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Abstract
A remote sensing multispectral image compressor must be of low-complexity, high-robustness, and high-performance because 
it is usually located on a satellite platform where resources, such as power, memory, and processing capacity, are limited. 
Multispectral images having multiple bands are mainly compressed using compression algorithms based on three dimen-
sional (3D) transforms, such as the 3D discrete wavelet transform, which exhibits satisfactory compression performance. 
However, the principal compression algorithm used for multispectral images having relatively a few bands is to encode 
each band independently, without considering the spectral redundancy between bands, which results in low compression 
performance. In this paper, an efficient compression method for multispectral images having a few bands is proposed, which 
is based on a distributed, improved post-transform in conjunction with a low-complexity, fast spectral decorrelator. First, 
a fast spectral transform and an improved post-transform having only a fast principal component analysis basis are used to 
generate the spectral and spatial sparse representation. Second, a distributed, improved bit plane encoding is integrated into 
the post-transform to remove the remaining spectral and spatial redundancy. Experimental results show that the proposed 
approach improves compression performance for test data in different performance measures: peak signal-to-noise ratio, mean 
structural similarity index, and visual information fidelity. Compared with current state-of-the-art compression techniques, 
the proposed method exhibits a performance improvement of 0.3–1.7 dB PSNR.
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1 Introduction

With the development of imaging technology in space satel-
lite optical cameras based on the multispectral time-delay-
integration-charge-coupled-device (TDICCD), the require-
ments of the performance specifications, such as field of 
view (FOV), spatial resolution, time resolution, spectral 

resolution, radiometric resolution and wide swath, have 
been constantly improved in recent years [1–4]. At the same 
time, the number of TDICCDs which are used for splicing 
into long linear arrays is growing. The read speed rate of 
TDICCD and the quantization bits of an analog-to-digital 
convertor in a TDICCD video processor have also been 
improving. These factors have led to a dramatic increase 
in the total amount of digital image data of multispectral 
TDICCD cameras [5–7]. However, the storage capacities of 
satellite solid-state recording devices are limited and satellite 
downlink channel bandwidth is also restricted. The present 
storage devices and downlink technology have difficultly 
adapting the huge amount of data relating to multispectral 
TDICCD images. Therefore, the multispectral image data 
must be compressed when TDICCD cameras work in orbit.

Presently, the prevailing compression algorithms gener-
ally use a three dimensional (3D) transform technology to 
compress multispectral images [8]. The 3D transform-based 
compression approach of multispectral images usually has 
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an image transform stage, such as discrete cosine transform 
(DCT) [9], discrete wavelet transform (DWT) [10] and Kar-
hunen–Loeve transform (KLT) [11]. The transform stage can 
remove spatial and spectral redundancies. Then, the trans-
formed coefficients are encoded by entropy encoding algo-
rithms, such as Embedded Zero-tree Wavelet [12], Embed-
ded Block Coding with Optimization Truncation (EBCOT) 
[13], Set Partitioning in Hierarchical Trees (SPIHT) [14], 
Set Partitioned Embedded Block Coder (SPECK) [15], and 
Bit Plane Encoder (BPE) [16, 17]. The typical transform-
based algorithms are JPEG2000, which are suitable for still 
images [18]. In the JPEG2000 algorithm, EBCOT technol-
ogy is a very efficient approach to remove the redundancy 
between wavelet coefficients. The EBCOT technology ena-
bles JPEG2000 to have an excellent compression perfor-
mance. However, it is too complex to be implemented in 
a space satellite TDICCD camera. Another typical trans-
form-based algorithm is the Consultative Committee for 
Space Data Systems (CCSDS)—Image Data Compression 
(CCSDS-IDC) algorithm [19–23]. The CCSDS-IDC algo-
rithm is mainly used in space application. The CCSDS-IDC 
algorithm contains two stages: (1) DWT; (2) BPE. The BPE 
is a zero tree encoder. It makes full use of the structures 
of spatiotemporal orientation trees in a bit plane. In other 
words, grandchildren coefficients also become not important 
when children coefficients are not important. The zero-tree 
characteristic causes the bit plane to have a large number 
of zero areas. Taking full advantage of these zero areas can 
improve coding efficiency. The CCSDS-IDC algorithm has 
the characteristics of progressive coding and fault-tolerant 
capability. In addition, BPE is low-complexity and occupies 
less storage capacity, which is suitable for the application 
of on-board cameras. However, the CCSDS-IDC method 
decreases the average peak signal to noise ratio (PSNR) by 
2 dB compared with JPEG2000. In addition, CCSDS-IDC 
is only suitable for two dimensional (2D) images, which 
cannot exploit the spectral redundancy between 3D images. 
Realizing the needs of remote sensing imaging sensors 
capturing multiple spectral bands, the CCSDS standard 
committee [21] published the CCSDS 123.0-B-1: Lossless 
multispectral and hyperspectral image compression rec-
ommended standard [22] and CCSDS 122.1-B-1: spectral 
pre-processing transform for multispectral and hyperspec-
tral image compression [23]. These two multispectral and 
hyper-spectral image compression standards could provide 
the references of onboard lossless, near-lossless, and lossy 
compression. The compression standard of multispectral and 
hyperspectral images may be extended by the CCSDS com-
mittee in future more effective compression.

