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Abstract When blurred images have saturated or over-

exposed pixels, conventional blind deconvolution approa-

ches often fail to estimate accurate point spread function

(PSF) and will introduce local ringing artifacts. In this

paper, we propose a method to deal with the problem under

the modified multi-frame blind deconvolution framework.

First, in the kernel estimation step, a light streak detection

scheme using multi-frame blurred images is incorporated

into the regularization constraint. Second, we deal with

image regions affected by the saturated pixels separately by

modeling a weighted matrix during each multi-frame

deconvolution iteration process. Both synthetic and real-

world examples show that more accurate PSFs can be

estimated and restored images have richer details and less

negative effects compared to state of art methods.

Keywords Multi-frame blind deconvolution �
Regularization � Saturated image � Light streak

1 Introduction

Image blur can significantly degrade an image’s quality

and it is often caused due to optical defocusing, atmosphere

disturbance, camera shake during exposure, etc. The

common blurring process can be formulated using a linear

convolution model convolving a latent image with a point

spread function (PSF) plus noise:

g ¼ Hf þ n; ð1Þ

where g; f; n denote the column-wise vector forms of the

blurred image, latent image, and image noise, respectively,

H stands for the convolution matrix of the PSF h. The goal

of image deblurring is to seek the optimal solution of the

unknown latent image f from g given the estimated kernel

matrix H.

Existing restoration approaches can be classified into

two categories: non-blind image deconvolution [1–4] and

blind image deconvolution [5–8] in terms of whether the

PSF is known. Both of the two problems are ill-posed [9],

and in the case of blind image deconvolution, the condition

is even worse. Researchers have designed numerous

approaches to deal with the ill-posed problem. In recent

years, various regularization methods have obtained good

deblurring results. In Tikhonov regularization [9], simple

quadratic regularization term kjjfjj2 is proposed. Since the

restored image tends to be smooth, people design a more

effective regularization method called total variation (TV)

method [10] which behaves better at protecting sharp

image edges. It is a nonlinear problem, and many algo-

rithms [11, 12] aim at solving it in an efficient and robust

way to obtain satisfactory results. Recently, some new

excellent methods [13–16] emerge and they can eliminate

the image blur to a large extent when blurry images have

salient structures. Except for restoration with single blurred

image, multi-frame blurred images with different PSFs can

be obtained in many situations and with proper regular-

ization and optimization [17–19], better deblurring results

can be expected since multiple images contain more

information of the target to be restored.
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In poor lighting scenes such as low-light night or high

dynamic range scenes, there will be saturated or over-ex-

posed regions due to limited exposure quantization range.

These clipped pixels are not in accordance with the linear

convolution formulation during the blurring process.

Directly using the MAP deblurring algorithms to the

blurred image will sometimes give poor restoration results.

Some non-blind deblurring methods are proposed consid-

ering the problem. Whyte [20] proposes a forward model to

treat the saturated pixels under the Richardson-Lucy

framework. Cho [21] detects the outlier pixels and handles

them in the MAP framework and gets satisfactory results.

In blind deconvolution, simply discarding saturated pixels

during kernel estimation sometimes will not work; so,

some researchers use light streaks to help deduce PSFs

[22–24]. Relying on one blurred image to detect light

streak has limitations such as the need for interactive

manual selection.

We propose a new strategy to restore the partially sat-

urated image using multi-frame blurred images. First, in

the kernel estimation step, a regularization term is added to

make use of detected light steaks to help estimate PSF. We

also combine multi-frame deconvolution framework with

related saturated regions constrained separately during the

deconvolution iteration process. By comparing our method

with existing methods, less ringing artifacts and better

deconvolution results are attained. This paper is organized

as follows: in Sect. 2, we describe the ringing artifacts due

to saturated pixels during image restoration and describe

the basic multi-frame blind deconvolution framework of

our algorithm. In Sect. 3, the light streak detection

scheme is presented and we deal with the solution of our

alternating minimization optimization approach consider-

ing the regions affected by saturated pixels. We present out

experimental results of our method on synthetic and real

captured images in Sect. 4. Section 5 contains our

conclusions.

