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Based on the consideration of easy achievement in modern sensors, this paper further exploits the possibility of the
recovery of high-speed video (HSV) by a single flutter shutter camera. Taking into account different degrees of
smoothness along the spatial and temporal dimensions of HSV, this paper proposes to use a three-dimensional
hyperbolic wavelet basis based on Kronecker product to jointly model the spatial and temporal redundancy of HSV.
Besides, we incorporate the total variation of temporal correlations in HSV as a prior knowledge to further enhance our
reconstruction quality. We recover the underlying HSV frames from the observed low-speed coded video by solving a
convex minimization problem. The experimental results on simulated and real-world videos both demonstrate the
validity of the proposed method. # 2014 The Japan Society of Applied Physics
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1. Introduction

High-speed video (HSV) camera has many applications
in scientific research, industrial detection, safety studies,
military, etc. Due to its huge memory bandwidth require-
ment, HSV camera needs specialized readout circuit. In
addition, since the exposure interval of each frame in HSV
is very small, HSV camera requires high light sensitivity
sensors to ensure each frame is above the noise bed. Both of
the two factors result in a very expensive price of a HSV
camera. Despite their high costs, HSV cameras are still
limited in achieving simultaneous high spatial-temporal
resolution, because current fast mass data storage devices do
not have high enough write speed to continuously record
HSV at high spatial resolution.1)

Recent advances in computational imaging and compres-
sive sensing (CS) pave a new way for the development of
HSV system and have led to a series of creative devices and
models. One approach is to use multiple cameras. Wilburn
et al. built a dense array of 100 low-speed cameras to recover
a 1000 fps video.2) Shechtman et al. achieved spatial-
temporal super-resolution by using multiple cameras with
staggered exposures.3) Agrawal et al. proposed to use N low-
speed flutter shutter cameras to recover a video performing
an N times temporal resolution.4) Wu and Pournaghi also
used multiple flutter shutter cameras to construct a coded
video acquisition system.1) While HSV system using multi-
ple cameras can produce very high-quality result, it suffers
from many hardware challenges, including the camera
calibration problem, the increase in hardware cost, and the
inconvenient use in many applications.

Another approach is to use the coded exposure photo-
graphy. Coded exposure photography was initially proposed
by Raskar et al. for motion deblurring purpose.5) This kind
of exposure control is now usually called flutter shutter
photography in order to distinguish with the pixel-wise

coded exposure techniques. Veeraraghavan et al. used a
single flutter shutter camera to capture HSV of the periodic
scenes which had a very sparse representation under the
Fourier basis.6) Apparently, this scheme is very limited in
practice since it can be solely applied for periodic signals.
Holloway et al. also proposed to use a single flutter shutter
camera to recover HSV.7) They depend on minimizing the
total variation regularization along the temporal dimension,
the temporal super-resolution ratio can only reach around
10�.

Recently, the pixel-wise coded exposure architecture has
been proposed to perform HSV. Reddy et al. constructed a
programmable pixel-wise compressive camera (P2C2) by
employing a liquid crystal on silicon (LCoS) device and
exploited the spatial redundancy using sparse representations
and the temporal redundancy using brightness constancy.8)

Hitomi et al.9) and Liu et al.10) described a high-speed
imaging system with pixel-wise coded exposure and
achieved the sparse representation of videos by learning an
over-complete dictionary. Portz et al. used random pixel-
wise exposure to reconstruct a high-speed HDR video from
the coded input.11) The use of pixel-wise coded exposure
leads to powerful results of capturing HSV with high
compressions even for complex scenes. However, pixel-wise
coded exposure requires advanced hardware such as liquid
crystal on silicon or digital micro-mirror devices that
would be difficult to fit into smaller cameras.11) Thus, the
hardware implementation of the pixel-wise coded exposure
is challenging and is a significant deviation from current
commercial camera designs.7)

In consideration of easy achievement in modern sensors,
we further exploit the possibility of using a single flutter
shutter camera to achieve HSV reconstruction in this
paper. In fact, flutter shutter photography has been already
supported by several machine vision cameras. The closest
prior work is proposed by Holloway et al.7) They model the
temporal redundancy of videos using the total variation of
videos along the temporal direction, without modeling the�E-mail address: khhuang.nudt@gmail.com
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spatial redundancy of videos. As a consequence, the
reconstruction ability of their method is limited. This paper
proposes to use a 3D hyperbolic wavelet basis based on
Kronecker product12,13) to jointly model the spatial and
temporal redundancy of videos. Besides, we incorporate the
total variation of temporal correlations in HSV as a prior
knowledge to further enhance our reconstruction quality.
The hyperbolic wavelet basis can simultaneously model all
types of structure present on all the video dimensions with
different scales, nicely catering for the nature of HSV that it
has different degrees of smoothness along its spatial and
temporal dimensions.