Many compression methods of multispectral images have 
been proposed [24] for space optical imaging systems. In 
2004, Enrico et al. proposed a new context-based adaptive 
lossless image coding method to implement the lossless and 

near-lossless compression for hyperspectral images [25]. 
In 2007, Enrico et al. proposed a distributed source cod-
ing technique for the lossless compression of hyperspectral 
images [26]. Didier et al. used Graphics Processing Units to 
implement a lossless hyperspectral data compression sys-
tem for space applications [27]. These lossless compression 
algorithms of multispectral and hyperspectral images can 
provide the references for the lossy compression of multi-
spectral and hyperspectral images from optical remote sen-
sors. In 2013, Enrico et al. analysed the predictor of the 
predictive lossy compression paradigm [28]. This work out-
lines the directions for improvement of the algorithms, espe-
cially in the treatment of noisy channels, and investigates the 
use of appropriate statistical models for the entropy-coding 
stage. Kiely et al. proposed a 3D progressive wavelet-based 
compressor for hyperspectral images [29]. They used a 3D 
wavelet decomposition structure to exploit correlations in all 
three dimensions of hyperspectral data sets, while facilitat-
ing elimination of spectral ringing artefacts. Klimesh et al. 
analysed the spectral ringing artefacts in hyperspectral 
image data compression to improve the reconstructed band 
quality [30]. These multispectral and hyperspectral image 
compression methods can efficiently complete the compres-
sion mission for space optical imaging sensors with multi-
ple spectral bands. They also can provide the reference for 
the future space compression standard of multispectral and 
hyperspectral image compression.

The compression methods outlined above are mainly used 
in multispectral and hyperspectral images that have multiple 
bands. However, for now, compression algorithms of mul-
tispectral images with relatively few spectral bands usually 
ignore the spectral redundancy. Each band is encoded inde-
pendently, which causes the problem of low compression 
performance for remote sensing multispectral images with 
relatively few spectral bands. Achieving such a compressed 
multispectral image with a few bands remains a crucial but 
unsolved issue. In order to address this problem, two meth-
ods are proposed in our previous work. In [31], a one-dimen-
sional (1D) DCT was used to exploit the spectral informa-
tion, and a Tucker decomposition (TD) in spatial transform 
domain was used to remove residual spectral redundancies 
between bands and residual spatial redundancies intra bands. 
A deep coupling approach was also used to manage the 
TD processing. This method focused on removing spatial 
redundancies. In [32], a low-complexity removing spectral 
redundancy algorithm was investigated, while a traditional 
method using DWT and BPE was used to remove the spatial 
redundancies.

To address the low compression performance of remote 
sensing multispectral images which have relatively a few 
bands, this paper proposes an effective compression method 
for these images based on a fast KLT in conjunction with 
a distributed post-transform in the wavelet domain. This 
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is able to achieve good performance with moderate com-
plexity, so as to adapt to the application requirements of 
new generation of high-resolution multispectral TDICCD 
cameras with wide FOV. The proposed method can also be 
used in space smart cameras [33] integrated with navigation 
devices [34–36], in space compressed imaging cameras for 
micro-satellites [37], and for space visual-tracking systems 
[38, 39].

The rest of this paper is organized as follows. Section 2 
presents the architecture of the method. In Sect. 3, the exper-
imental results are demonstrated. Section 4 concludes the 
paper.

2  Proposed compression method

2.1  Overall architecture

Multispectral images are divided into two categories: mul-
tispectral image having a few bands (MIHFB) and multi-
spectral image having normal bands (MIHNB). The MIHFB 
usually has a high spatial resolution and a relatively low 
spectral resolution. In other words, the MIHFB has a high 
spatial correlation (i.e. spatial redundancy) between two 
adjacent pixels in a spectral band, while the spectral corre-
lation between two adjacent bands is relatively low. On the 
contrary, the MIHNB usually has a high spectral resolution 
and a relatively low spatial resolution. Thus, the MIHNB has 
the high spectral correlation between two adjacent bands, 
while the spatial correlation between two adjacent pixels in 
a spectral band is relatively low. Based on the two different 
features of MIHFB and MIHNB, MIHFB usually requires 
a compression algorithm with the high-performance in the 
spatial decorrelation, while the spectral decorrelation is rela-
tively low. MIHNB usually requires a compression algorithm 