2 Problem formulation

As it is stated above, camera sensors have limited dynamic

range and image pixels that are beyond the maximum

intensities will be clipped. Due to the violation of linear

convolution formulation in the saturated regions, there will

be ringing artifacts around them in the deblurred image. To

illustrate this problem, we synthetically blur a clear image

using known PSFs with high intensity values clipped. One

of the blurred frames is shown in Fig. 1a, and the magni-

fied patch of the red box is shown in Fig. 1b. The severe

ringing artifacts can be seen in Fig. 1c applying single

image deconvolution technique. If we perform multi-frame

image deconvolution, the deblurred image is better in terms

of the restored image details and the alleviated ringing

artifacts. However, if we deblur with our modeling satu-

rated pixels technique using multi-frame images, we can

get a very satisfactory result shown in Fig. 1e and the light

source restored is very similar to its original shape without

image ringing around.

Before our multi-frame blind deconvolution optimiza-

tion approach modeling saturated image pixels is intro-

duced, we first formulate the framework of this

optimization problem. With the development of camera

devices, continuous capturing to get multi-frame images is

increasingly common. Suppose that we have obtained m

blurred frames of the same scene f which are denoted by

giði ¼ 1; 2; . . .;mÞ. If the corresponding PSF convolution

matrices are Hiði ¼ 1; 2; . . .;mÞ, considering the limited

dynamic range of camera sensors, we have the following

equations:

gi ¼ cðHifÞ þ ni ði ¼ 1; 2; . . .;mÞ; ð2Þ

where ni denotes the additive noise of blurred frame gi. cðtÞ
is a clipping function and if t is within the dynamic range,

cðtÞ ¼ t. Otherwise, the maximum or minimum intensity is

given. The scenario is common in night images, high

dynamic range images, images with artificial lights, etc.

Under Bayesian probabilistic framework, multi-frame

blind deconvolution is formulated by the following MAP

estimation problem:

ðf;h1;h2; . . .;hmÞ ¼ argmaxðf;h1;h2;...;hmÞ
Ym

i¼1

Pðgijf;hiÞ�PðfÞ�PðhiÞ:

ð3Þ

If we logarithm the above expression and take the

opposite, Eq. (3) is converted into the following,

ðf; h1; h2; . . .; hmÞ ¼ argminðf;h1;h2;...;hmÞ

� �
Xm

i¼1

lnPðgijf; hiÞ � m lnPðfÞ �
Xm

i¼1

lnPðhiÞ
" #

:

ð4Þ

Normally, based on the assumption that image noise

follows Gaussian distribution, the conditional likelihood

Pðgijf; hiÞ ði ¼ 1; 2; . . .;mÞ is also Gaussian if an image

has no clipped saturated pixels. Thus, the logarithm con-

ditional likelihood is jjHif � gijj
2
2 where jj � jj2 is indicated

as the l2-norm. However, in the partially saturated images,

saturated pixels obviously do not conform to this distri-

bution. As for those pixels which are not saturated in the

blurred image, some of them can also affect the restoration

effect since a saturated pixel diffusing to the adjacent area

in the blurring process has the probability of becoming

unsaturated. To solve this problem, we define a corre-

sponding weighted matrix Si which is of great importance
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in deblurring and will be discussed in the next section. The

sum of the conditional likelihood is written as Eq. (5),

�
Xm

i¼1

lnPðgijf; hiÞ /
Xm

i¼1

jjS1=2i � ðHif � giÞjj
2
2; ð5Þ

where � is the element-wise multiply operator. The

expression shows that smaller pixel values of Si make

smaller contributions in the restoration process. If all the

elements of Si are 1, it becomes the normal deconvolution

problem.

We assume that the gradients of a natural image follow a

sparse probabilistic distribution, and in this paper, hyper-

Laplacian prior is used to model lnPðfÞ. Since most ele-

ments of the PSF are zero, it also obeys a sparse distribu-

tion. In the kernel estimation step, we assume that the prior

for each hi follows the l1 norm sparse distribution and adds

a light streak regularization term as a constraint for the

PSFs. The specific expressions will be discussed in the

following section.

3 Optimization approach

Our optimization approach basically adopts the multi-

frame image restoration framework of Eq. (4) given the

blur model as Eq. (2). In this section, we first present the

light streak detection scheme used in the kernel estimation

constraint term and then deal with the solution of our

alternating minimization optimization approach consider-

ing the saturation affected pixels. Finally, some necessary

implementation details for the proposed method are shown.

3.1 Light streak detection

If we observe partially saturated blurred images, some light

streaks can be taken as a cue for PSF estimation since they

contain rich blur information. Different from other related

approaches, our detection scheme focuses on utilizing all

the blurred images. Given the properties of light streaks,

they can approximately be seen as an estimation of PSF

convolved with the unblurred light source. If we can find

the overlapping parts of the light streaks in the multi-

blurred images, the light source size and corresponding

light streak patches are determined.

