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Abstract This paper presents a digital three-dimensional

reconstruction method based on a set of small-baseline

elemental images captured with a micro-lens array and a

CCD sensor. In this paper, we adopt the ASIFT (Affine

Scale-invariant feature transform) operator as the image

registration method. Among the set of captured elemental

images, the elemental image located in the middle of the

overall image field is used as the reference and corre-

sponding matching points in each elemental image around

the reference elemental are calculated, which enables to

accurately compute the depth value of object points

relatively to the reference image frame. Using optimization

algorithm with redundant matching points can achieve 3D

reconstruction finally. Our experimental results are pre-

sented to demonstrate excellent performance in accuracy

and speed of the proposed algorithm.

Keywords Integral Image � 3D Reconstruction � ASIFT
operator � Depth value optimization

1 Introduction

Three-dimensional (3D) sensing and imaging [1–3] have

been a subject of research due to their diverse benefits and

widely applications in Multi-areas. Integral imaging (II)

[4, 5] is an autostereoscopic or multiscopic 3D display,

meaning that it displays a 3D image without the use of

special glasses on the part of the viewer. It achieves this by

placing an array of micro-lens (similar to a lenticular lens)

in front of the image, where each lens looks different de-

pending on viewing angle. Thus, rather than displaying a

2D image that looks the same from every direction, it re-

produces a 4D light field, creating stereo images that ex-

hibit parallax when the viewer moves. Each of the

elemental images captured through a micro-lens or pinhole

forms a de-magnified 2D image with its own perspective.

To reconstruct the 3D scene from the elemental images, all

we need to do is to conduct the rays coming from the

elemental images through the same micro-lens array used

for the recording. This process will form a 3D image where

the object is originally located. The lens array used to

record the elemental images is referred to as pickup lens

array, while the display one is called display micro-lens

array.

Reconstructing a 3D scene from a set of elemental im-

ages may be carried out optically or computationally.

Optical reconstruction, used for directly view 3D display,

is accomplished by displaying the elemental images on a

2D display panel such as an LCD along with a display

micro-lens array. Because of diffraction and limitations of

optical devices, direct optical reconstruction would intro-

duce image quality degradation. Computational II (CII)

reconstruction, on the other hand, is accomplished by

digitally simulating geometric ray propagation through a

virtual display micro-lens array to process the elemental

images obtained optically by direct pickup and thus re-

constructing the volume of a 3D scene. This approach has

many applications in which volume pixels (voxels) of 3D

images are needed for further image processing, such

as extracting surface profiles of 3D images. Another
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advantage of CII is the ability to generate the viewing

angle of the reconstructed objects without optically dis-

playing the elemental images. However, the existing CII

reconstruction method has several limitations. For instance,

the reconstructed images using CII technique in Ref. [5]

produce the 3D images viewed from one particular view

point through the array. In Ref. [6], the reconstruction al-

gorithm uses triangulation and NCC (Normalized Cross

Correlation) with limited numbers of the elemental images

(or sampled elemental images) to achieve a 3D image from

a simplex viewpoint, which results in great time

consumption.

In this paper, we propose a new CII reconstruction al-

gorithm based on ASIFT [7]. The proposed method still

uses the limited information of the elemental images to

reconstruct the 3D scene, but it will reconstruct the 3D

targets at any distance from a virtual display micro-lens

array without suffering the limiting effects of device

degradations of an optical reconstruction setup and

diffraction. More importantly, the proposed algorithm re-

duces the time cost and improves the accuracy.

2 Review of depth extraction in integral imaging

Stereo disparity matching is one kind of 3D reconstruction

technologies [8, 9] in which the 3D spatial geometry of a

scene is obtained by analyzing two different perspective

views of the 3D scene captured by two cameras placed at

different locations and mating the stereo parallax infor-

mation. The commonly used stereo parallax matching

method, requiring two or more cameras, is not only too

bulky and not suitable for mobile devices, but also requires

hardware synchronization to capture multiple views si-

multaneously in order to avoiding motion blurring or un-

desired motion parallax. On the other hand, an integral

image system can integrate the camera sensor and a micro-

lens array in a very compact package and capture multiple

elemental images in one single shot. Besides the advan-

tages of compactness and view synchronization, camera

calibration is much more relaxed due to its integration

nature than in a conventional multi-view camera system. In

parallax matching algorithms, binocular vision can be in-

fluenced by defective pixels only using two pixels for

stereo matching. In an II system, multiple views are si-

multaneously acquired and redundant matching pixels are

readily available from several elemental images. Such re-

dundancy thus reduces the influence of defective pixels [6].