with the high-performance in the spatial decorrelation, while 
the spectral decorrelation is relatively low. In this paper, 
we define images having a band number of below 10 as 
MIHFB, and those having a band number of above 10 as 
MIHNB. MIHFBs are obtained by a multispectral TDICCD, 
which is composed of several TDICCD arrays in parallel and 
produces several bands simultaneously (Fig. 1). The optics 
reflected and radiated by a ground object converges on the 
thin optical film of the TDICCD surface through the optical 
system. Each band TDICCD array captures optical energy 
to obtain the corresponding spectral band image. Each band 
image contains 1D spatial information of ground objects. At 
this point, a 1D spectral and 1D spatial image is obtained by 
this multispectral TDICCD camera. When the camera moves 
along push-broom direction, additional 1D spatial informa-
tion of ground objects is obtained. Through iterations of 
this process, the multispectral TDICCD camera produces 3D 
images. The number of bands of multispectral image can be 
customized by the user. The imaging system in Fig. 1 uses 
four bands, a number widely used in multispectral imaging 
having a few bands.

In our previous work, compression approaches of 
panchromatic and multispectral images are thoroughly 
researched [16, 17, 19]. In this paper, a new compression 
method of multispectral images for remote sensing cam-
era having comparatively few spectral bands is proposed. 
Four bands are used as an example to illustrate the proposed 
method. To balance computational complexity and com-
pression performance of the MIHFB, an efficient scheme 
based on low-complexity fast KLT (FKLT) combined with 
improved post transform (PT) and Distributed Source Cod-
ing (DSC) integrated with CCSDS-IDC (DSC-CCSDS) is 
proposed for multispectral images having a few bands. This 
method integrates FKLT, improved post-transform in the 
wavelet domain, optimized CCSDS-IDC and distributed 
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source coding to remove the spatial redundancy, spectral 
redundancy and bit information redundancy. The proposed 
compression encoder has than lower complexity than tra-
ditional ones, making it suitable for on-board camera 
applications.

Figure 2 shows the proposed compressor architecture of 
the MIHFB. The number of bands is four. First, all bands 
of multispectral images are transformed using a FKLT to 
remove the spectral redundancy. Then, a 3-level 9/7 lifting 
2D DWT is attached to each principal component band to 
remove the intra-band spatial redundancy. Here, the lifting 
2D DWT is a float form. In addition, an improved post-
transform having only one fast principal component analy-
sis (PCA) basis is attached to wavelet sub-bands of each 
band to exploit the remaining redundancy between adjacent 
wavelet coefficients intra-sub-band. Finally, an optimized 
DSC-CCSDS codec is used as an entropy coder to remove 
information redundancy and residual redundancy between 
the adjacent bands.

2.2  Fast KLT

KLT can be considered as an excellent method to remove 
the spectral redundancies between multispectral images 
[40–43]. However, the computation complexity of KLT is 
too high to be implemented in remote sensing applications. 
To lower the complexity, the following calculating strategy 
is adopted:

1. Spatial tiling
  The computation complexity of KLT is proportional 

to the size of each band [44, 45]. However, space camera 
has large wide-swath and high time resolution. The size 
of each band is very large. To accelerate computation 
speed, a tiling strategy is used in which a 3D multi-
spectral image is spatially tiled. Each spatially tiled sub-
block is considered as a new 3D multispectral image. 
The new 3D multispectral image is attached by KLT

2. Spectral band tiling
  In [45], the computational complexity of KLT is pro-

portional to the number of bands in the multispectral 
images. A spectral band tiling strategy is used based 
on the idea of the clustering successive approximation 

method in [46–48], and [66]. Each spatially tiled sub-
block, which has L spectral bands, is spectrally tiled to 
form several groups. Each two spectral bands are consid-
ered as a spectral tiled group. A KLT is attached to each 
spectral tiled group. Each spatially tiled sub-block is 
transformed by n level KLT. In first level transform, the 
L spectral bands can be spectrally tiled into L/2 groups. 
Each spectral tiled group includes two spectral bands 
and is transformed by KLT to form the first principal 
component spectral band and the second principal com-
ponent spectral band. For each spatially tiled sub-block, 
the L/2 first principal component spectral bands and the 
L/2 s principal component spectral bands can be obtain 
in the first level transform. Since most of image energy is 
focused on the first principal component spectral bands, 
the redundancy between spectral tiled bands has been 
removed. Then, the L/2 first principal component spec-
tral bands in the first level can be transformed by KLT at 
the second level. The transform approach in the second 
level is the same as the first. The transform approach 
at each level is the same until the n level transform is 
completed. Finally, the L principal component spectral 
bands can be obtained. When the number of spectral 
bands in one level is an odd number, the unpaired com-
ponent exists. In this case, the unpaired component is 
directly forwarded to the next level. In other words, the 
unpaired components are seen as a principal component 
at successive levels.

