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Abstract The identification of the damage state of Carbon

fiber-reinforced plastic (CFRP) structure is the necessary

information for ensuring the safety of CFRP structure. In

this paper, the structural damage identification system using

fiber Bragg grating (FBG) sensors and the damage identi-

fication method were investigated. FBG sensors were used

to detect the structural dynamic response signal, which was

generated by an active actuation way. Fourier transform and

principal component analysis (PCA) were used to extract

the damage characteristic. After that, the structural damage

identification model was constructed based on extreme

learning machine (ELM), whose input is the damage char-

acteristic and output is the damage state. Finally, the dam-

age identification system was established and verified on a

CFRP plate with 160 mm�160 mm experiment area. The

experimental results showed that the identification accuracy

was more than 90 %. This paper provided a reliable method

for CFRP structural damage identification.

Keywords Fiber Bragg grating � CFRP structural damage

identification � Principal component analysis � Extreme
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1 Introduction

Carbon fiber-reinforced plastic (CFRP) structure has been

widely used in aviation applications for its advantages of

light quality, high specific strength and stiffness. However,

they are very susceptible to the structural damage, such as

delamination or matrix cracks, which can reduce the

structural stiffness seriously. Besides, the existence of the

structural damage can reduce the service time of the

structure and lead to catastrophic accidents [1]. Therefore,

the structural damage identification is very important for

ensuring the structural safety.

The composite structural damage identification can be

realized by an active excitation approach, which needs the

action of monitored structure and then measurement of

resulting response [2]. In traditional, piezoelectric sensors

have been wildly used [3, 4]. More recently, fiber Bragg

grating (FBG) [5–7] is shown as promising sensors for its

advantages of anti-electromagnetic interference, easy to

establish sensing network and install without destroying the

structures. Capoluongo et al. [8] used FBG sensor tech-

nology to detect structural damage, and found that there are

minor differences between FBG sensors and conventional

sensors. Their research confirmed the excellent perfor-

mances of FBG to detect damage signals. The structural

damage identification can be considered as a pattern

recognition problem, whose key points are the extraction of

damage characteristic and the selection of recognition al-

gorithm. Pérez et al. [9] and Selva et al. [10] showed that

the structural damage can caused the shifts of structural

parameters. Therefore, the extraction of damage charac-

teristic by analyzing the structural dynamic response is

feasible. The pattern recognition algorithm generally in-

cludes neural network and support vector machines.

Compared with the neural network, the support vector

machines can get a good ability of pattern recognition

under small sample [11]. Loutas et al. [12] proposed a

pattern recognition scheme for damage diagnosis based on

support vector machines, and the scheme was developed

and experimentally validated on a composite panel.
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However, their performance is affected by the selection of

parameters and their model establishment time is much

longer. Huang et al. [13, 14] proposed extreme learning

machine (ELM) and showed that the ELM has better

scalability and achieves similar generalization performance

at much faster learning speed than traditional support

vector machines. Therefore, the structural damage identi-

fication is realized using ELM has a good potential.

The objective of this work is to develop an easy to

implement system for CFRP structural damage identifica-

tion. FBG sensors were pasted on the structural surface to

detect the structural dynamic response signal. Fourier

transform and principal component analysis (PCA) were

used to extract damage characteristic. The ELM, whose

input is damage characteristic and output is damage state,

was used to realize the structural damage identification. At

last, the structural damage identification system was

established and verified on a CFRP plate. The experimental

results provided a reliable method for CFRP structural

damage identification.

2 Experimental setup

2.1 Fundamentals of FBG sensors

FBG is an wavelength modulation optical passive compo-

nents. According to coupled-mode theory of optical fiber,

the Bragg wavelength kB can be expressed as follows:

kB ¼ 2nK ð1Þ

where n is fiber grating effective refractive index and K is

grating period. FBG is sensitive to temperature and strain.

Only considering the effect of strain, the relations between

FBG wavelength and strain can be expressed as follows:

DkB=kB ¼ 1� n2=2
� �

P12 � mðP11 þ P12Þ½ �e ¼ ð1� PeÞe
ð2Þ

where DkB is the changes of FBG wavelength, Pij are

Pockel’s coefficients, m is Poisson’s ratio, Pe is effective

light function and e is strain.

Equation (2) shows that there is a linear relationship

between the changes of FBG wavelength and strain. When

the structure subjected to an impact, the strain produced,

and then the FBG wavelength changed. In this way, FBG

works as a strain sensor. Therefore, FBG can be used to

monitor the structural dynamic response signal.

