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Abstract
Quantum dynamics of a four-channel nonlinear directional coupler, based on Kerr effect, was modeled numerically by a set 
of stochastic differential equations derived using quasiprobability distribution of positive-P representation. The modeling 
of the system is focused on the properties of quadrature evolution below the standard quantum limit, and its comparison 
with the conventional two-channel device. The results exhibit that a four-channel Kerr coupler provides an effective way 
to manipulate squeezing, especially in the mixed-mode basis, as compared with the conventional two-channel system—the 
theme that would make these to be prudent squeezed light source.
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1  Introduction

Optical couplers employing the energy exchange of evanes-
cent waves have been of great interest since its first intro-
duction over a decade ago. These are composed of linearly 
coupled waveguides with significant distance between each 
other to control the rate of energy-transfer adjacently, and 
have potentials to be key components in various optoelec-
tronics and photonics applications. To enhance the capabili-
ties, various kinds of couplers employing different mecha-
nisms and processes have been studied in the literature, e.g., 
bundle optical coupler [1], unidirectional coupler [2], and 
coaxial directional coupler [3].

Directional coupler with nonlinear coupling medium pos-
sesses great potentials as a quantum light generator. Several 
kinds of nonlinear couplers with different nonlinear pro-
cesses, such as second-harmonic generation [4], Raman or 
Brillouin processes [5], and optical Kerr effect [6], have been 

given much attention. Since the reports by Jensen [7] as a 
two-channel single-mode device, the properties of nonlinear 
directional couplers (NLDCs) has been theoretically investi-
gated, and many interesting non-classical effects have been 
reported analytically [8–11] and semi-analytically [12–15].

Subsequently, the two-channel two-mode devices have 
been extended to three- [16, 17] and four-mode devices 
[18] with many interesting quantum effects. These studies 
demonstrate significant advantages of the multimode inter-
action of optical fields in nonlinear media, as opposed to 
the two-channel system, and allow the possibility of design-
ing quantum light amplifiers (based on these devices) for 
applications beyond the standard quantum limit. One of the 
most challenging problems in optical technology has been 
the restrictions on device performance set by the quantum 
limit, resulting from the intrinsic noise inherited in quantum 
systems [19].

Even though multimode interaction of two-channel 
device exhibits a considerable reduction in quantum noise, 
this comes at the expense of reducing the propagation length 
[18] of the squeezed states. In addition, one of the conditions 
for an effective estimation of the solution requires the field 
modes to propagate at the same velocity [17]. This can be 
strenuous to achieve due to the difficulty in controlling the 
property of individual modes in each waveguide throughout 
the propagation length. This is due to the fact that multimode 
waveguides induce different individual propagation veloc-
ity for each mode compared with single-mode waveguides. 
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Therefore, we believe that a single-mode multichannel 
coupler provides a more convenient alternative to generate 
squeezed states via multimode interaction compared with a 
multimode two-channel coupler. The proposed system offers 
more flexibility on the coupled-mode interactions. Thus, an 
effective production and mode transmission of squeezed 
states is possible via single- and mixed-mode quadrature 
correlations.

Various kinds of geometrical arrangements of couplers 
with interesting quantum properties have been reported. 
The switching mechanism of an optical coupler, composed 
of three symmetric waveguides with Kerr-like nonlinear 
intensity-dependent media, has been characterized using the 
eigenmodes of the structure [20]. The all-optical switching 
mechanism and wavelength demultiplexing of an asymmet-
ric version of the three-waveguide directional coupler with 
thin photorefractive grating have been investigated [21]. In 
another version of this device, quantum-statistical proper-
ties of light have been studied in three-channel directional 
coupler composed of nonlinear waveguide operated by the 
second-harmonic generator placed between two linear wave-
guides [22]. Furthermore, the optical switching operation in 
a three-channel NLDC has also been studied when the power 
is initially launched into the center waveguides [23].

Despite being a simple optical system, the three-channel 
Kerr NLDC provides a good mechanism for generating 
quantum states of light. Moreover, the fact that Kerr effect 
does not require phase matching (together with the fast non-
linear optical response of mediums) contributes to further 
enhancement of quantum effects. Nevertheless, three-chan-
nel coupler employs the center excitation model, permitting 
thereby the energy transfer only to the adjacent waveguide 
from the center where the power is initially fed into. While 
the isolation of waveguides may be beneficial to quantum 
phase gate application of bandgap quantum coupler [24], 
such arrangement will disadvantageously limit the possible 
number of coupling modes.