3. Covariance matrix computation
  To reduce the computational complexity of KLT, a 

sub-sampling strategy is used to calculate the covari-
ance matrix of the spectral tiled group, as in [42, 49]. In 
the sub-sampling strategy, 1% of the spectrum vectors 
are selected randomly to evaluate the covariance matrix, 
while the PSNR is not decreased. The complexity of 
the evaluation of the covariance matrix of full KLT is (
B2
KLT

MKLTNKLT

)
, where BKLT is the band number, and 

MKLT and NKLT are the size of each band in the hori-
zontal and vertical direction. After the use of the sub-
sampling strategy, the computational complexity of the 
covariance matrix is decreased to 

(
B2
KLT

MKLTNKLT/100
)
.

Fig. 2  The proposed coding 
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4. Eigenvalues and eigenvectors computation
  The Jacobi algorithm is used to implement the eigen-

value and eigenvector computations in the KLT process. 
In order to increase the calculation speed and to be eas-
ily realized by hardware, an optimized Jacobi algorithm 
is used based on the pipeline and parallel architecture 
detailed in [50]-[51].

5. Spectral transform computation
  Several lifting strategies of KLT are used to imple-

ment spectral transform computation, as given in [52–
56]. According to the aforementioned tiling spectral 
bands, the associated lifting structure of spectral trans-
form computation can be designed. The spectral trans-
form is expressed as

where V is eigenvector of the covariance matrix of H=[H1, 
H2]T. The covariance matrix of H is denoted as Cov(H), 
which can be expressed as:

V is expressed as

The eigenvector is computed as:

Let g = v21, V is expressed as

Since Det (A) = 1 [57], V can be decomposed as:

(1)G = VTH =

[
G1

G2

]

= VT

[
H1

H2

]

,

(2)Cov(H) =
1

4
HTH =

[
cov11 cov12
cov21 cov22

]

.

(3)VT=

[
v11 v12
v21 v22

]

.

(4)v11 = v22 =

√
1

2
+

(cov11 − cov22)

2�
=

√
1 − v21

2,

(5)v21 = −v12 =
cov12
||cov12||

√
1

2
−

cov11 − cov22

2�
,

(6)� =

√
(cov11 − cov22)

2
+ 4cov12cov21.

(7)V=

�√
1 − g2 −g

g
√
1 − g2

�

.

(8)V=

[
t −g

g t

]

=

[
1 0

f 1

][
1 −g

0 1

][
1 0

f 1

]

,

where t = (1 − g2)0.5 and f = (t − 1)/− g. Based on Eq.  8 
the lifting structure of spectral transform computation is 
designed as shown in Fig. 3. The computation structure 
requires only nine operations and a conditional permutation.

2.3  Improved PT having only fast PCA basis

To implement post-transform [58, 59], each sub-band of 
all the high frequency sub-bands, such as LHi, HLi, HHi, 
i = 1,2,…,L, is organized into several blocks. When the 
distance between wavelet coefficients is larger than 4 pix-
els, the correlation between coefficients is relatively weak 
[60]. Therefore, each block is composed of 4 × 4 wavelet 
coefficients. The post-transform compression idea is that 
wavelet coefficient blocks are further transformed on a one 
particular direction basis (such as Bandelet, DWT, DCT 
and PCA) in a dictionary. The post-transform key idea is 
that wavelet coefficient blocks perform transform on a one 
certain direction basis in a dictionary. A wavelet coeffi-
cient block is denoted by f  , which is composed of 16 
wavelet coefficients. f can also be considered as a vector 
with A (A = 16) elements in ℝA . Let D denote the post-
transform dictionary, which is composed of multiple 
orthonormal bases of ℝA . Let S be the number of basis in 
D .  Let Bb be an or thonormal basis function in 
D =

{
B1,B2,…Bb

}
, where b ∈ [1, S] is the basis index. 

The A vectors of the orthonormal basis Bb are expressed 
by �b

a
 with a ∈ [1,A],Bb =

{
�b
a

}bA

a(a=1)
. Let fb be a post-

transformed coefficients block. The post-transform can be 
expressed as:

where f is a wavelet coefficients block.
Each wavelet coefficient block is projected onto S bases 

in the post-transform dictionary. The S post-transformed 
block can be obtained. Therefore, a best post-trans-
formed coefficient block needs to be selected from the S 

(9)f b =

16∑

a=1

⟨
f ,�b
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⟩
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Fig. 3  Lifting structure of FKLT for MIHFBs
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post-transformed blocked. In general, a minimum Rate-
Distortion (RD) Lagrangian cost method is used to select 
a best post-transformed block, which can be expressed as:

where f b
q
 represents the quantized post-transformed coeffi-

cients, the quantization step is q,
(
f b
q

)
 is the square error 

between fb and f b
q
 , � is a Lagrangian multiplier, and R

(
f b
q

)
 

is the allocated bit-rate to encode f b
q
.