2.2 Damage identification system

The damage identification system is composed of an opti-

cal sensing interrogator (type: SM130 (MOI, USA) with

the sampling frequency of 1 kHz), a Computer, a CFRP

plate specimen and four FBG sensors. The experiment

system and their diagram are shown in Figs. 1 and 2.

The size of CFRP plate is 500 mm� 500 mm� 2 mm

and its four edges are clamped on the test bench. On the

CFRP plate, 160 mm� 160 mm area was selected as the

experimental area. And then, the experimental area was

divided into 16 areas and their length and width are both

40 mm. On the surface of the plate, four FBG sensors were

stuck on to detect the system dynamic response and their

wavelength and location are listed in Table 1.

In this paper, the damage identification method pro-

posed is based on active actuation approach. The active

actuation is non-destructive and carried out by a steel ball,

whose radius is 8 mm and quality is 25 g, impacting the

CFRP plate with the form of free fall. To ensure that the

active actuation does not change in each experiment, the

impact height should be 250 mm, and the impact area be

area 16.

2.3 Damage states

Structural vibration equation can be expressed as the fol-

lowing equation [15]:

M €X þ C _X þ KX ¼ P ð3Þ

where M is mass matrix, X is displacement vector, C is

damping matrix, K is stiffness matrix and P is external

force function. Suppose P ¼ PðxÞ expixt, and its corre-

sponding response is X ¼ XðxÞ expixt, where x is fre-

quency. Equation (3) can be expressed as follows:

XðxÞ ¼ PðxÞ= �x2M þ iC þ K
� �

: ð4Þ

In practice, the overall damping matrix is generally ex-

pressed as a linear combination of the overall stiffness

matrix and the overall mass matrix. Therefore, the struc-

tural damage effect on the damping matrix can be reflected

Fig. 1 CFRP damage identification system
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by a combination of the effect on the stiffness matrix and

the mass matrix. Structural damage can decrease the

stiffness matrix and has almost no effect on the mass ma-

trix. Therefore, the value of �x2M þ iC þ K will be de-

creased. If stiffness matrix invariant and mass matrix

increased, the value of �x2M þ iC þ K will also be de-

creased. That is to say, the actual damage produces the

same result in its dynamic response as responding mass

increase produces. In this paper, the structural damage was

simulated by adding different lumped masses in 15 dif-

ferent areas, which is shown in Fig. 2. To ensure the same

contact area, the base areas are both a round face with

diameter of 5cm. Besides, considering the detection capa-

bility of FBG and that the changes of structural dynamic

response caused by simulated damage can be detected, the

lumped mass (125g and 220g) was selected. The different

weights of the lumped mass simulated the different damage

degrees, and the lumped mass placed on the different areas

simulated the different areas. Their corresponding damage

states are defined as state 1–31 respectively, as shown in

Table 2.

3 Damage characteristic

3.1 Characteristic extraction

The dynamic response signals, in different damage states,

were generated by the steel ball impacting the area 16 of

the plate. And then, they were detected by FBG sensors.

Take FBG 1 signals as an example, which are shown in

Fig. 3.

Figure 3 shows that the structural dynamic response

were appropriately detected by FBG 1 sensor. However, it

was difficult to extract damage characteristic only based on

the time domain signals, because they were very similar in

shape. Then, Fourier transform was used to obtain their

corresponding frequency response. The results are shown

in Fig. 4.

By comparing Fig. 4a, b and c, we found that if the

structural damage states were different, their frequency

responses were different. For example, the amplitude of

109 Hz is 0.0005 nm in state 18 and was larger than

0.0001 nm in state 3. The amplitude of 380 Hz is

0.0001 nm in state 3 and was smaller than 0.0004 nm in

state 9. Thus, the signals frequency response can be ex-

tracted as damage characteristic.

3.2 Characteristic reduction

The existence of redundant and invalid information leads to

the large dimension of damage characteristic. It is neces-

sary to reduce their dimension. Principal component ana-

lysis (PCA) [16] is widely used. Defined the signal

frequency responses are X ¼ ðxi; xi; :::; xmÞT , where m is

the number of training samples and their dimension is p.