The work reported in this communication is pivoted to 
the investigation of dynamical quantum properties of single-
mode Kerr NLDC composed of four coupled waveguides, in 
the context of phase-space representation. In the proposed 
four-channel system, waveguides are arranged so that all the 
modes are involved in evanescent field coupling. Particu-
larly, the modeling of system is focused on the generation 
and dynamics of quantum noise below the standard quantum 
limit, and its comparison with the two-channel device. The 
novelty of this work is that a quad-channel nonlinear coupler, 
based on Kerr nonlinearities, exhibits reliable quantum effects 
to a significant extent, as compared with its conventional two-
channel counterparts. This is because the propagating fields 
in quad-channel system are involved in multiple multimode 
linear interactions supported by the Kerr self-action nonlinear-
ity. Given that the surrounding waveguides are isolated from 

each other, the system will be reduced to four-channel bandgap 
quantum coupler, which would be useable for quantum logical 
gate application [24].

2 � Design and modeling

Figure 1 shows the arrangement of four Kerr waveguides 
with the physical characteristics chosen such that they share 
identical physical geometries. Only one waveguide is initially 
pumped (with power), and the energy flow in the other guides 
(via the evanescent field coupling) remains under observation. 
The periodical range of energy exchange between the coupled 
modes is specified by the coupling factor that is essentially the 
reciprocal of the distance of separation of guides. Accordingly, 
the waveguides have to be arranged in close proximity to allow 
energy transfer. Figure 1 also depicts the interaction scheme 
of the proposed system. The quantum mechanical treatment of 
the problem allows the Hamiltonian (to describe the system 
adequately) to be of the form.

Carrying the description of optical modes, the total Hamil-
tonian is comprised of system Hamiltonian, nonlinear Hamil-
tonian due to the third-order nonlinear mediums, and coupling 
Hamiltonian of the coupled modes. The system Hamiltonian, 
in general, may be modeled through the equation

where âi and â†
i
 are the creation and annihilation operators, 

respectively, satisfying the commutation relation 
[
â, â†

]
= 1 . 

The coefficients ω and ℏ give the standard definition of 
operating frequency and Planck constant, respectively. The 

(1)Ĥt = Ĥsystem + ĤKerr + Ĥcoupling.

(2)Ĥsystem = �𝜔

4∑

n=1

{
â†
n
ân
}
,

Fig. 1   Schematic representation of the cross-section of a quad-direc-
tional coupler; a

1
 , a

2
 , a

3
 and a

4
 , respectively, denote the fundamental, 

second, third and fourth mode propagating in the channels
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practical estimation of operating frequency ω lies around 
≈ 1014 Hz. The nonlinear interaction is modeled by the Kerr 
Hamiltonian

where the coupling constant g is the nonlinear coupling 
strength, and the term â†2

i
â2
i
 is responsible for self-action 

process having positive proportionality to the third-order 
susceptibility in Kerr nonlinear mediums. Following the 
classical anharmonic oscillator equation, the coupling con-
stant g may be conveniently approximated using the classical 
formula [25]

where e and m are, respectively, the electronic charge and 
mass. The coefficient χ(3) denotes the third-order nonlinear 
dielectric susceptibility, and N gives the number density of 
bound electrons. For a typical dielectric material, the third-
order nonlinear dielectric susceptibility is approximately 
χ(3) ≈ 10−22 m2/V2 and N ≈ 5.3 × 1028 m−3. The parameter g 
is approximated within 1.5 × 105 to 8 × 1012 /s. In this newly 
proposed system, we think of investigating an ideal situation 
without dissipation, which displays the maximum possible 
squeezing from the conceptual point of view.

