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Abstract In the visual tracking problem, fusion of visible

and infrared sensors provides complementarily useful fea-

tures and can consistently help distinguish the target from

the background efficiently. Recently, multi-view learning

has received growing attention due to its enormous

potential in combining diverse view features containing

consistent and complementary characteristics. Therefore,

in this paper, a visible and infrared fusion tracking algo-

rithm based on multi-view multi-kernel fusion (MVMKF)

model is presented. The proposed MVMKF model con-

siders the diversities of visible and infrared views and

embeds complementary information from them. Further-

more, the multi-kernel framework is used to learn the

importance of view features so that an integrated appear-

ance representation is made with regard to the respective

performance. Besides, the tracking task is completed with

naive Bayes classifier in sophisticated compressive feature

domain, considering the high performances of classifier-

level and sophisticated feature-level learning for multiple

views. The experimental results demonstrate that the

MVMKF tracking algorithm performs well in terms of

accuracy and robustness.

Keywords Visual tracking � Visible and infrared fusion

tracking � Multi-sensor fusion � Multi-view learning

1 Introduction

Multi-view learning has attracted much attention recently

in the fields of image classification, word embedding, and

food recognition [7, 15, 16]. Multiple views may be dif-

ferent viewpoints or descriptions from different features. In

conventional machine learning algorithms, features in dif-

ferent views are concatenated into one single view, which

is not physically meaningful because of the specific sta-

tistical property of each view. Instead, multi-view learning

considers the diversity of multiple views and introduces an

integrated model to learn them jointly [30]. Existing

algorithms on multi-view learning can be grouped into two

major categories: feature space-level and classifier-level

learning [15]. A direct way to solve multi-view learning is

to combine information from multiple views in the feature

level. Meltzer et al. [17] proposed a method to learn feature

descriptors using multi-view images. Each feature in the

appearance model is learned by kernel principal component

analysis that is supposed to yield a high-computational

efficiency and a compact representation of the algorithms.

Multi-view embedding was solved by [10] using a semi-

supervised learning framework, with which feature

embedding can be learned from unlabeled data via pre-

dicting one view from another. In [6], a multi-view spectral

clustering algorithm was reported in which kernel matrix

learning and spectral clustering optimization are integrated

into one framework. White et al. [27] presented a convex

formulation for learning a shared feature subspace of

multiple views. In this formulation, an implicit convex

regularizer is exploited and the corresponding reconstruc-

tion model is recovered jointly and optimally. Classifier-

level learning is another strategy for multiple views. Co-

training [3] is one of the earliest classifier learning algo-

rithms to solve multi-view learning. Sindhwani et al. [22]
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proposed a co-regularization model in which the view

classifiers are learned through multi-view regularization.

Wang et al. [26] presented a recursive nonparametric dis-

criminant analysis method to construct probabilistic clas-

sifiers for multi-view face detection by learning

histograms. Timofte et al. [24] proposed a pipeline for

traffic sign detection, recognition, and 3D localization. The

accomplished 2D detections in multiple views through the

Adaboost are combined to generate 3D techniques for

improving results. DietCam [7] was presented as a com-

bination approach for ingredient detection and food clas-

sification. From the detected ingredients, food categories

are classified using a multi-view kernel support vector

machine. It has been proved [13, 23] that classifier-level

learning outperforms simple feature-level learning, while

sophisticated feature-level learning can usually be better

than that of classifier-level [12].

Visual tracking is an important topic in applications of

computer vision, such as intelligent video surveillance,

human-machine interfaces, medical diagnosis, and public

transportation systems [14, 21]. Some papers worked on

visual tracking using multi-view data. For example, Wang

and Ji [25] proposed a graphical model to track multi-view

faces in a cluttering environment. The factorial and

switching hidden Markov models are combined in this

method. An online detection-based two-stage model [29]

was presented for multi-view multi-object tracking. The

two-stage online tracking framework seeks both the local

optimum for each object and the global optimum for all the

tracked objects. Mittal and Davis [19] presented a multi-

view approach for segmenting, detecting, and tracking

multiple people in a cluttered scene. This model includes a

region-based stereo algorithm capable of finding 3D points

and a segmentation algorithm using the Bayes classifica-

tion. In [8], tracking is casted as a multi-task multi-view

sparse learning problem, and the cues from multiple views

are exploited to be integrated in a particle framework.

However, the above trackers fail when the target undergoes

severe appearance changes due to limited data supplied by

single-sensor feature [35].