The covariance matrix C can be obtained:

C ¼ 1

m� 1

Xm

j¼1

xj � x
� �

xj � x
� �T ð5Þ

where x is the mean of x. The eigen values k and its cor-

responding characteristic vectors U can be obtained from

Eq. (5):

ðkI � CÞU ¼ 0 ð6Þ

where I is unit matrix. Make k1 [ k2 [ . . . [ km, the result

of PCA transformation can be expressed as follows:

Y ¼ U1 U2 . . . Um½ �T X ¼ WT X ð7Þ

where W is transformation matrix and Y is the transform

data. The former r row of Y contains the most useful in-

formation. The selection of r value has not definite rules. In

application, the value of r usually selects from 0.85 to 0.95.

To get a higher damage identification accuracy, this paper

selects the value of r as 0.95.

Xr

j¼1

kj

�Xm

j¼1

kj� 0:95 ð8Þ

Thus, the p-dimensional damage characteristic is reduced

to r-dimensional.

Fig. 2 The diagram of CFRP damage identification system

Table 1 Wavelength of FBG sensor and the paste position

Sensor Wavelength (nm) Location (mm)

FBG 1 1531.752 70,250

FBG 2 1536.221 250,70

FBG 3 1539.887 420,250

FBG 4 1565.080 250,420
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4 Damage identification formulation

The essence of structural damage identification is a pattern

recognition problem. In this paper, an extreme learning

machine (ELM) multi-classification method based on di-

rected acyclic graph (DAG) [17] is used. This method can

realize the damage identification by combining several

binary ELM classifiers. In this paper, the number of dam-

age state is 15, and 15� (15�1)/2 = 465 binary ELM

classifiers are needed. The establishment process of each

binary ELM classifiers is similar. We take the binary ELM

classifier, which can identify the damage states 1 and 31, as

an example.

Define the training samples are ðxi; yiÞ; xi 2
Rr; yi 2 f1; 31g; i ¼ 1; 2; . . .; n, where xi is damage char-

acteristic, n is the number of training samples and yi is the

damage state. The function of binary ELM classifier with l

hidden layer neurons can be expressed as follows:

Xl

j¼1

bjg wj; bj; xi

� �
¼ yi ð9Þ

where wj is input weight matrix, bj is the bias term, bj is

output weight matrix, and g w; b; xð Þ is a nonlinear piece-

wise continuous function. The g w; b; xð Þ has many types

and sigmoid function type is selected in this paper:

g w; b; xð Þ ¼ 1= 1þ exp � w� xð Þ þ bð Þ½ �: ð10Þ

According to any continuous probability distribution, wj; bj

can be randomly generated. Therefore, the b can be ob-

tained as follows:

b ¼ HþY ð11Þ

where H ¼
g w1; b1; x1ð Þ � � � g wl; bl; x1ð Þ

..

.
� � � ..

.

g w1; b1; xnð Þ � � � g wl; bl; xnð Þ

2

64

3

75

n�l

,

b ¼ b1; . . .; bl½ �Tl�2;Y ¼ y1; . . .; yr½ �Tn�2. Hþ is the Moore–

Penrose generalized inverse of matrix H. To improve the

generalization performance and make the solution more

robust, a regularization term c can be introduced to Eq.

(11):

b ¼ HT I

c
þHHT

� ��1

Y ð12Þ

Thus, the output function of binary ELM classifier can

expressed as follows:

Table 2 The definition of the

damage states
State Definition State Definition State Definition State Definition

1 without damage 9 125 g/area 8 17 220 g/area 1 25 220 g/area 9

2 125 g/area 1 10 125 g/area 9 18 220 g/area 2 26 220 g/area 10

3 125 g/area 2 11 125 g/area 10 19 220 g/area 3 27 220 g/area 11

4 125 g/area 3 12 125 g/area 11 20 220 g/area 4 28 220 g/area 12

5 125 g/area 4 13 125 g/area 12 21 220 g/area 5 29 220 g/area 13

6 125 g/area 5 14 125 g/area 13 22 220 g/area 6 30 220 g/area 14

7 125 g/area 6 15 125 g/area 14 23 220 g/area 7 31 220 g/area 15

8 125 g/area 7 16 125 g/area 15 24 220 g/area 8

Fig. 3 FBG 1 signals. a State 18. b State 3. c State 9

Fig. 4 The results of Fourier transform. a State 18. b State 3. c State

9
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f xð Þ ¼ h xð ÞHT I

c
þHHT

� ��1

Y ð13Þ

For a given testing sample, f xð Þ has two values, that is

ff1 xð Þ; f2 xð Þg, and the identified damage state can be ob-

tained by the following equation:

label xð Þ ¼ arg max f1 xð Þ; f2 xð Þ½ � ð14Þ

For this example, if the maximum value is f1 xð Þ then it

represents damage state 1, if the maximum value is f2 xð Þ
then it represents damage state 31.