The idea of employing hyperbolic wavelets to exploit
the spatial-temporal redundancy comes from Ref. 13. They
concerned more about the compression of multidimensional
signals, while we want to explore the possibility of
reconstructing HSV with a low-speed flutter shutter camera.
The remainder of the paper is organized as follows:
Section 2 describes the coded sampling process of the
proposed method. Section 3 depicts the 3D hyperbolic
wavelet basis based on Kronecker product and presents our
reconstruction model. The experimental results are reported
in Sect. 4 and we conclude in Sect. 5.

2. Coded Sampling via Single Flutter Shutter Camera

A flutter shutter camera opens and closes the shutter
according to a predefined binary pseudo random sequence
within the exposure duration to modulate the incoming light.
Here, we use the flutter shutter camera to obtain a coded
video where each coded frame is a linear combination of the
underlying high-speed frames along the temporal dimension.
Figure 1 depicts the coded sampling process of the proposed
method. If the underlying HSV f has N frames and each
frame is a m� n two dimensional image denoted by f t, then

through the coded sampling process, each coded frame yk is
given by an exposure of L high-speed frames with a binary
random sequence bk ¼ ðbk;1; bk;2; . . . ; bk;LÞ; k ¼ 1; 2; . . . ; K:

yk ¼
XL
t¼1

bk;tfðk�1ÞLþt þ �k; k ¼ 1; 2; . . . ; K; ð1Þ

where �k 2 R
m�n is the corresponding measurement noise,

bk 2 R
1�L, yk 2 R

m�n and the captured low-speed coded
video y ¼ ðy1; y2; . . . ; yKÞ 2 R

m�n�K, K ¼ N=L.
Let yðu; vÞT ¼ ðy1ðu; vÞ; y2ðu; vÞ; . . . ; yKðu; vÞÞT be the

consecutive voxels of the observed coded video along the
temporal dimension at spatial position ðu; vÞ, and fðu; vÞT ¼
ðf1ðu; vÞ; f2ðu; vÞ; . . . ; fNðu; vÞÞT be the corresponding voxel
series of the underlying HSV at the same spatial position.
The signal observation model along the temporal dimension
can be written as

yðu; vÞT ¼ BK�Nfðu; vÞT þ �ðu; vÞT; ð2Þ
where �ðu; vÞT ¼ ð�1ðu; vÞ; �2ðu; vÞ; . . . ; �Kðu; vÞÞT and BK�N

is a block diagonal matrix made of K binary pseudo
sequences as follows

BK�N ¼

b1 01�L � � � 01�L

01�L b2 � � � 01�L

..

. ..
. . .

. ..
.

01�L 01�L � � � bK

2
66664

3
77775
: ð3Þ

Let vecðyÞ be the vectorized format of the observed coded
video y by stacking all the m� n�K voxels into one
column in temporal-vertical-horizontal order. And let vecðfÞ
be the vectorized format of the desired HSV f in the same
way. Then, we have

vecðyÞ ¼ �vecðfÞ þ vecð�Þ; ð4Þ

Fig. 1. (Color online) Coded sampling process of the proposed method.
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where � 2 R
mnK�mnN is the measurement matrix which is

made of matrix BK�N as

� ¼

BK�N 0K�N � � � 0K�N

0K�N BK�N � � � 0K�N

..

. ..
. . .

. ..
.

0K�N 0K�N � � � BK�N

2
66664

3
77775
: ð5Þ

In Eq. (4), the number of unknown variables is much
larger than the available equations. Therefore, to recover the
underlying HSV f from the captured low-speed coded video
y based on Eq. (4) is a severely under-determined problem,
which has infinite number of solutions.