We first perform the PSO image registration method

[25] to estimate the global shifts and possible slight rota-

tions between the images. Then image binarization is

performed for each blurred image with a threshold to get

binary images which can extract relatively bright regions.

One can easily observe that there are still textured regions

left which should be removed. The connected regions in

the binary image are labeled and we calculate the area of

each labeled region which is indicated as the number of

pixels, and choose two boundary area values to remove the

unlikely too-big or too-small region. After all images have

done this operation, the intersections of the above binary

images are calculated, and the unblurred light source size

and location are obtained. The number of intersected

regions that meet the requirements is often more than one.

We use two rules to pick the relatively appropriate

unblurred light source. One is to calculate the corre-

sponding light intensities in the blurred frames and we

choose the brighter ones; the other rule is that the best

chosen unblurred light diameter is 4–6. If the light source

diameter is very small, it indicates that the light streaks we

find may be noise or wrong corresponding regions. How-

ever, large-diameter light streaks will lose PSF details to

some extent which is not good for image restoration.

After the unblurred light source diameter is determined,

we can confirm the corresponding light streak patch of each

frame. The light streak patch size is an input parameter

which is an estimation of the actual kernel size, and the

light streak patch location is determined given the light

source location and light streak patch size. We filter out the

background of candidate light streak patch based on the

intensity value, and the clean light streak patch pi ði ¼

Fig. 1 Illustrations of the deconvolution artifacts around the satu-

rated regions. a one of the blurred image, b magnified part of the red

box in a, c restoration result using only a without considering

saturated pixels, d restoration result using multi-frame images without

considering saturated pixels, e restoration result using multi-frame

images modeling saturated pixels
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1; 2; . . .;mÞ can be acquired. They serve as a useful guid-

ance for estimating PSFs while optimizing.

3.2 The optimization approach

Our proposed multi-frame blind deconvolution considering

specific handlings to the saturated pixels aims to solve the

following problem,

argminðf;h1;h2;...;hmÞ
1

2

Xm

i¼1

jjS1=2i � ðHif � giÞjj22

þ k
Xn

j¼1

jjWjfjjpp þ
n
2

Xm

i¼1

jjhijj1 þ
l
2

Xm

i¼1

jjRhi � pijj
2
2;

ð6Þ

where Si is the weighted matrix already mentioned in

Sect. 2, Wj is the convolution matrix of a derivative filter

such as [-1, 1], n denotes the total number of filters. The

definition of jj � jjpp is indicated as the lp-norm. The l1-norm-

based optimization term ensures that the estimated PSFs

will have a sparse energy distribution. R is the convolution

matrix of the unblurred light source whose size is estimated

in Sect. 3.1, pi denotes the light streak patch detected in the

i-th blurred image. Besides,k, n and l are the regularization

coefficients.

The overall solution can be reached by iteratively

implementing the following intermediate image deconvo-

lution step 1 and intermediate PSF estimation step 2 until

convergence to acquire the final estimated PSFs and then

step 3 performs final image deconvolution using the final

estimated PSFs.

Step 1 Fix the PSFs hi ði ¼ 1; 2; . . .;mÞ and Si estimated

from the t-th iteration and estimate f for the iteration t ? 1,

i.e.,

f tþ1 ¼ argmin
f

1

2

Xm

i¼1

jjðStiÞ
1=2 � ðHt

if � giÞjj22

þ k
Xn

j¼1

jjWjfjjpp: ð7Þ

Step 2 Fix current latent image f tþ1 and estimate the

PSFs htþ1
i ði ¼ 1; 2; . . .;mÞ, i.e.,

htþ1
i ¼ argmin

hi

1

2
jjHif

tþ1 � gijj22 þ
n
2
jjhijj1 þ

l
2
jjRhi

� pijj
2
2: ð8Þ

Step 3 After ~T times alternating iterations of steps 1 and

2, we perform non-blind deconvolution using the final

estimated PSFs h
~T
i . We also solve Eq. (7) to do the final

restoration, but use a different regularization coefficient k.
The overall restoration procedure is shown in Fig. 2.