The coupling Hamiltonian, that represents the interac-
tion of the coupled modes, is given by

where h.c. denotes the Hermitian conjugate. In addition, 
the coefficients kn (n = 1, 2) control the evanescent field lin-
ear cross-coupling strength, and may be approximated by 
the formula [26] k ≈ π/2Lc; Lc being the separation length 
between the adjacent waveguides. The parameter k has a 
dimension of wavenumber. For convenience in numerical 
simulation, the parameter k can be converted to unit fre-
quency, which is estimated assuming optical velocity in non-
linear fibre (for example, using silica glass) in this paper. 
Following the standard method for Hamiltonian, the master 
equation for the reduced density operator �̂  in Schrödinger 
picture is given by [27]

One way of solving Eq. (6) is to expand the density 
operator �̂  with a coherent state basis in phase-space using 

(3)ĤKerr = �g

4∑

n=1

{
â†
n

2
â2
n

}
,

(4)g =

(
�0m

3

Ne4

)
�
(3)

iiii

(
�2
0
− �2 − i��

)4
,

(5)
Ĥcoupling = �

{
k1

(
â
†

1
â2 + â

†

1
â3 + â

†

1
â4

)

+ k2

(
â
†

2
â3 + â

†

2
â4 + â

†

3
â4

)
+ h.c.

}
,

(6)i�
𝜕𝜌̂

𝜕t
=
[
Ĥt, 𝜌̂

]
.

suitable quasiprobability distribution [28], such as posi-
tive-P [29] representation. The transformation of quantum 
equation to its classical description, using the positive-P 
representation, allows the density matrix of quantum fields 
to be represented in a diagonal form of coherent state. By 
the application of operator algebra rules [30], the Fok-
ker–Planck equation is derived using the positive-P rep-
resentation as

In Eq. (7), P is a quasi-probability positive function of the 
evolution parameter giving normally ordered averages, and 
τ denotes the propagation direction. The variables αn and 
βn are complex-valued functions of τ. Equation (7) can be 
converted to Langevin Stochastic equations by applying it to 
rules [31]. Furthermore, for the convenience of simulations, 
the resulting set of equations can be of the following form:

(7)
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(8)
𝛼̇1 = −i

�
𝛼1
�
𝜔̃ + 2g̃𝛽1𝛼1

�
+ k̃1

�
𝛼2 + 𝛼3 + 𝛼4

��
+
√
2g̃𝛼1𝜆1𝜂1(𝜏),

(9)
𝛽̇1 = i

�
𝛽1
�
𝜔̃ + 2g̃𝛼1𝛽1

�
+ k̃1

�
𝛽2 + 𝛽3 + 𝛽4

��
+
√
2g̃𝛽1𝜆2𝜂2(𝜏),

(10)
𝛼̇2 = −i

�
𝛼2
�
𝜔̃ + 2g̃𝛽2𝛼2

�
+ k̃1𝛼1 + k̃2

�
𝛼3 + 𝛼4

��
+
√
2g̃𝛼2𝜆1𝜂3(𝜏),

(11)
𝛽̇2 = i

�
𝛽2
�
𝜔̃ + 2g̃𝛼2𝛽2

�
+ k̃1𝛽1 + k̃2

�
𝛽3 + 𝛽4

��
+
√
2g̃𝛽1𝜆2𝜂4(𝜏),

(12)
𝛼̇3 = −i

�
𝛼3
�
𝜔̃ + 2g̃𝛽3𝛼3

�
+ k̃1𝛼1 + k̃2

�
𝛼2 + 𝛼4

��
+
√
2g̃𝛼3𝜆1𝜂5(𝜏),

(13)
𝛽̇3 = i

�
𝛽3
�
𝜔̃ + 2g̃𝛼3𝛽3

�
+ k̃1𝛽1 + k̃2

�
𝛽2 + 𝛽4

��
+
√
2g̃𝛽3𝜆2𝜂6(𝜏),



566	 Optical Review (2018) 25:563–570

1 3

In the above set of Eqs. (8)–(15), the overdot represents 
partial derivative of variables over dimensionless direction 
of propagation τ. The dimensionless variables are related 
to its dimensional counterparts by 𝜏 = ωτ, g ͂ = g/ω, k ͂ = k/ω, 
ῶ = ω/ω, and ηn(τ) = η(t)/ω1/2. The intrinsic Gaussian white 
noise is given by the coefficient ηn(t), satisfying both the 
correlations of < ηn(t) > = 0 and < ηn(t) ηm(t′)> = δnmδ(t−tʹ) 
accordingly. The coefficient ω1/2 sets the level of quantum 
noise, and λn (n = 1, 2) are given by λ1 = cos(π/4)−isin(π/4) 
and λ2 = cos(π/4) + isin(π/4).