3. HSV Recovery

3.1 The unsymmetric structure of HSV
Fortunately, as the high-speed videos have significant

spatial-temporal redundancy, inspired by the advances in
compressive sensing, we decide to use the video priors to get
a stable reconstruction by solving a convex optimization
problem. The most common used video prior is that the
underlying HSV is sparse or near sparse when represented
in some appropriate transform basis, e.g., Wavelet, Fourier
and DCT. In this paper, we focus on the wavelet transform
which is widely used nowadays for sparse representations of
natural images or videos. There are usually two ways to
transform the video signal for getting a sparse representa-
tion. One is to apply a 2D wavelet basis to the video frame
by frame and does not consider any temporal correlations.
The other is to use a 3D isotropic wavelet basis to jointly
model the spatial-temporal redundancy of the video signal.
The sparse representation using a 3D isotropic wavelet basis
is usually better than using a 2D wavelet basis frame by
frame due to the incorporation of exploiting the temporal
redundancy. However, the performance of the 3D isotropic
wavelet basis is not optimal because the properties of the
videos are not symmetric along the spatial and temporal
dimensions, especially for HSV signals, which means that
there are different degrees of smoothness along different
dimensions in videos.

We selected the first 250 high-speed frames from
‘‘card mons’’ dataset and ‘‘PendCar lowres’’ dataset14) re-
spectively and selected the first 100 high-speed frames
(cropped to 256� 256) from ‘‘ResolutionChart’’ Dataset.15)

Table 1 describes the average standard deviations (STD) of
three high-speed video sequences along horizontal, vertical
and temporal dimensions, respectively. The result shows that
the STD along the temporal dimension is much smaller than
the STDs along the horizontal and vertical dimensions, while
the STDs along the horizontal and vertical dimensions are
very close. Therefore, it is reasonable to apply the transform
along the temporal dimension in a different way from the
transforms along the horizontal and vertical dimensions
when using a 3D wavelet transform in the HSV processing.

Ideally, we should formulate a wavelet basis that can
simultaneously account for all the structures present in the
HSV. In fact, multidimensional signals often reveal structure
in each mode which allows one to adopt good approximate

representations based on the Kronecker product of diction-
aries associated to each one of the modes.12) Next we will
show that the Kronecker product matrices offer a natural
means of generating such a sparsity basis.

3.2 Kronecker product for sparsity basis
Given two matrices A 2 R

P�Q and B 2 R
R�S, the

Kronecker product A� B 2 R
PR�QS is defined by

A� B ¼
a11B � � � a1QB

..

. . .
. ..

.

aP1B � � � aPQB

2
664

3
775: ð6Þ

For a 3D video signal f 2 R
m�n�N , its mode-d vectors are

obtained by fixing every index except the one in mode-d ,
where d 2 f1; 2; 3g. For example, the mode-3 vector of f
is denoted as f i; j;� ¼ ½fði; j; 1Þ; fði; j; 2Þ; . . . ; fði; j; NÞ�. The
default vectorized format of a video is usually defined as
stacking all its mode-1 vectors in one column. However,
since we implement compressive sampling along the
temporal dimension of the video, the vectorized format of
a video in this paper is obtained by stacking all the mode-3
vectors in one column.

From the definition of the Kronecker product, it is easy to
find that we can rewrite our measurement matrix in Eq. (5) as

� ¼ Imn � BK�N ¼ Imn � ½blkdiagðb1;b2; . . . ;bKÞ�; ð7Þ
where Imn denotes the mn� mn identity matrix and
blkdiag(�) denotes an operator which can construct a block
diagonal matrix.

More generally, for an N-dimensional signal X 2
R

I1�I2�����IN , we assume each mode-d vector is sparse or
near sparse in the basis �d. Then a Kronecker sparsity
basis can be obtained by the Kronecker product as � ¼
�N � � � � ��2 ��1.