The problem in step 1 includes determining the weight

matrix Si of each frame. This weight matrix is crucial for

constraining the saturated deblurring artifacts. We first

classify the image pixels into two categories similar as in

[21]: inliers whose formation satisfies linear blur model; and

outliers which are clipped saturated pixels. Note that if an

image is blurred, the pixels that are originally clippedmay be

an inlier in the blurred image. Simply discarding saturated

pixels by defining a threshold value when deblurring is not

suitable. A binary map b is introduced such that bx ¼ 1 if the

blurred pixel gx is an inlier, bx ¼ 0 otherwise where x is the

pixel index. Binary map can also be seen as a random vari-

able since its true value is not known.We use the EMmethod

to deal with the expectation of random variable b and com-

pute the corresponding S:

According to the theory stated above, if a pixel is an

inlier, the conditional likelihood follows Gaussian distri-

bution. Otherwise, we define the likelihood as a Gaussian

distribution as well but with a different mean and deviation

value. The distribution Pðgixjbi; hi; fÞ is as follows:

Pðgixjbi; hi; fÞ ¼
NðgixjðHifÞx; rÞ if bix ¼ 1

Nð ðHifÞxjo;r0Þ if bix ¼ 0

(
; ð9Þ

where N is the Gaussian distribution, r; r0 are standard

deviations. o is the Gaussian mean constant which is

assigned a high value. This distribution indicates that if the

pixel is an outlier, it follows a Gaussian distribution whose

shape is narrower than the inliner’s distribution with a

relatively high intensity. This distribution can better model

the saturated pixels and generate better deblurring result.

The product of every pixel’s likelihood of Eq. (9) is like-

lihood Pðgijbi; hi; fÞ. After derivations using the EM

method, the intermediate weighted matrix �Si is propor-

tional to the expectation of bi under gi; hi; f. So we have

�S
t

i ¼
NðgijHif;rÞPin

NðgijHif;rÞPinþNðHifjo;r0Þð1�PinÞ
if ðHifÞx 2 ½0;1�

0 otherwise

8
<

: ;

ð10Þ

where Pin is the constant probability assumed when the

non-clipped observed pixels are inliers. When ðHifÞx is out
of the image dynamic range, it cannot be an inlier, thus the

weight is zero. We find that the regions which are outliers

in one blurred frame and inliers in another can also affect

the restoration effect in the original saturated pixels. Better

results can be obtained by further suppressing the weights

of these related regions. Then, each �S
t

i is performed the

segmentation using a threshold (normally above 0.6 will

do) to acquire the binary mask Mt
i, and we take the inter-

sections of all the Mt
iði¼ 1; . . .;mÞ, which is X¼

Tm
i¼1M

t
i,

and then define

Stix ¼
�S
t

ix x 2 X
�S
t

ix=2 otherwise

�
: ð11Þ
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Note that X holds the same for all blurred frames. The

pixels which are not in X indicate that at the same positions

of the blurred images, there must be at least one image in

which the area is saturated.

Once the t-th iteration Sti is determined, Eq. (7) can be

minimized using the iteratively reweighted least squares

(IRLS) algorithm [18]. The idea is to turn the lp regular-

ization term into the weighted l2-norm term and convert

into the following equation (for simplicity, we have omit-

ted the subscripts t)

Xm

i¼1

HT
i ðSi �HifÞ þ k

Xn

j¼1

WT
j ðjj �WjfÞ ¼

Xm

i¼1

HT
i ðSi � giÞ;

ð12Þ

where jj is the weighted matrix of Wjf during each itera-

tion of IRLS. Then conjugate gradient (CG) method can be

used to obtain f.

In step 2, a new regularization term jjRhi � pijj22 which

measures the similarity of light streak and PSF convolved

with a disk shape unblurred light source is added to help

restrict the estimated PSF to the relatively right kernel

shape. To solve the problem in this step, we also adopt the

iteratively reweighted least squares (IRLS) method.

Equation (8) is equal to the following equation:

htþ1
i ¼ argmin

hi

1

2
jjHif

tþ1 � gijj22 þ
n
2
hTi K

�1
i hi þ

l
2
jjRhi

� pijj
2
2;

ð13Þ

where Ki is a diagonal matrix. The elements on the diag-

onal are the absolute value of hi, that is Ki ¼ diagðjhtijÞ.
K�1

i is the inverse matrix of Ki. Note that the Ki in each

iteration is constructed with the former iteration hti; so, it is

a known matrix in the t ? 1 iteration. The derivative of

Eq. (13) is the following:

ðFTFþ nðKtþ1
i Þ�1 þ lRTRÞ hi ¼ FTgi þ lRTpi; ð14Þ

where F is the convolution matrix of f. This can be solved

by conjugate gradient (CG) method. Also, saturated regions

in the blurred images should be discarded to avoid their

potential influence to the optimization. The final estimated

hi should be normalized after each iteration to ensure

energy persevered.