When 465 binary ELM classifiers are established, the

damage identification based on DAG can be performed, as

shown in Fig. 5. For a testing sample, starting at the first

binary ELM classifier can identify the states 1 and 31. If

the identification result is state 31, the node is exited via the

left edge, otherwise, via the right edge. Based on the same

process, after 30 identification process, the final damage

state can be identified.

5 Results and discussion

The damage identification experiments include two parts:

the damage identification model training and testing.

5.1 Model training

The experiments were conducted 9 times in damage state 1,

and 3 times in each of the remaining 30 damage states. And

a total of 99 groups of structural dynamic response signals

were detected by FBG sensors.

First, the damage characteristics were extracted by

Fourier transform, and their dimension is 2048. Then, PCA

was used to reduce their dimension to 66. After that, the

finally damage characteristics were set as the training

samples to train the damage identification model based on

ELM. For ELM, as long as the number of hidden layer

nodes is set large enough, the generalization performance

of ELM is not sensitive to the number of hidden layer

nodes. In this paper, the number of hidden layer nodes was

1000. Besides, the regularization term was 9000. Thus, the

ELM model can be trained according to Sect. 4.

5.2 Model testing

After the model trained, another 30 times experiments were

conducted, and the damage characteristics were extracted

based on Fourier transform and PCA. Then, the damage

state was identified based on the trained model. The

identified results are shown in Fig. 6. Figure 6 showed that

the model made accurate identification 28 times of 30

times experiments. The identification accuracy was more

than 90 %. Besides, the computation time of the model

testing is shown in Table 3, the software platform using

Matlab V.8.1.0.430 and running on the computer with

Fig. 5 The damage identification process based on DAG

Fig. 6 The identified results of the structural damage state

Table 3 The computation time

of model testing
Sample Time/s Sample Time/s Sample Time/s Sample Time/s Sample Time/s

1 0.114 7 0.112 13 0.113 19 0.112 25 0.113

2 0.111 8 0.112 14 0.112 20 0.113 26 0.115

3 0.113 9 0.112 15 0.113 21 0.113 27 0.113

4 0.112 10 0.112 16 0.112 22 0.112 28 0.112

5 0.115 11 0.112 17 0.113 23 0.114 29 0.113

6 0.116 12 0.112 18 0.115 24 0.114 30 0.113
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Pentium(R) Dual-Core CPU E6700 and 1.96GB memory.

The average computation time was 0.112s, which can meet

the practical use requirement. These results confirmed that

the proposed damage identification method appropriately

functioned in application.

6 Conclusions

In this paper, the CFRP structural damage identification

method was researched using FBG sensors. FBG sensors

were used to detect the structure dynamic response signal,

which contains the damage information. Fourier trans-

form and PCA were used to realize the damage charac-

teristic extraction. After that, the damage identification

model based on ELM was build to realize CFRP damage

state identification. Finally, this damage identification

method was verified on a CFRP plate with the ex-

perimental dimensions of 160 mm� 160 mm. The ex-

perimental results showed that the system made accurate

identification 28 times of 30 times experiments. The

identification accuracy was more than 90 %. This paper

provided a reliable method for CFRP structural damage

identification.
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9. M.A. Pérez, L. Gil, S. Oller, Compos. Struct. 108, 267 (2014)

10. P. Selva, O. Cherrier, V. Budinger, F. Lachaud, J. Morlier, Eng.

Struct. 56, 794 (2013)

11. S. Lu, M. Jiang, Q. Sui, Y. Sai, Y. Cao, F. Zhang, L. Jia, Chinese.

J. Lasers. 41, 0305006 (2014). [in Chinese]

12. T.H. Loutas, A. Panopoulou, D. Roulias, V. Kostopoulos, Expert.

Syst. Appl. 39, 8412 (2012)

13. G. Huang, H. Zhou, X. Ding, R. Zhang, T. Lee, Syst. Man. Cy. B.

42, 513 (2012)

14. G. Huang, D. Wang, Y. Lan, Int. J. Mach. Learn. Cybern. 2, 107

(2011)

15. J.H. Park, J.T. Kim, D.S. Hong, D.D. Ho, J.H. Yi, J. Sound. Vib.

323, 451 (2009)

16. W. Huang, H. Yin, Image. Vis. Comput. 30, 355 (2012)

17. J. Martı́nez, C. Iglesias, J.M. Matı́as, J. Taboada, M. Araújo,
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