with the Steger center extrac-
tion algorithm, the grayscale center of gravity method 
involves less calculation, has a faster extraction speed, and 
is more suitable for real-time measurement occasions. Fig-
ure 5 compares the extraction effect of the gray center of 
gravity method and Steger algorithm. Figure 5b shows the 
extraction effect of the gray center of gravity method using 
a 7 × 7 template to perform median filtering on the image. 
The figure shows that the center line of the light stripe has 
good continuity, no line breakage, and relatively smooth 
overall curve. Figure 5c displays the center line of the light 
stripe extracted by Steger algorithm. Although the algorithm 
extracts lines smoothly and continuously in areas with high 
light intensity distribution density, continuous broken lines 
appear in the upper and lower areas with weak light intensity 
distribution density, and numerous pixels are missed com-
pared with the gray center of gravity method.

In summary, although the accuracy of Steger light stripe 
center extraction algorithm currently shows the highest 

(14)xj =

∑L

i=1
I(i, j) ⋅ j

∑L

i=1
I(i, j)

accuracy among all center extraction algorithms, the method 
requires substantial calculation, a long center extraction 
time, and only accommodates regions with weak light inten-
sity distribution in the image. The center point may not be 
extracted. Grayscale centroid method can achieve desirable 
extraction accuracy under the premise of selecting a suitable 
threshold value and median filtered image. A minimal cal-
culation amount is required, and the extraction speed is fast. 
At the same time, the system selects the final gray center of 
gravity method as the method for extracting the center of 
light stripes to achieve real-time measurement in the next 
step.

The light plane and camera calibration parameters are 
summarized in Table 2. The four chessboard target planes 
and the fitted light plane coefficients are shown in Table 3.

After light-plane calibration, the mouse (Fig.  6a) is 
placed on the guide rail, and the line-structured light is pro-
jected on the mouse to show the robustness of the algorithm 
for the white object with the least light absorption capac-
ity. A 1280 × 960 image is captured every 1 mm, and the 
three-dimensional (3D) coordinates of the light strip center 
on each picture in the camera coordinate system are calcu-
lated. Reverse engineering software Geomagic Studio 2015 
is used to process the point cloud data, and the results are 
shown in Fig. 6b. The figure shows that the details of the 
mouse arc can be accurately obtained by our method, and 
the measurement results are satisfactory. The object to be 
measured with a Phillips screwdriver is replaced to verify 
the measurement effect of the system on objects with high 
reflectivity and small volume (Fig. 6c). Given its small size, 
an image with 1280 × 1024 size is captured every 0.5 mm, 

Fig. 5  a Light streak diagram. 
b Effect picture of gray center 
of gravity method. c Steger 
algorithm renderings

Table 2  Camera parameters Calibration type fx, fy

u0, v0

Distortion coefficient: k1, k2, p1, p2, k3

Light strip chessboard target 1675.654, 1676.364 
270.250, 401.676

− 0.3902, 0.5860, − 0.0031, 0.0432, 0

Ordinary chessboard target 1686.277, 1687.371
279.950, 412.423

− 0.2055, − 0.1115, − 0.0026, 0.0262,0
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and the obtained measurement results are shown in Fig. 6d. 
The system can extract the center point of the light stripe and 
complete the 3D topography measurement task regardless of 

the object with white reflective surface or the surface with 
small surface roughness and high reflectivity. Finally, the 
test object is replaced with a drill bit with 2 mm diameter, 

Table 3  Planar parameters and 
translation vectors

Plane type Geometric parameters: A,B,C,D Translation vector: Tx,Ty,Tz

Chessboard target 1 0.095, 0.151, 0.984, − 431.902 131.666, 43.797, 441.525
Chessboard target 2 − 0.084, 0.153, 0.985, − 388.981 127.189, 43.052, 421.797
Chessboard target 3 0.157, 0.097, 0.983, − 426.919 124.503, 43.472, 430.390
Chessboard target 4 0.209, 0.205, 0.956, − 420.495 131.411, 42.995, 422.040
Structured light plane 0.998, 0.008, 0.044, − 168.989 -

Fig. 6  a Tested mouse. b Mouse point cloud. c Tested phillips screwdriver. d Phillips screwdriver point cloud. e Tested bit. f Bit point cloud
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and an 800 × 600 image is captured at 0.5 mm intervals. The 
results are shown in Fig. 6f. The proposed method can reli-
ably measure objects of any shape.

4  Conclusion

In this paper, an improved line structure cursor determina-
tion method and Scheimpflug theorem are used to realize 
3D reconstruction of monocular cameras. Results show that 
the proposed method can accurately extract the chessboard 
corners and the light strip center point compared with the 
traditional method. The measurement system uses an optical 
structure that satisfies the Scheimpflug’s theorem, thereby 
increasing the detection range. The influence of the angle 
between the planes on the system resolution is analyzed, 
and the range of the angle between the planes is determined 
to improve the detection accuracy of the system. The future 
work will focus on the acceleration of the light strip center 
extraction and point cloud coordinate calculation to achieve 
real-time 3D measurement.
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