3.3 The implementation details

To use the proposed method, we should first decide the

estimated sizes of the PSFs and initialize them with the

detected light streaks. l can be assigned 0.1–1 according

to the confidence of the light streak. If the blurred sat-

urated images do not have appropriate light streak pat-

ches, the regularization parameter l should be set 0 with

a lower possibility of obtaining accurate PSFs. The

latent image can be initialized with any one of the

blurred frames. The kernel estimation step 1 and step 2

usually takes 5–10 alternating iterations to converge.k is

usually set 0.005–0.01 and n is assigned 0.1–0.5. The

constant probability Pin and Gaussian mean o normally

set 0.9 can get a good result. r is set according to the

image noise level, and r0 ¼ 0:08 is appropriate for most

cases. In step 3, k is usually set at a smaller value

0.001–0.005.

4 Experimental results and evaluation

In this section, we first use our proposed method in syn-

thetic blurred images which are partially saturated. We

evaluate the performance of our deblurring scheme in

comparison to other methods and use peak signal-to-noise

ratio (PSNR) and structural similarity index (SSIM) [26] to

evaluate the results. Also, restoration results of real-world

blurred saturated images are presented. Our testing envi-

ronment is a PC running Windows 7 with Intel Core i7

CPU and 8 GB RAM.

Multi-blurred image input

Step 1:Deblurring 
using equation (7)

Step2: Estimating 
PSFs using equation 

(8)

Detected 
light streaks

Alternating 
optimization

Kernel estimation result 
and final deblurring result

Step 3

Fig. 2 Schematic diagram of the whole algorithm
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4.1 Performance of the proposed method

on synthetic images

An 800 9 800 clear image shown in Fig. 3 is synthetically

blurred and high intensity pixels are clipped with three

given PSFs to generate the blurred frames. As the test

image is large, we only show part of the image to see it

more clearly. The PSFs and parts of the three blurred

frames are shown in Fig. 4. The latent image is initialized

with the blurred image shown in Fig. 4a and the PSFs are

initially estimated with the detected light streaks shown in

Fig. 5a.

Figure 5d shows the restored image using our algorithm

after 6 iterations of kernel estimation. Using the estimated

kernels, the final PSNR value of the restored image is

24.38 dB. The estimated PSFs are shown in Fig. 5a.

Compared with the given true PSFs, the estimated PSFs are

basically accurate. The restored image is of high quality

and has no artifacts around the saturated regions. We also

compare deblurring results using less blurred images. From

the PSNR performances of the proposed method using one,

two and three blurred frames after each iteration in Fig. 6,

we can clearly observe the better performance of multi-

frame images. Especially, when only one blurred frame is

provided, it turns out to be a single blind deconvolution

problem. Here, we use the first blurred frame and the

corresponding light streak, but the deconvolution result

loses lots of details and is not satisfactory. Besides, the

PSNR performance of restoring blurred images without

Fig. 3 The ground truth image

Fig. 4 Parts of the three

synthetically blurred frames and

PSFs (upper left)

Fig. 5 a The top three are the light streaks we detected, the bottom three are the PSFs estimated, b–d the restored image using Refs. [19, 22] and

ours respectively

912 Opt Rev (2016) 23:907–916
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saturated regions considered is also compared. The rela-

tively low PSNR value is mainly due to the ringing artifacts

around the saturated pixels.

We also remove the light streak regularization constraint

and try to restore the blurred frames. We find it hard to

estimate the PSFs accurately after various attempts and the

PSNR value decreases with the increase of iterations. This

proves the effectiveness of adding the light streak con-

straint in the kernel estimation step.

4.2 Comparisons with other deconvolution methods

We adopt four deconvolution methods to verify the reli-

ability of our method. They are the methods proposed in

Refs. [13, 16] which are widely used in single image

blind deconvolution, the saturation suppression based

method presented in Ref. [22] and the recent multi-frame

deconvolution method proposed in Ref. [19]. The PSNRs

and SSIMs are listed in Table 1. Our algorithm achieves a

much higher PSNR and SSIM than the others. The pre-

vious two methods cannot estimate PSF accurately, so

their bad deconvolution results are predictable. The esti-

mated PSF using Ref. [22] is acceptable, and the

restoration result is shown in Fig. 5b. Figure 5c is the

restoration image using the multi-frame method in Ref.