Multi-sensor cooperation has higher precision, certainty,

and reliability compared with single sensor. Fusion of visi-

ble and infrared sensors, one of the typical multi-sensor

cooperation, provides complementarily useful features and

consistently helps recognize the target from the background

efficiently in visual tracking. For instance, an infrared

camera can dramatically improve the success rate of dis-

tinguishing hot people from comparatively colder back-

ground. However, while walking past a group of other

humans, a human target may be lost because they all show up

as similarly shapes in infrared images. With a visible cam-

era, differences in the colors and texture of different peoples’

clothing can make it possible to track the target [18]. By

fusing information from both visible and infrared images,

they can benefit from one another to achieve more accurate

and robust tracking. Besides, features of different views in

multi-view learning algorithms obey two major principles

that ensure their success: consensus and complementary

principles [30]. As the fusion of visible and infrared sensors

obeys the major principles of multi-view learning, it is

feasible to cast it as a multi-view learning problem. Never-

theless, reports are still few on this topic. Therefore, in this

paper, a visible and infrared fusion tracking algorithm is

proposed based on multi-view multi-kernel fusion model.

The main contributions of our work are:

– The consistent and complementary characteristics of

visible and infrared fusion are explored, and then multi-

view learning is applied to solve the problem of multi-

sensor fusion tracking.

– The proposed multi-view multi-kernel fusion

(MVMKF) model embeds complementary information

from different views, and uses the multi-kernel frame-

work to learn the importance of view features so as to

make an integrated appearance representation with

regard to respective performance.

– Our tracking task is completed with naive Bayes

classifier in sophisticated compressive feature domain

due to the outperformances of classifier-level and

sophisticated feature-level learning of multiple views.

The rest of this paper is organized as follows. In Sect. 2, we

describe the proposed MVMKF tracking algorithm in

detail. The experimental results are presented in Sect. 3.

Section 4 concludes with a general discussion.

2 Problem formulation

In the following, the proposed MVMKF tracking algorithm

is described in detail.

2.1 Compressive features

The compressive feature vectors are constructed in this

section. Each test sample is convolved with a set of Haar-

like feature filters at multiple scales [2]. These filtered

samples are represented as a very high-dimensional multi-

scale image feature vector x 2 Rn [32]. Then, x can be

embedded into an extremely compressive feature vector

u 2 Rm by a random projection R 2 Rm�n. This linear

transformation is expressed as [34]

u ¼ Rx; ð1Þ

where m� n. R has to satisfy the Johnson-Lindenstrauss

lemma [1] to restructure x from u with minimum error.

Thus, R is defined as [32]
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rij ¼
ffiffi
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p
�

1 with prob. 1/2s
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8

<

:

ð2Þ

Symbol s is set to be m / 4 which satisfies the Johnson-

Lindenstrauss lemma and makes a very sparse random

matrix, and prob. stands for probability. Therefore, this

matrix is data-independent of any training samples and is

very easy to compute, thereby resulting in a very efficient

method. Based on the linear transformation, each element

in the compressive feature vector u in Eq. (1) is a linear

combination of spatially distributed rectangle features at

different scales [32]. The compressive sensing theory

makes the original image be described by the extracted

features.

2.2 Multi-view multi-kernel fusion model

Visual tracking from a single view would be inaccurate due

to lack of information diversity. To deal with this problem,

we develop a multi-view multi-kernel framework for

fusion tracking task, by considering target appearances

from multiple sensors.

All elements ui (where i ¼ 1; . . .;m) in compressive

feature vector u ¼ ðu1; . . .; umÞ are assumed independently

distributed [32], and the probability density functions

(PDFs) of being a target or background are defined as f1ðuiÞ
and f0ðuiÞ, respectively. Symbols 1 and 0 denote the labels

of target (corresponding to positive sample) and back-

ground (corresponding to negative samples), respectively.

Kernel density estimation (KDE) [20] is a non-parametric

way to estimate PDFs. In this paper, MVMKF model

extends KDE to multiple views for multi-feature integra-

tion. Therefore, the PDFs of ui are estimated as

f1ðuiÞ ¼
X

v

wi;vkvðui; l1i ; r1i Þ;

f0ðuiÞ ¼
X

v

wi;vkvðui; l0i ; r0i Þ;
ð3Þ

where v ¼ fvis; irg denotes the labels of the visible and

infrared views. An appropriate kernel function can either

be estimated from data or selected as a priori [17]. In this

paper, the view kernel functions are assumed to be Gaus-

sian distributed based on empirical study:

kvðui; l1i ; r1i Þ ¼
1
ffiffiffiffiffiffiffiffiffiffiffiffi

2pr1i;v
q exp �

kui;v � l1i;vk
2

2ðr1i;vÞ
2

 !