In our previous work [16, 17, 19] an improved post trans-
form encoder was proposed. Some optimized strategies were 
used, such as a very simple dictionary which can be composed 
of the Hadamard transform (HT) and DCT basis, l0 and l1 
norm for the best post-transform basis selection. Our previ-
ous work points out that PCA is the best post transform basis. 
However, PCA has very heavy computation complexity. It is 
not suitable for post-transform application. Because the fast 
strategy is utilized in computing KLT in the above section, 
the fast PCA is also implemented. So, the fast PCA as a post 
transform basis is used in this paper. The proposed encoder 
is shown in Fig. 4. The improved post-transform in the DWT 
domain is used to remove spatial redundancies. A fast PCA 
basis is adopted to further exploit the spatial redundancy 

(10)L(f b
q
) = D(f b

q
) + � ⋅ R(f b

q
),

within a wavelet-transform sub-band due to better sparse 
performance.

The post-transformed coefficients are encoded by the BPE 
encoder which is a zero tree encoder. However, the post-trans-
form destroys the zero structure of wavelet coefficients. Each 
wavelet sub-band is performed by 4 × 4 post-transform. In one 
BPE block, the structure relationship between grandchildren 
and children coefficients is 2 × 2 children coefficients and 4 × 4 
grandchildren. The post-transform block is 4 × 4. The process 
is expressed in Fig. 5.

If BPE builds the block structure as traditional wavelet spa-
tiotemporal orientation trees, the 4 × 4 post-transform block of 
HL2, LH2 and HH2 consists of children coefficients in four 
orientation trees, and the 4 × 4 post-transform block of HL3, 
LH3 and HH3 consists of grandchildren coefficients in four 
orientation trees. The four orientation trees can be expressed 
as:
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In BPE encoding, the four orientation trees are located 
in four separate encoding blocks of BPE. Grandchildren 
coefficients in each orientation tree are exactly one post-
transform block. However, children coefficients are part of 
one post-transform block. This changes the original zero tree 
relationship between grandchildren and children coefficients. 
In this paper, a new BPE method is proposed to encode post-
transform coefficients. To ensure the structures of spatiotem-
poral orientation trees, the structure of the traditional block 
is modified to four orientation trees representing one block, 
which is shown in Fig. 6.

The structure of the improved block includes three fami-
lies. In each family, father coefficients are 4 × 4 coefficients, 
children coefficients are 4 × 4 coefficients, and grandchildren 
coefficients are 8 × 8 coefficients. Since grandchildren coef-
ficients consist of a 4 × 4 post-transform block and a new 
family block is 8 × 8, the four post-transform coefficients of 
HL3, LH3 and HH3 in Fig. 5 are reordered. The energy of 
the reconstructed post-transform block can be concentrated 
in the top left corner, and low coefficients are concentrated 
in other parts. This can ensure the spatial orientation trees, 
which are beneficial, to be encoded by  tranB,  tranD,  tranG, 
and tranHi,j

 . Finally, the four orientation trees are separated 
into four blocks, which are encoded by traditional BPE.

2.4  DSC‑CCSDS strategy

The DSC method can obtain better compression perfor-
mance of multispectral or hyperspectral images in the 
remote sensing application [61–67]. In our previous work 
in [19], a DSC strategy was combined with CCSDS-IDC 
to encode transformed coefficients. In this paper, the 

encoding process is optimized. The optimized coding pro-
cess of the Slepian-Wolf bit plane encoding (SW-BPE) is 
summarized in Fig. 7.

3  Experimental results

3.1  Experiment setup

The proposed approach is tested and analyzed on a self-
developed multispectral compression testing platform to 
verify the performance and feasibility of the proposed 
approach. The testing platform is shown in Fig. 8. The 
testing platform includes a multispectral image simulation 
source, a compression system, a compression and stor-
age sever (CSS), a decoding unit, and a display system. 
The CSS can produce simulated multispectral images with 
three and four bands, which are transmitted to the image 
simulation source unit. The image simulation source unit 
adjusts the output line frequency, image size, and output 
time to simulate TDICCD output. The compression system 
compresses the received multispectral image or simulated 
multispectral image. The proposed method is implemented 
and tested on the compression system. The compression 
system uses Xilinx FPGA with a 32-bit MicroBlaze as 
the processor. The compressed streams are received and 
decoded by a decoding unit. In the decompression method, 
a deblocking filter is used to remove the block effects 
because the multispectral images are spatially titled before 
spectral transform in the proposed method. The recon-
structed image is transmitted to the CSS.
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3.2  Compression experiments using image 
simulation sources