As long as the integration process converges, the posi-
tive-P representation remains a powerful tool to model the 
dynamics of system. In certain cases, the numerical solu-
tion of stochastic equations, derived using the positive-P 
representation, has an instability issue due to the double 
number of variables, in comparison with the classical equa-
tions resulting from other representations. To investigate 
the system dynamics, where the implementation of posi-
tive-P go astray, an approximate “truncated Wigner” may 
be considered. For the present consideration, the positive-P 
representation is found to be stable in practice, and therefore, 
can be used to investigate the system properties for longer 
interaction length. This is as opposed to the conventional 
short-length solution, where the interaction length can be 
limited.

3 � Quantum dynamical properties

Random noise is usually derived from environmental factors. 
In usual classical practice, the effective way of eliminating 
the influence of such noise is achieved by carefully designed 
light source. Quantum optical systems, in contrast, adhere to 
the laws of quantum mechanics, and have an inherent quan-
tum indeterminacy of field fluctuation. The fundamental 
noise is permanent, no matter how carefully the light source 
is controlled [32]. Laser-based devices are at disadvantage 
from the quantum noise, because it sets a fundamental limit 
on their resolution.

To overcome the quantum limit, light with significant 
amount of squeezing is usually used. The quantum noise 
is naturally distributed equally in both the optical phase 
quadrature components, in accordance with Heisenberg’s 
uncertainty principle with minimized uncertainty prod-
uct. The phase distribution of fluctuations is random, and 
the standard quantum limit, known as the zero-point fluc-
tuation, gives the highest noise reduction in the field. By 

(14)

𝛼̇4 = −i
�
𝛼4
�
𝜔̃ + 2g̃𝛽4𝛼4

�
+ k̃1𝛼1 + k̃2
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��
+
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�
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��
+
√
2g̃𝛽3𝜆2𝜂8(𝜏).

squeezing the fluctuation, the quantum noise in one quad-
rature is able to surpass the standard quantum limit. This 
phenomenon will lead to an increase in fluctuation in the 
canonical variable to ensure that the fluctuation product 
does not violate the uncertainty relation, and also, the area 
in phase-space is conserved.

To investigate squeezing, we define the field quadra-
tures of coherent radiation for the most elementary case 
as [33]

with the arbitrary subscript f being the controlling param-
eter for specifying the quadrature linear combinations. For 
example, f = 1 accounts for single-mode and f > 1 for mixed-
mode quadrature. In the present system, maximal f is set at 
f = 4. Fluctuation of uncertainty in the variances of X̂f  and 
Ŷf  yields [17]

where cf takes the value of 1 to 4 for single- to four-mode 
squeezing, respectively. Rearrangement of Eq. (17) gives the 
expressions for general first-order squeezing [17]

Making use of the positive-P representations, the pos-
sibility of squeezing appearing in the four-channel system 
is to be investigated. It must be noted that, in the present 
approach, the normally ordered equations are very sensi-
tive to the value of the input parameters. Therefore, in 
predicting the presence of squeezed light, the numerical 
solution of the system is performed with input parameters 
adopted from the literature [34, 35] to ensure that the inte-
gration is stable and optimal. For an experimentally real-
izable results, perhaps these input parameters needs to be 
modified to tailor an experimental scheme.

Figure 2 illustrates single-mode squeezing in the quad-
coupler as a function of dimensionless interaction length 
ωτ with asymmetrical initialization mechanism. A small 
value of initial state (viz. �1 = 0.1 ) in the first mode to ini-
tialize the launching mechanism enables squeezing to be 
generated. Figure 2a, b shows comparative features of the 
first and second quadrature, respectively, in both channel 
one and channel two. The first and second quadrature in 
channel one (Fig. 2a) show similar squeezing patterns, in 

(16)X̂f =
1
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(
âj + â

†

j

)
; Ŷf =

1

2i
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)
,
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�
(ΔX̂f )