Finally, an II system with a two-dimensional micro-lens

array is capable of capturing both horizontal and vertical

parallax, which can potentially result in more accurate

stereo parallax matching and 3D scene reconstruction.

Compared with the conventional stereo technique, the main

drawback of an II system lies in the very limited small

baseline among adjacent elemental images and their

relatively low-pixel resolution.

Figure 1 shows the geometric configuration of an II

setup used in this paper. An object point, x, is assumed to

be at a distance lo from the micro-lens array and for an

image point, Xi, through the ith lenslet. Each of the lenslet

has a diameter of up and 100 % fill factor is assumed. The

gap between the micro-lens array and the camera sensor is

gp. By using the triangular relationship, the mapping be-

tween the object and image points is given by

ði/p � xÞ=lo ¼ ðXi � i/pÞ=gp ð1Þ

where /p is diameter of the lenslets and gp is the gap

between the micro-lens array and the camera sensor. A

100 % fill factor is assumed for the micro-lens array. For

two different lenslets, Eq. (1) is rewritten as

Xi ¼
i/p � x

lo
gp þ i/p ð2Þ

and

Xj ¼
j/p � x

lo
gp þ j/p: ð3Þ

Subtracting Eqs. (3) and (2) gives the stereo parallax

information between these two views:

Xj � Xi ¼ ðj� iÞð1þ gp=loÞ/p ð4Þ

Theoretically, using the Eq. (4), the depth of the 3D

object point, lo, can be obtained by extracting the two

corresponding pixel coordinates in a pair of elemental

images. This is a triangulation technique. The first step is

therefore to acquire an image if plane P that contains

several elemental images provided by each micro-lens. To

improve the quality of this image, we digitally enhance its

contrast and get rid of the noise. Furthermore, we calibrate

our images to achieve rectification.

Fig. 1 Schematic layout of an integral imaging setup and the

geometric relationship between object point and image point
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Figure 2 demonstrates two elemental images captured

by our experimental setup. The simplest method to obtain

the depth of the object points and generate depth map is to

apply a stereo parallax matching algorithm on 2D images

captured from multiple viewing perspectives. By choosing

the elemental image near to the center field of view as the

reference, we determine the corresponding points and

compute their parallax between the reference image and

other elemental images to obtain depth map by using the

normalized cross-correlation (NCC) parallax matching al-

gorithm [5]. The cross-correlation of two pixels in two

elemental images is given by

C½ði; jÞ; ði0 ; j0 Þ� ¼
Pt

p¼�t

Pt

q¼�t

I1ðXi þ p; Yj þ qÞI2ðXi
0 þ p; Yj0 þ qÞ

Pt

p¼�t

Pt

q¼�t

I21ðXi þ p; Yj þ qÞ
Pt

p¼�t

Pt

q¼�t

I22ðXi
0 þ p; Yj0 þ qÞ�

" #1
2

ð5Þ

where I1 and I2 are two elemental images, p and q are

sizes of sampling window. ði; jÞ and ði0; j0Þ are central

coordinates of the sampling window in two images,

respectively.

The main advantage of similarity criterion is that it is

not limited by changes of two cells image brightness. For a

ð2� jþ 1Þ � ð2� jþ 1Þ lens array, we calculate all the

depth information with respect to the center reference

image. The optimized depth value is obtained by comput-

ing a similarity criterion of M by changing the value z each

time:

MðzÞ ¼
Xm

i¼�m

Xn

j¼�n

C½ði; j� 1Þ; ði; jÞ�

þ
Xm

i¼�m

Xn

j¼�n

C½ði� 1; jÞ; ði; jÞ�
ð6Þ

The z value corresponding to the maximum value of M

on the curve is regarded as the extracted depth Z of the

object point. It is worth pointing out, however, that the

NCC method alone has high computation cost due to the

iteration nature of the algorithm. To meet the need of real-

time applications, in this paper, we adopt ASIFT operator

to improve computation efficiency which is further ex-

plained in Sect. 3.