;

kvðui; l0i ; r0i Þ ¼
1
ffiffiffiffiffiffiffiffiffiffiffiffi

2pr0i;v
q exp �

kui;v � l0i;vk
2

2ðr0i;vÞ
2

 !

;

ð4Þ

where ðl1i;v; r1i;v;l0i;v; r0i;vÞ are mean and variance

parameters.

To cater for flexible circumstances if multiple views

compete intensely with each other, the adaptive view

weights in Eq. (3) are defined as

wi;v ¼ expð�kwq2i;vÞ; ð5Þ

where kw is a controlling parameter that controls the

importance of each view. qi;v ¼ 1
Ni;v
kui;v � ui;vðTÞk mea-

sures the Euclidean distance [5] between ui;v and the

template ui;vðTÞ, where Ni;v denotes the normalizing vector.

Considering short-time tracking without great appearance

changes, the feature template is set as the feature in the

previous frame.

2.3 Classifier construction and updating

The tracking problem is completed with the naive Bayes

classifier [11] as

HðuÞ¼ log

Qm
i¼1 p ui y ¼ 1jð Þp y ¼ 1ð Þ

Qm
i¼1 p ui y ¼ 0jð Þp y ¼ 0ð Þ

� �

¼
X

m

i¼1
log

p ui y ¼ 1jð Þ
p ui y ¼ 0jð Þ

� �

;

ð6Þ

where pðuijy ¼ 1Þ ¼ f1ðuiÞ and pðuijy ¼ 0Þ ¼ f0ðuiÞ. The
positive and negative probabilities are assumed to be p y ¼ð
1Þ ¼ p y ¼ 0ð Þ [34]. The parameters l1i;v; r

1
i;v; l

0
i;v;

�

r0i;vÞ are
incrementally updated as l1i;v  kl1i;v þ 1� kð Þl1v and

r1i;v  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k r1i;v
� �2

þ 1� kð Þ r1v
� �2 þ k 1� kð Þ l1i;v � l1v

� �2
r

,

where k[ 0 is a learning parameter, and l1v and r1v are the
mean and covariance parameters computed from the his-

torical frames [32]. Then, we get the tracking result by

finding the test sample with the maximal classification score

HðuÞ.
The proposed MVMKF tracking scheme is summarized

in Algorithm 1. In MVMKF, it is assumed that visible and

infrared sequences have been registered in time and space

spans beforehand. The tracking window in the first frame is

located manually or by other detection methods. First, we

take some test samples at each frame. Let ltðxÞ 2 R2 denote

the location of sample x at the tth frame, and x� represents
the sample of the tracking result. At the tth frame in visible

image, we select some patches Xc ¼ x ltðxÞ�kjf
lt�1ðx�Þk\c:g surrounding the target location lt�1ðx�Þ in
the ðt � 1Þth frame and set them as the test samples. To

extract multi-view features for each sample, we crop pat-

ches in infrared image with the same locations. Secondly,

we use these test samples to construct the compressive

feature vector u. At the next step, for each element ui in

u ¼ ðu1; . . .; umÞ, we compute multi-view kernel functions

kvðui; l1i ; r1i Þ and kvðui; l0i ; r0i Þ and the view weights wi;v so

as to obtain the multi-view multi-kernel fusion PDFs f0ðuiÞ
and f0ðuiÞ. Then, the naive Bayes classifier is applied to find
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the tracking location ltðx�Þ with the maximal classifier

response. After that, we extract a set of positive and nega-

tive training samples by randomly cropping patches Xa
v ¼

x ltðxÞ � ltðx�Þk k\ajf g and X1;b
v ¼ x 1\ ltðxÞ�kjf ltðx�Þk

\b:g surrounding ltðx�Þ, respectively, where a\1\b. At
last, we use these training samples to update the classifier.

3 Experiments

In this section, the MVMKF tracking algorithm is tested on

several challenging real-world sequences, and some qual-

itative and quantitative analyses are performed on the

tracking results.