[19] which can estimate the PSFs roughly but has artifacts

around saturated pixels. However, our proposed method

has better restoration effects in terms of image details and

saturated regions.

4.3 Experiments on real partially saturated blurred

images

We capture the real partially saturated blurred images by a

Canon 70D digital camera and the continuous shooting

mode is used to make each frame the proper same exposure

time. As we can see, estimated PSFs and restored images of

these experiments are of high quality.

In Fig. 7, the 800 9 800 blurred frames of a coffee shop

are shown and the restored images of different methods are

in Fig. 7d–f. The detected light streak patches and estimated

PSFs are shown in Fig. 2. To show the results more clearly,

we select two areas which are marked green and yellow

squares in Fig. 7f. The green area represents one of the

14.00

16.00

18.00

20.00

22.00

24.00

26.00

1 2 3 4 5 6

PS
N

R
(d

B
) 

Iterations 

Three frame
Three frame without weighted matrix
Two frame
One frame

Fig. 6 PSNR performances of the proposed method using one, two

and three blurred frames

Table 1 Results of image assessment

Algorithms Method

in Ref.

[13]

Method

in Ref.

[16]

Method

in Ref.

[22]

Method

in Ref.

[19]

Our

method

PSNR (dB) 19.07 19.78 23.39 19.92 24.38

SSIM 0.5495 0.5711 0.7152 0.6346 0.8067

Fig. 7 a–c Three blurred frames of a coffee shop, d–f the restored

image using Refs. [19, 22] and our proposed method respectively

(best viewed on high resolution display with zoom-in)
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saturated regions and the yellow area is one of the regular

regions and our method gives the most satisfactory result in

both of the two areas. We can see from the result that the

method in Ref. [16] has difficulty estimating PSF; so, the

restored image is still blurry. The method in Ref. [13] can

estimate the PSF after carefully choosing parameters, but the

result has obvious ringing effects around saturated regions in

Fig. 8b.We use Fig. 7c to perform the restoration using Ref.

[22], and the result is acceptable but loses many details as

shown in Fig. 8h. Also, this method is not robust as it cannot

recover a reasonable PSF using the other two blurred images.

Figure 7e and the corresponding patches Fig. 8d, i are

results from Ref. [19] using multiple blurred images. Due to

the inaccurate estimation of PSFs and untreated saturated

pixels, the deconvolution result has obvious ringing artifacts.

We also test our method in another scenario which

has a low-light environment shown in Fig. 9. Even if we

set the camera’s ISO 2000, the captured images tend to

be blurry. The high ISO value indicates a higher noise

level. However, the restored image Fig. 9d is of high

quality as well. This indicates the robustness of our

method.

Fig. 8 a–e Restored image in the green square using Refs. [13, 16, 19, 22] and ours respectively, f–j restored image in the yellow square using

Refs. [13, 16, 19, 22] and ours respectively (color figure online)

Fig. 9 a–c Three blurred

frames of a clock tower with

high ISO, d the restored image

of the proposed method

914 Opt Rev (2016) 23:907–916
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There are timeswhen no appropriate light streaks are found

in the blurred images. If the blur degree of the images is not

large and the saturated regions are relatively small, our

method can still get a satisfactory estimation of PSFswhen the

light streak regularization coefficient is set 0. Figure 10 shows

an example of this scenario and a good restoration result is

obtained shown in Fig. 10dwithout the light streak constraint.

Despite the effective blind deconvolution results, our

method suffers some limitations. Compared to other single

image deconvolution methods, the computing speed of our

algorithm is about 10 s during one iteration given an

800 9 800 image. We are working on GPU accelerated

technique to combine with our method. Besides, when the

shooting scenario has too many saturated regions and light

streaks cannot be found, our approach can generate

unsatisfactory results since PSFs cannot be estimated

accurately.

5 Conclusion

In this paper, we propose an approach for restoring the

multi-frame blurred images which suffer from partially

saturation. In the kernel estimation step, a regularization

term based on light steaks is introduced to help estimate

PSF. We also combine multi-frame deconvolution frame-

work with related saturated image regions constrained

separately during the deconvolution iteration process.

Visual experience and image assessment methods PSNR

and SSIM show that the proposed method is robust in

kernel estimation and it is effective in dealing with satu-

rated deconvolution problem.
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