In order to verify the proposed compression scheme, the 
image simulation source unit produces several groups of 
multispectral remote sensing images that are transmitted to 
the compression system. They are rich in texture to verify 
validity and feasibility of the proposed approach. Each 
group has three bands, measuring radiation from the Earth 
filtered at wavelengths red, green, and blue. Each band of the 
remote sensing image is 8 bpp (bits per pixel). The FKLT is 
performed on each group of the multispectral remote sens-
ing images. A three-level 9/7 Daubechies DWT and a fast 
PCA-based PT are performed on each band, and then the 
post-transformed coefficients are quantized. Figure 9 dem-
onstrates the three reconstructed bands and the magnified 
sub-images. Each band is 491 × 491 pixels. The code rate of 
the key bands is 2.0 bpp. The PSNR of three bands can reach 
51.56 dB, 50.48 dB, and 50.29 dB, respectively. After multi-
spectral remote sensing images are transformed by the pro-
posed FKLT-PT scheme, the bit-depth of transformed high 
frequency coefficients is 0–6 bit. The bit-depth of most of 
the coefficients is 0–4 bit. There are no large high-frequency 
coefficients. All reconstructed bands have no blocking effect, 
and high recovery-quality bands can be obtained.

In addition, the image simulation source unit produces 
several groups of Quickbird multispectral images to test the 
proposed algorithm. Each group has four bands, measuring 
radiation from the Earth filtered at wavelengths red, green, 
blue, and near-infrared. Each band in the remote sensing, 
multispectral images is 8 bpp. Figure 10 demonstrates the 
first reconstructed band and the magnified sub-image. From 
the magnified sub-image, the proposed algorithm can effec-
tively preserve the edge information of the original mul-
tispectral images. Other groups can also obtain the same 
results.

Xi  performs the wavelet transform and 
post-transform

The sub-set of Xi and Xi-1 compute s  the 
prediction coefficients α and β.

α and β a r e  u s e d  to obtain the post-
transformed coefficients of X'.

BPE encode s  the post-transformed coefficients of Xi
and extracts the bit-plane bjxi(1≤j≤m).

BPE encode s  the post-transformed coefficients of X'
and extracts the bit-plane bjxi(1≤j≤m).

     is computed, the crossover probability of  one plane-
pair( ，  ) of     and     is evaluated 
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'XjX
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Fig. 7  DSC-CCSDS encoding flow in the proposed method

Fig. 8  Compression testing platform of the proposed method
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Finally, a multi-spectral image is used to compare the 
compression experiments with two different methods. The 
captured images are compressed by the proposed algo-
rithm and CCSDS-IDC approach at 0.5bpp. Figure 11 
demonstrates the reconstructed image. Figure 11a, d show 
the original image and magnification of one segment S. 
Figures 11b, e show the reconstructed image of CCSDS-
IDC. Figure 11c, f show the reconstructed image of the 

proposed method. As the figures show, the CCSDS-IDC 
method has the fuzzy phenomenon of a reconstructed 
image at low bit rates. The proposed method has no ring-
ing effect and emerging distortion. Other bands depict the 
same results. Therefore, the proposed method works well 
for image compression while edge and outline information 
is substantially retained.

Fig. 9  Reconstructed multi-band images using the propose method at 2.0bpp, (a) reconstructed band1, (b) reconstructed band2, and (c) recon-
structed band3

Fig. 10  Magnification of one segment of the first reconstructed band using the proposed method
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3.3  Compression performance testing experiments

In order to objectively evaluate the performance of the 
proposed compression algorithm, the CSS injects multiple 
groups of AVIRIS uncalibrated multispectral images, includ-
ing cities and buildings, into the image simulation sources 
to perform the compression experiment at different bit rates 
(BR). Each group is 512 pixel × 512pixel × 4, while the bit 
depth of every pixel is 8bit.

The compression bit rate is set to 0.25–2.0 bpp. The 
PSNR of the original and reconstructed multispectral images 
is used as the evaluation equation, which can be expressed 
as:

where Q is the quantization bits of the original image sam-
ple, B is the band number of the multispectral image, W and 

(15)PSNR = 20log10

�
2Q − 1
√
MSE

�

(dB),

(16)MSE =
1

W × H × B

B−1∑

k=0

W−1∑

i=0

H−1∑

j=0

(
xi,j,k − x�

i,j,k

)2

,

H are the size of each band, xi,j,k and x′
i,j,k

 denote the pixel 
value at (i, j,k) in original and reconstructed multispectral 
images, respectively.