3.1 Experimental setup and evaluation criteria

The sample parameters are set as a ¼ 4, b ¼ 30, 1 ¼ 8, and

c ¼ 20, which generate 45 positive samples, 50 negative

samples, and 1100 test samples [32]. The controlling and

learning parameters are set as kw ¼ 1:8 and k ¼ 0:85,

respectively. We set the initial values of the view weights

as wi;v ¼ 0:5; v ¼ fvis; irg, meaning that the importance of

each view is equal in the tracking beginning, which pro-

vides them enough competitive space. The dimension of

compressive feature vector is set as m ¼ 50 and other

parameters are set according to [32].

The performance of the MVMKF tracking algorithm

is compared with state-of-the-art CT (compressive

tracking) [32], MIL (multiple instance learning) [2],

ODFS (online discriminative feature selection) [33],

STC (spatio-temporal context) [31], FRDIF (fuzzified

region dynamic image fusion) [28], and MVSK (multi-

view single-kernel) tracking algorithms. MVSK is

designed to observe the contribution of the multi-kernel

model to the proposed MVMKF algorithm. In MVSK,

the visible and infrared image features are vectorized

into a single compressive feature and used to obtain the

PDF by single kernel. Figures 1, 2, 3, 4, 5, 6, 7, 8 and

Tables 2, 3 present the experimental results in six

challenging sequences named Labman, Cross, Shadow,

Occlusion 1, Occlusion 2, and Ourlab. The first

sequence is downloaded from the AIC dataset [4].

Sequences Cross, Shadow, Occlusion 1, and Occlusion

2 come from the OTCBVS dataset which is available at

http://vcipl-okstate.org/pbvs/bench/. The last sequence

is recorded in our lab. The details of the test sequences

(including the visible and infrared cameras, the

arrangement of two sensors, frame rate, image resolu-

tion, target size, etc) are presented in Table 1.

Two metrics, i.e., location error (pixel) [9] and over-

lapping rate [33], are used to evaluate the tracking results

of MVMKF quantitatively. The location error is computed

as error ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxG � xTÞ2 þ ðyG � yTÞ2
q

, where ðxG; yGÞ and
ðxT ; yTÞ are the ground truth and tracking bounding box

centers, respectively. The tracking overlapping rate is

defined as overlapping ¼ areaðROIG \ ROITÞ=area
ðROIG [ ROITÞ, where ROIT and ROIG denote the tracking

bounding box and ground truth which is manually located,

respectively. Symbol areað�Þ denotes the rectangular area

function. A smaller location error and a larger overlapping

rate indicate higher accuracy and robustness. Next, the

performance of each sequence is described in detail.

Algorithm 1 General scheme of MVMKF tracking algorithm
Input: tth visible and infrared frames

1. Select some test samples by Xγ = {x lt(x ) − lt−1(x∗) < γ } in visible and infrared
images.

2. Obtain compressive feature vector u using Eq. (1).
3. For each Haar-like feature i = 1, · · · , m, compute kernel functions of each view

kv(ui;μ1
i , σ1

i ) and kv(ui;μ0
i , σ0

i ) using Eq. (4).
4. Compute view weights wi,v with Eq. (5).
5. Obtain PDFs of positive and negative samples f1(ui) and f0(ui) using Eq. (3), and

obtain classifier probabilities p(ui|y = 1) and p(ui|y = 0).
6. Input classifier probabilities to the Bayes classifier, and find the tracking location lt(x∗)

with the maximal classifier response from H(u).
7. Extract positive and negative samples by Xα

v = {x lt(x ) − lt(x∗) < α} and Xς,β
v =

{x |ς < lt(x ) − lt(x∗) < β } in visible and infrared images.
8. Update the classifier parameters (μ1

i,v , σ1
i,v , μ0

i,v , σ0
i,v) by μ1

i,v ← λμ1
i,v + (1− λ)μ1

v and

σ1
i,v ← λ(σ1

i,v)2 + (1 − λ)(σ1
v)2 + λ(1 − λ)(μ1

i,v − μ1
v)2.

Output: Tracking location and classifier parameters

Opt Rev (2016) 23:244–253 247
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Fig. 1 Tracking results of Sequence Labman in visible and infrared images

Fig. 2 Tracking results of Sequence Cross in visible and infrared images

Fig. 3 Tracking results of Sequence Shadow in visible and infrared images
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Fig. 4 Tracking results of Sequence Occlusion 1 in visible and infrared images

Fig. 5 Tracking results of Sequence Occlusion 2 in visible and infrared images

Fig. 6 Tracking results of Sequence Ourlab in visible and infrared images
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3.2 Tracking results

3.2.1 Abrupt rotation and movement

The efficiency of MVMKF is demonstrated by using

Sequence Labman (360 frames in total), in which abrupt

rotation and movement is displayed. Due to the limitation

of space, only four frames of each sequence are displayed.