2⟩⟨(ΔŶf )
2
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≥

���cf
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2

16
,

(18)Sx,f = 4⟨(ΔX̂f )
2⟩ − ���cf

��� ≤ 0,

(19)Sy,f = 4⟨(ΔŶf )2⟩ −
���cf

��� ≤ 0.
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terms of squeezing range and shape. It is observed that, 
the fluctuation amplitude of squeezing is relatively large, 
considering that the coherent initialization state is small. 
The device shows usual pattern of squeezing where the 
quantum noise is being distributed equally between the 
quadrature components. In addition, squeezing increases 
with the increase of dimensionless interaction length ωτ, 
and the maximal squeezing is found to be at the longest 
ωτ. On the other hand, in the second channel (Fig. 2b), at 
certain interaction range (from 0 to ≈ 10), squeezing is 
not observed in the quadrature evolution for both compo-
nents. The absence of squeezing is due to the implication 
of asymmetric initialization, where the second channel is 
launched with vacuum excitation a2 = 0. Without the trans-
fer of energy from the first channel, the field remains in a 
vacuum state. For weak coupling condition, the rotating 
wave approximation of Hamiltonian Eq. (5) remains rel-
evant, quantum state transfer occurs only when the condi-
tion ωτ > 10 is achieved. From this range (ωτ > 10), both 
quadrature components start to surpass the quantum limit 
periodically. This shows that the second channel of quad-
coupler exhibits redistribution of noise between the two 
quadrature fields, henceforth induce considerable stochas-
tic reduction over ranges of evolution distances.

One of the special features of Kerr NLDC is that it 
allows switching of squeezed light from one input beam 
to other. The first channel is capable of generating quan-
tum light with oscillatory behavior. At sufficient strength 
of evanescent coupling, there would be an interaction 
between waveguides, thereby transferring quantum light 
from one channel to another. Parallel squeezing obtained 
with symmetrical state initialization is given in Fig. 3a.

For a symmetrical choice of input parameters, squeez-
ing is found to be equal in all channels. Nevertheless, the 
absence of coupling constant k1,2 reduced the system to four 

independent waveguides, and squeezing disappears entirely. 
The linear coupling constant permits multichannel interac-
tion to switch the squeezed oscillation between waveguides, 
and the entire oscillation will then have an identical evo-
lution throughout the remainder of their interaction paths. 
Figure 3b illustrates a comparison between squeezing exhib-
ited in the first channel for both symmetric and asymmetric 
initializations. It is found that the symmetrical initialization 
state is relevant to invoke a greater degree of squeezing. To 
note, the same squeezing effects are observed in the other 
channels as well.

The multichannel structure of system extends the number 
of possibilities for correlation between the modes in different 
channels. As such, a more flexible combination of the cou-
pled modes, i.e., the second-, third-, and fourth-order mixed-
mode, are available. For this reason, a quad-channel system 
could be useful in enhancing the generation of squeezing via 
the mixed-mode interaction. The manifestation of mixed-
mode in multichannel structure is presented in Fig. 4a. It 
follows that a strong non-classical transition of coherent 
states is observed for single- and mixed-mode propagation 
of field operators. The states of maximal squeezing, in this 
case, depend upon the order of combination of field opera-
tors; the strongest squeezing always appears in the highest 
combination. Figure 4b depicts a comparison between the 
quadrature evolution in the first channel for both the two-
channel and the present system. The solid curves give the 
quadrature fluctuation for maximal achievable squeezing in 
the two-channel coupler, whereas the dotted curves show 
the maximal achievable squeezing in the present system. 
In this scenario, the quadrature variances exhibit greater 
maximal squeezing in both canonically conjugate quad-
rature. The spectrum of both quadrature squeezing in the 
present system is remarkably larger than that observed in 
the two-channel system. Moreover, the quantum behavior of 

Fig. 2   Variation of the single-mode squeezing as a function of dimen-
sionless interaction length ωτ with asymmetrical initialization mecha-
nism; a channel one; b channel two. The input parameters are taken 

as ain1 = 0.1, ain2 = ain3 = ain4 = 0, ω = 1014 Hz, g = 0.5×1011 s−1, 
k1 = 1011/s and k2 = 0.5 k1
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quadrature components (∆Xf, ∆Yf) periodically depends on 
the self-action nonlinear coupling with negative proportion-
ality relationship between each other. At longer distances, 
the quadrature variances propagate erratically as random 
phase fluctuating fields rather than reaching a steady state, 
as usually predicted in Kerr NLDC.