First, the three groups (Hawaii, Jasper Ridge, and Lunar 
Lake,) of multispectral images with different textures are 
used as the testing images. Figure 12 shows the PSNR 
results of three group AVIRIS multispectral images using 
the proposed algorithm. In Fig. 12, the PSNR reaches 
above 40dB at 0.25–2 bpp. Second, the proposed algo-
rithm on multiple groups for multispectral images is 
compared with PCA, SPIHT + 2D-DWT with KLT [68], 
SPECK + 2D-DWT [69] with KLT, and POT [70]. These 
four methods use the quantization method and entropy 
encoder of the JPEG2000 [71]. From Fig. 12, a compres-
sion algorithm is applied to two different multispectral 
images and two different PSNRs are obtained. We use 
50 images from the testing image database are used to 
measure the corresponding PSNR. The average PSNR is 
considered as the PSNR of the corresponding method. The 
PSNR comparisons are demonstrated in Fig. 13a, b. Due 
to the full usage of FKLT and PT in the DWT domain, 
the proposed compression achieves a good compression 
performance. The proposed method can improve PSNR 

Fig. 11  Reconstructed multi-band images with different methods at 
0.5 bpp, (a) The original first band, (b) Reconstructed band of S using 
CCSDS-IDC method, (c) Reconstructed band of S using the proposed 

method, (d) Magnification of one segment of the first band, (e) and (f) 
Magnification of two reconstructed images
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by 0.3–1.7 dB against SPIHT + 2D-DWT with KLT at 
3.5–0.25 bpp.

Third, the proposed algorithm is compared with the 
CCSDS-IDC space compression standard method. As the 
same considerations with Fig. 13, the same compression 
algorithm has a different PSNR when a different multi-
spectral image is used as the input. The same groups (50 
images from the testing image database) of multispectral 
images are used as test input for compression algorithms. 
The average PSNR is considered as the PSNR of the cor-
responding method. Figure 14 shows the comparison of 
results for different compression algorithms. Since the 
compression method based on CCSDS-IDC without KLT 
does not remove the spectral redundancies, the compres-
sion performance is 2dB lower than CCSDS-IDC with 
KLT. In the proposed algorithm, FKLT and improved PT 
in the DWT domain are utilized to remove spatial and 

spectral redundancies, and DSC-CCSDS encodes the 
transform coefficients. Therefore, the PSNR of the pro-
posed algorithm is 0.15–1.57 dB higher than CCSDS-IDC 
with KLT.

Finally, other evaluation parameters are used to analyze 
the compression performance of the proposed method. The 
CSS is injected by the same multispectral images. Other 
image quality assessment methods are performed by using 
the mean measure of structural similarity (MSSIM) [72] and 
visual information fidelity (VIF) [73]. The MSSIM and VIF 
are based on the hypothesis that the human visual system 
(HVS) is highly adopted for extracting structural informa-
tion. The reference methods use the CCSDS-IDC method 
with KLT and the CCSDS-IDC method without KLT. The 
MSSIM and VIF values at different compressed ratios are 
shown in Table 1. Because several key technologies are 
used, such as the FKLT to remove spectral redundancy, and 

Fig. 12  Tested PSNR results 
with the proposed method 
on three group multispectral 
images

Fig. 13  PSNR comparison with 
traditional compression method 
at different bit rate
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the improved post-transform method, the proposed method 
outperforms the traditional saliency-based methods.

3.4  Compression complexity analysis

In the proposed method, FKLT is performed on the spectral 
dimension to exploit spectral information. Let N be the band 
number of the multispectral image. The spectral band tiling 
is used based on multi-level decomposition to perform KLT. 
Let K be the number of sub-band unit (SBU) decomposed 
by spectral band tiling. For each SBU, N = 2. Only a small 
sample of the image spatial locations is also used to compute 
the covariance matrix. Let ρ be Sub-sampling factor of the 
covariance matrix. The KLT calculation complexity of each 
SBU is shown in Table 2.

After applying FKLT, three-level 2D DWT is applied to 
the spatial bands. Let L be the decomposition level of 2D 
DWT. For the I1 × I2 × I3 MIHFBs performing 2D-DWT, 
the calculation complexity is 

(
8NI1I2I3(1 − 2−2L

)
/6. In 

the proposed method, a 9/7 2D-DWT is used to transform 
each band of MIHFBs. Three-level decomposition is per-
formed. Therefore, the calculation complexity of the pro-
posed method is O(9I1I2I3/7). After MIHFBs performing 2D 
DWT, The fast PCA is used based on pairwise orthogonal 

Fig. 14  Test result comparison 
(PSNR) with space compression 
standard at different bit rate

Table 1  MSSIM and VIF values at different compression ratio

Methods Bitrate (bpp) CCSDS-IDC 
(dB)

CCSDS-
IDC-KLT 
(dB)

The proposed 
method (dB)

MSSIM 0.25 0.6848 0.7130 0.7466
0.5 0.7727 0.8022 0.8169
0.75 0.8217 0.8450 0.8608
1.0 0.8540 0.8700 0.8807
1.5 0.8703 0.8870 0.8996
2.0 0.8853 0.8950 0.9044

VIF 0.25 0.4984 0.5183 0.5332
0.5 0.5724 0.5911 0.6120
0.75 0.6143 0.6325 0.6600
1.0 0.6463 0.6713 0.6835
1.5 0.6750 0.6895 0.7058
2.0 0.6867 0.7013 0.7154