At the tracking beginning, the CT, MIL, ODFS, STC,

FRDIF, and MVSK trackers can all track the target suc-

cessfully. But when the man starts to shake his head from

right to left abruptly from Frame #279 to #303 in Fig. 1,

Fig. 7 Comparisons on location error (pixel) of the test sequences

Fig. 8 Comparisons on overlapping rate (%) of the test sequences

250 Opt Rev (2016) 23:244–253
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CT, MIL, STC, FRDIF, and MVSK fail to locate the target

accurately. And we can see that MVMKF performs the best

when the man turns around this head to the left at Frame

#331. The comparisons about location error and overlap-

ping rate for the seven trackers are presented in Figs. 7, 8.

MVMKF is able to overcome the abrupt appearance

change and performs well on this sequence.

3.2.2 Background similarity and change

Sequence Cross (119 frames in total) contains examples of

background similarity and change. In this sequence, the

human target walks through a cross-background (color

change of the earth), and another similar man is passing by

him. As seen in Frame #62 in Fig. 2, ODFS and STC lose

the target, and CT and MIL fail and track a wrong object.

The reason is that the change of the earth color affects

much on single-sensor trackers (CT, MIL, ODFS, and

STC). The multi-sensor fusion tracker FRDIF and MVSK

also fail at around Frame #80 because their fusion method

is not equipped with multi-kernel learning models. For the

convenience of presentation, the FRDIF tracking curve is

not shown entirely in Fig. 7. MVMKF is able to track

accurately. As seen in Figs. 7, 8, MVMKF has the smallest

location error and largest overlapping rate during most of

the tracking process. In contrast, the location errors and

overlapping rates of the other six trackers increased and

decreased frame by frame, respectively.

3.2.3 Shadow and illumination change

The target in Sequence Shadow (252 frames in total) can-

not be recognized clearly as a result of the shadow of

moving clouds and illumination change. Since the

appearance models of CT, MIL, and ODFS are not learned

well in this complex circumstance, their location errors in

Fig. 7 keep large most of time and overlapping rates in

Fig. 8 are almost zero when the target is covered by the

cloud shadow. MVSK and FRDIF begin to fail when the

target walks into the shadow of the building at around

Frame #100 and #240, respectively. Only MVMKF and

STC can handle these problems whereas the result of

MVMKF is more accurate due to the well learned

appearance from multiple views.

3.2.4 Occlusion

In Sequence Occlusion 1 (203 frames in total), the human

target is occluded by a lamppost. Figure 4 indicates that

only MIL and MVMKF perform well on this sequence.

However, MIL mistakes the lamppost for the target when

the occlusion occurs (around Frame #100) because it

doesn’t have multi-view features, which affects the per-

formance when the occlusion object has similar features

with the target in a single view. In comparison with the

other six trackers, MVMKF presents the best

performance.

The target in Sequence Occlusion 2 (241 frames in total)

is also heavily occluded and encounters complex back-

ground disturbance. CT and FRDIF mistake other things

for the target for almost the whole tracking process. This is

also reflected in overlapping rates which are almost zero in

Fig. 8. MIL, ODFS, STC, and MVSK do wrong to track the

lamppost or another nearby person. Only MVMKF does

well on tracking accuracy frame by frame.

3.2.5 Night tracking

Sequence Ourlab (125 frames in total), provided by our

lab, presents night tracking. The target in the visible

sequence can barely be seen with naked eye. What makes

the tracking more challenging is that the human target is

surrounded by several people that have similar appearance

with it. Once again, MVMKF delivers the best performance

for this video due to the effectiveness and robustness of the

proposed fusion method, as shown in Figs. 7, 8.