Figure 5a shows the evolution of the quadrature vari-
ances in the first channel as a function of ωτ with several 
initial coherent states, while the other input parameters 
remain fixed. Numerical estimations of quadrature evolu-
tion indicate that the maximal squeezing is dependent on 
the initial value of coherent field, and the device is gener-
ating greater maximal squeezing at higher values of initial 
intensity. The result obtained here is consistent with the 

case of three-mode oscillator interaction [34] where a very 
strong squeezing is achievable via effective manipulation 
of the initial value of coherent excitation. Higher values 
of initial conditions of coherent fields, however, affect 
the stability of positive-P representation. This is because 
the integration in positive-P representation converges 
for longer distances at low initial intensities of coherent 
signals. A comparison between the first quadrature in the 
second channel with different initial coherent states is 
given in Fig. 5b. This demonstrates that the second chan-
nel assumes similar squeezing properties to that of the first 
channel, in response to the varying initial states. Similarly, 
it appears that the same effect is subjected to the third and 
fourth channels as well.

Fig. 3   Variation of the single-mode squeezing as a function of dimen-
sionless interaction length ωτ with symmetrical and asymmetrical 
initialization mechanism. a Parallel squeezing in channel one and 
channel two with symmetrical initialization; b squeezing in channel 

one for both symmetrical and asymmetrical initialization. The input 
parameters are taken as ω = 1014 Hz, g = 0.5 × 1011/s, k1 = 1011/s, 
k2 = 0.5 k1, ain1 = ain2 = ain3 = ain4 = 0.1 for (a) and ain1 = ain2 = ain3 
= ain4 = 0.1, ain1 = 0.1, ain2 = ain3 = ain4 = 0 for (b)

Fig. 4   Variation of the mixed-mode squeezing as a function of 
dimensionless interaction length ωτ with symmetrical initialization 
mechanism. a Channel one; b comparison between maximal achiev-

able squeezing for two-channel and quad-channel system. The input 
parameters are taken as ain1 = ain2 = ain3 = ain4 = 0.1, ω = 1014 Hz, 
g = 0.5 × 1011/s, k1 = 1011/s and k2 = 0.5 k1
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4 � Conclusion

As a conclusion, four-channel Kerr waveguides have 
been modeled by phase-space representation. Quantum 
dynamics describing quadrature variances of system have 
been obtained by integrating the stochastic equations of 
the respective representation. Single- and mixed-mode 
squeezing are predicted in response to variations in input 
parameters. The effect of symmetry in the initial state, 
the initial state of the coherent field, the number of wave-
guides involved in interaction, and the nonlinear coupling 
parameter on the propagation of quadrature squeezing have 
been studied. Depending on system initialization, parallel 
squeezing (in all channels) is achievable via quantum state 
transfer and the squeezing levels depend on the channels. 
As opposed to the asymmetrical initialization, symmetrical 
excitation provides a greater degree of squeezing. Moreover, 
larger squeezing is possible with a larger input field. The 
present system is found to be useful in enhancing squeez-
ing via mixed-mode interaction and can be better than the 
two-channel system. A remarkable improvement of maxi-
mal squeezing is possible via multichannel interaction and 
higher value of nonlinear coupling constant. Even though 
numerous ways exist to achieve robust squeezing, such as the 
parametric process. Nevertheless, it turns out that paramet-
ric processes are physically complicated9. Alternatively, the 
present system could give us access to the new possibilities 
of manipulating squeezing in simple systems with more flex-
ibility through effective manipulation of modes correlation 
induced by multichannel interaction. A greater amount of 
squeezing is possible via increasing the number of channel 
waveguides involved in interaction, i.e., a stronger squeezing 
is expected to be observed in a system implementing higher 
number of single-mode waveguides. Rather than relying on 
devices with complicated structures, the present system may 
stimulate further interests in generating squeezed states of 

light using multichannel waveguides. Finally, the system 
presented here provides a better squeezing compared with 
the two-channel device, and may be used as an alternative 
source of squeezed light, in general.
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