3 ASIFT algorithm

When the relative space position of two elemental images

changes smaller, light intensity is good enough; SIFT(S-

cale-invariant feature transform) algorithm in image

matching performs very well. But for 3D reconstruction,

match points that we can get are too sparse according to

previous experiments. In our paper, we use Fig. 3 as sys-

tem structure and experimental array image. The distance

between the micro-lens and the 3D object are about

200 mm (Cube) and 500 mm (Kidney). The size of lens

array is 100 mm 9 100 mm with each lens diameter at

1 mm and the focal length is 3 mm. In order to ensure the

number of elemental image and resolution, we chose

200 9 200 pixels as resolution of each image.

After cutting same size elemental images, we use SIFT

algorithm to extract match points [10–13]. As is shown in

Fig. 4, there are only 30 pairs of points with some error

match points in bad light condition.

Fig. 2 The stereo parallax match between two elemental images

Fig. 3 System Structure and

Images array
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We cannot achieve 3D dense reconstruction by only 30

pairs of points including mismatch points. So, we adopt

ASIFT algorithm. But it does not mean that SIFT can be

used instead of the ASIFT in the case of high-intensity light

source. The main reason is as described in Fig. 5; ASIFT

simulates all distortions caused by the variation of the

camera optical axis because the algorithm introduces two

more parameters in order to achieve full affine invariant

[14]. Then, we can get more match points even in lower

light condition. In the end, we use the same method to

match corresponding points as SIFT. In other words,

ASIFT simulates three parameters scale, camera longitude

angle, and latitude angle (which is equivalent to the tilt)

and also normalizes the other three parameters (translation

and rotation). This is affine invariant in the true sense [15].

Affine Transformation Matrix A can be decomposed

into

A ¼ a b

c d

� �

¼ k
cosw � sinw
sinw cosw

� �
t 0

0 1

� �
cos/ � sin/
sin/ cos/

� �

¼ kRðwÞTtRð/Þ ð7Þ

where k[ 0, / 2 ½0; pÞ. As is shown in Fig. 6, / and

h ¼ arc cos 1=t are the camera optical axis longitude and

latitude, respectively. The image is a flat physical object.

The small parallelogram on the top represents a camera

looking at u. A third angle w parameterizes the camera

spin, and k is a zoom parameter.

In order to have ASIFT invariant to any affine trans-

formations, we need to sample the tilt t and angle / with a

high enough precision. The sampling steps Dt and D/ must

be fixed experimentally by testing several natural images.

Figure 7 illustrates the irregular sampling results: h and /

on the observation hemisphere, where Dt ¼
ffiffiffi
2

p
and

D/ ¼ 72�=t. The samples accumulate near the equator.

Original image is uðx; yÞ, it can be changed to uðtx; yÞ
when it tilted t on the x axis. For digital images, tilt im-

ages are determined by directional t-subsampling. It re-

quires antialiasing filter processing on the X axis in order

to minimize the distortion of the image. The filter is

performed by Gaussian convolution which standard de-

viation is c
ffiffiffiffiffiffiffiffiffiffiffiffi
t2 � 1

p
. In the Ref. [11], Lowe recommended

value c ¼ 0:8. In the Ref. [5], it proved that image dis-

tortion is smaller at this value. We do some rotation

transform and tilt transform to images, which can simulate

and generate some images taken from different horizontal

angles and vertical angles. In this way, we can make sure

simulative images keep approximation in different view

angle h and /. All the tilted images will be matched using

SIFT algorithm. Figure 8 shows 715 pairs of match points

with ASIFT which is better than SIFT in same light

condition.