Table 1 Details of the test sequences

Sequences Labman Cross Shadow Occlusion 1 Occlusion 2 Ourlab

Visible camera Panasonic WV-

CP470

Sony TRV87

Handycam

Sony TRV87

Handycam

Sony TRV87

Handycam

Sony TRV87

Handycam

UNIQ UM-

301

Infrared camera Raytheon Thermal

IR-2000B

Raytheon PalmIR

250D

Raytheon PalmIR

250D

Raytheon PalmIR

250D

Raytheon PalmIR

250D

CEDIP IR

camera

Arrangement Aligned Aligned Aligned Aligned Aligned Aligned

Frame rate (FPS) 25 25 25 25 25 25

Image resolution

(pixel)

640*480 320*240 320*240 320*240 320*240 480*360

Target size (pixel) 76*91 16*37 12*30 10*21 10*27 31*123
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Tables 2, 3 are included here to demonstrate the per-

formance on the average location error (pixel) and success

rate (%) of the six test sequences. The success rate is

defined as the number of times success is achieved in the

whole tracking process by considering one frame as a

success if the overlapping rate exceeds 0.5 [33]. A smaller

average location error and a larger success rate indicate

higher accuracy and robustness. In Sequences Shadow,

Occlusion 1, and Occlusion 2, most of the trackers do not

achieve a large success rate because the target sizes are

relatively small (see Table 1) such that a slight drift away

from the target may cause a great reduction in the success

rates. Although the success rate of MIL is larger than

MVMKF in Sequence Occlusion 1 in Table 3, MIL is

unstable with the failure shown in Fig. 4. Besides, the

average location error of MIL is smaller than that of

MVMKF in Table 2. Trackers MVMKF, CT, FRDIF, and

MVSK are implemented using Visual Studio 2010, and

MIL, ODFS, and STC are implemented in MATLAB

R2010a. MVMKF runs 39 frames per second (FPS) on

average on an Intel Dual-Core 1.70 GHz CPU with 4 GB

RAM, and the average FPS of the other six trackers are

presented in Table 2. Tables 2, 3 shows that although

MVMKF is not the fastest in terms of computational time,

it has greater stability and better tracking accuracy.

3.3 Computational complexity

Efficiency is one prime characteristic of the proposed

MVMKF tracking algorithm. The construction process of

compressive feature vector has a low complexity of o(n),

because the sparse projection matrix R is independent of

training samples, which needs to be computed only once

offline and remains fixed throughout the tracking process.

Symbol n denotes the dimension of multi-scale image feature

vector x, which is determined by the inputted images. In

computing the multi-view multi-kernel classifier, the com-

putational complexity is oðlogðmÞÞ where m denotes the

dimension of compressive feature vector. Therefore, the the-

oretically global computational complexity is really small in

practice. Experimentally, the proposed algorithm has a high

computational efficiency which runs 39 FPS on average.

4 Conclusion

In this paper, a visible and infrared tracking algorithm

based on multi-view multi-kernel fusion (MVMKF) model

is developed. In comparison with single sensor, coopera-

tion of multi-sensor features is able to make up the weak

points of each other and provides higher precision, cer-

tainty, and reliability. Fusion of visible and infrared sen-

sors, one of the typical multi-sensor cooperation, has

consistent and complementary properties. Due to these two

properties, we apply multi-view learning to solve the

problem of visible and infrared fusion tracking. In this

paper, the MVMKF model is capable of embedding com-

plementary information from different views to discover an

integrated appearance representation. The multi-kernel

framework is applied to learn the relative importance of

view features and make a combination with regard to

respective performance. Besides, the tracking task is

Table 2 Comparisons on

average location error (pixel)

for the test sequences and

average frame per second (FPS)

Sequences Labman Cross Shadow Occlusion 1 Occlusion 2 Ourlab FPS

MVMKF 7 3 3 3 3 6 39

CT 10 26 23 17 84 12 42

MIL 17 25 37 4 18 12 12

ODFS 11 50 96 16 12 11 36

STC 24 3 7 37 10 22 163

FRDIF 12 50 14 134 105 27 23

MVSK 30 17 29 15 13 36 34

Bold fonts indicate the best performances

Table 3 Comparisons on

success rate (%) for the test

sequences

Sequences Labman Cross Shadow Occlusion 1 Occlusion 2 Ourlab

MVMKF 100 100 85 83 82 100

CT 94 6 2 0 0 83

MIL 78 30 0 90 1 86

ODFS 94 29 0 1 7 71

STC 44 98 4 45 78 55

FRDIF 92 0 17 0 0 15

MVSK 48 39 84 36 60 33

Bold fonts indicate the best performances
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completed with naive Bayes classifier in sophisticated

compressive feature domain, considering the better per-

formances of classifier-level and sophisticated feature-level

learning for multi-view learning. Numerous real-world

video sequences were used to test MVMKF and other state-

of-the-art trackers, and here we only selected representative

ones for presentation. Experimental results were used to

demonstrate that MVMKF is highly accurate and robust.
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