Table 2  Calculation complexity of each SBU, M and L are the number of spatial locations

Step Additions Subtraction Multiplication Division Trigonometry

BandMean MLN – – N –
MeanSub – MLN – – –
Covariance 0.5ρMLN(N + 1) + MLNρ N2 0.5ρMLN(N + 1) + 0.5N(N + 1) + N2 N2 + N –
Eigen 5(N −1)(N− 2) × (4 + 2N) 5(N− 1)(N− 2) × (4 + 2N) 5(N-1)(N − 2) × (14 + 8N) 10(N −1)(N – 2) 15(N − 1)(N − 2)
Eigen × meansub MLN(N− 1) – MLN2 – –
Total MLN(1 + 1.5ρ0.5ρN) + 5(N− 1)

(N− 2) × (4 + 2N)
MLN + N2 + 5(N− 1)

(N− 2) × (4 + 2N)
MLN(N + 0.5ρN + 0.5ρ) + (N + 1)

(0.5N + 1) + N2 + 5(N− 1)
(N – 2) × 14 + 8N

11N(N− 1) + 20 15(N− 1) × (N − 2)
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transform to implement post-transform. Each post-transform 
block has 4 × 4 coefficients. Each block is taken as m vectors, 
and each vector has n components. The computational cost is 
12mn+21n-8m-23. After 2D-DWT coefficients performing 
post-transform, The BPE-DSC encoder adopts low-density 
parity-check codes (LDPC), of which the encoding complex-
ity is O

(
N2

)
. In this paper, quasi-cyclic LDPC are used for 

fast encoding. The encoding complexity is 0.172N2 + O(N), 
where N is the code length. The basic operations are very 
simple, as they are sums in modulo-2 arithmetic.

In the following section, the calculation times of the 
proposed compression method are tested and analysed. 
TDICCD imaging mode is used to test the compression time 
of the proposed method. The line frequency of TDICCD is 
0.86 KHz. The following compression time of the proposed 
algorithm is only used to perform the evaluations of com-
pression time. The compression algorithm is not optimized 
for FPGA implementation. These evaluations are based 
on the lossy compression of remote sensing multispectral 
images with four bands. The size of each band is 3072 × 128. 
The compression time of the proposed algorithm is com-
pared with that of other algorithms. Table 3 compares the 
results of the compression time for different compression 
algorithms. The processing time of the proposed algorithm 
is 0.049 us/sample, which indicates less time than other 
methods. The compression time of 128 × 3072 needs only 
19.26 ms. According to the different principles of TDICCD 
imaging, the proposed compression algorithm can be opti-
mized on an FPGA. An optimized implementation on a 
FPGA can take minimal time.

In addition, a compression method with a low memory 
requirement can be used in memory constrained environ-
ments. In order to evaluate the occupancy of the resources, 
the XC2V6000-6FF1152 FPGA is utilized to implement 
the proposed algorithm. These resources can implement the 
operation of the compression algorithm. The design lan-
guage is VerilogHDL, the development platform is ISE8.2, 
and the synthesis tool is XST. Table 4 demonstrates the 
occupancy of resources of the proposed approach. From 
Table 3, the LUT occupies 81%, Slices occupy 76%, and 
BRAM occupies 86%. Various indicators are lower than 
95%, which meet the requirement of our project.

Overall, the proposed algorithm in this paper achieves 
the excellent lossy compression performance and is very 

suitable for remote sensing multispectral images with a few 
bands.

4  Conclusion

In order to improve the compression performance of remote 
sensing MIHNBs, a low-complexity and efficient com-
pression scheme has been proposed based on a distributed 
post-transform in the wavelet domain in conjunction with 
a fast spectral decorrelator. The new method uses a FKLT 
as the spectral decorrelator, followed by a post-transform 
having only fast PCA basis in the wavelet domain for the 
spatial decorrelation. In this algorithm, a new distributed 
BPE is proposed for encoding the post-transform coeffi-
cients. Multispectral images having different textures are 
used to verify validity and test compression performance of 
the proposed algorithm. Experimental results show that the 
proposed compression method offers the excellent compres-
sion performance based on different performance evaluation 
indices, such as PSNR, MSSIM and VIF. The experimental 
results are compared with various state-of-the-art compres-
sion techniques and exhibit a performance improvement of 
0.3–1.7 dB PSNR over current techniques. The proposed 
algorithm is very suitable for MIHFBs and has the poten-
tial to compress MIHNBs and hyperspectral images. The 
next stage will be to optimize the proposed algorithm on 
an onboard hardware platform. We will also simplify the 
proposed algorithm, slightly compromising performance, to 
develop an on-board compressor.
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China (Grant 61875180) and the National Key Research and Develop-
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