4 Optimization algorithm

Theoretically, binocular parallax can get depth Z. The

existence of various error such as system noise and detector

defects affects the depth accuracy. In this case, using

multiple elemental images will provide enough redundancy

to improve signal-to-noise ratio. However, the number of

Fig. 4 Match points (including error match points)

Fig. 5 Overview of the ASIFT algorithm [5]. The square images A

and B represent the compared images u and v. ASIFT simulates all

distortions caused by a variation of the camera optical axis direction

Fig. 6 Camera model
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cell image also cannot be too much. The pixels of the

camera are fixed, while the number of cell image is too

much, it will seriously reduce the number of a single-ele-

mental image pixels, thus reducing the resolution of the 3D

reconstruction.

In this paper, we pick 3� 3 elemental images, and

calculate optimize the depth using

Z ¼ arg min
Xn

i¼1

ðZ � ziÞ2 ð8Þ

where zi ¼ fT
xl�xt

, f is focal length, T is pitch of lens, xl

and xt are coordinates of matching points, n is number of

lens. Optimized depth value can be used as the object point

depth of the central image. Using Eq. (9) can calculate x

and y coordinates.

x ¼ �ðZ=gÞX0

y ¼ �ðZ=gÞY0

�

ð9Þ

where X0 and Y0 are corresponding coordinates in the

center image.

Obviously, through registration algorithm we have got

enough match points; however, we find that in some parts,

no match shows up. So in this place, we usually adopt

region growing method which is used to complete calcu-

lation for the dense points. Figure 9 shows disparity map

after regional growth process. The cube and kidney model

has been obvious distinguished.

5 Experimental result

In this paper, we mainly do two aspects of experiment:

5.1 The contrast experiment in depth accuracy

This experiment selects one point on Cube and one point

on Kidney model, respectively. We pick up some feature

points near selected points and corresponding points on

redundant elemental images to optimize the final depth

z. In Fig. 10, we can get intuitionistic contrast data.

As we can see in Table 1, the more feature points we

can provide, in other words, the more redundancy images

in the calculation, the optimized value will be closer to real

value, and the depth error will be smaller.

Fig. 7 Sampling of the

parameters [7] h = arccos 1/t

and u. The samples are the

black dots. Top perspective

illustration of the observation

hemisphere (only t = 2, 2
ffiffiffi
2

p
, 4

are shown). Bottom zenith view

of the observation hemisphere.

The values of h are indicated on

the figure

Fig. 8 ASIFT Match Points

Fig. 9 Disparity map of elemental images
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5.2 Synthesis time in the PLY 3D data and display

In this paper, we use IBM X230 desktop (Intel core i7-

3520 M CPU 8G RAM) and 64 bits operating system as the

experiment platform. Table 2 shows time consumption

with NCC algorithm and ASIFT algorithm. Obviously,

ASIFT algorithm has good performance.

In the end, we use Matlab (2013a) to create 3D da-

ta.PLY file which format is X, Y, Z, R, G, B, ALPA (de-

fault 255), Fig. 11 is the generated 3D images seen from

different angles with Meshlab software.

6 Conclusion

In our work, we reviewed some previous paper, and adopt

the latest used ASIFT operator instead of NCC algorithm to

accomplish image registration. In this way, we greatly re-

duce the time consumption. Meanwhile, combining with

Fig. 10 Data contrast figure in depth values with match points (�), measured points using optical platform (?) and optimal points by redundant

match points (blue lines)

Table 1 Error analysis Elemental images Match points position Optimal value Measured value Relative error

4 and 5 Cube 201.7 214 0.0573

5 and 6 Kidney 514.9 495 0.0402

4 and 5 5 and 6 Cube 208.4 214 0.0263

2 and 5 5 and 8 Kidney 504.5 495 0.0193

All images Cube 215 214 0.0077

Kidney 498.8 495 0.0048

Table 2 Time consumption in NCC and ASIFT algorithm

Methods Single Pair time consumption Total time consumption

NCC 52.067 s Above 5 min

ASIFT 3.383 s Under 25 s

Fig. 11 3D reconstruction in different view angles on Meshlab
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regional similarity principle, we adopt simple optimization

method to realize higher precision measurement of depth

value. The algorithm in our paper enhances real-time per-

formance in Medical 3D imaging, and has a very broad

application prospects in many fields.
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