12) We can encode the vectorized
format of X using a single transformation with this
Kronecker sparsity basis, i.e.,

vecðXÞ ¼ �Tvecð�Þ ¼ ð�N � � � � ��2 ��1ÞTvecð�Þ; ð8Þ
where vecð�Þ is the vectorized format of coefficients �.
For our HSV signal processing, we have

vecðfÞ ¼ ð�h ��v ��tÞTvecð�Þ; ð9Þ
where �h, �v, and �t are 1D transform bases for the
horizontal dimension, the vertical dimension and the
temporal dimension, respectively.

3.3 Hyperbolic wavelets
Video signals can be represented by wavelets in a more

Table 1. Average STDs of HSV sequences along horizontal,
vertical, and temporal dimensions.

Horizontal Vertical Temporal

card mons 64.797 69.894 15.726
PendCar lowres 40.991 35.583 4.661
ResolutionChartDataset 28.733 28.962 11.043
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compact way because the discontinuities in video usually
take substantially fewer wavelet basis functions than sine-
cosine basis functions (e.g., DCT, DFT) to achieve a
comparable approximation. The wavelet decomposition of
a 1D signal f ðtÞ; t 2 ½0; 1� of size 2n is given by

f ðtÞ ¼ c00�ðtÞ þ
Xn�1

j¼0

X2 j�1

k¼0

djk¼ jkðtÞ; ð10Þ

where �ðtÞ is the scaling function and ¼ jkðtÞ is the wavelet
function at scale j and position k. The scaling coefficient
c00 and the wavelet coefficients djk at scale j and position
k compose the final wavelet transform coefficients; the
support of the wavelet function ¼ jk at scale j and position k
is about [k2�j; ðk þ 1Þ2�j]. If we write Eq. (10) in matrix-
vector form as our earlier notation as x ¼ ��, then � is a
matrix with the scaling and wavelet functions of scales
1; 2; . . . ; n as columns and � is a vector containing the scaling
and wavelet coefficients with a form as � ¼ ½c00;¼00;¼10;
¼11;¼20; . . .�T.

From Table 1 we know that the STDs along the horizontal
and vertical dimensions are very close, which means the
popular 2D isotropic wavelet will suffice for an image
transform. But for videos, especially the high-speed videos
which have more similarity along the temporal dimension,
the 3D isotropic wavelet transform with the same parameter
of scale in all three dimensions is usually impotent. Hence,
regularization of 3D wavelet transform coefficients to solve
the under-determined system in Eq. (4) usually results in
poor reconstruction quality. Some researchers try to sparsify
a video across the temporal dimension against the motion
information,8,14) such as optical flow. The main issue, in this
case, is the motion information is not available before
acquisition, and an iterative and computationally demanding
estimation procedure should be carried out.

To overcome the above challenges, we propose to use the
3D hyperbolic wavelet transform to simultaneously exploit
the redundancy in HSV along all three dimensions. A 3D
hyperbolic wavelet basis can be simply defined as Kronecker
product of three 1D wavelet bases, i.e.,

¼ j1; j2; j3;k1;k2;k3 ¼ ¼ j3;k3 � ¼ j2;k2 � ¼ j1;k1 ; ð11Þ
where ð j1; j2; j3Þ 2 N

�3 and ðk1; k2; k3Þ 2 Z
3. A 3D hyper-

bolic wavelet basis is obtained from Kronecker product of
all possible combinations of three 1D wavelet bases with
different scales, while a 3D isotropic wavelet basis makes
use of the same scale along all dimensions, i.e., in this case,
j1 ¼ j2 ¼ j3.

3.4 Reconstruction model incorporating TV regularization
Zhang16) demonstrated the flexibility to incorporate total

variation (TV) prior information into L1-minimization
decoding models and gave a theoretical guarantee that
adding prior information can never hurt but possibly
enhance recoverability. For HSV, there is more temporal
redundancy than spatial redundancy because the exposure
interval of each frame is very small. In this case, the total
variation of the temporal correlations in HSV should be very
small, which is defined as

kfkTV ¼ kðImn �rtÞvecðfÞk1; ð12Þ
where rt is the first-order differential operator along the
temporal dimension, so that

rt ¼

1 0 0 � � � 0

�1 1 0 . .
. ..

.

0 �1 1 . .
.

0

..

. . .
. . .

. . .
.

0

0 � � � 0 �1 1

2
66666666664

3
77777777775

: ð13Þ

Combining the ‘1 regularization based on the 3D
hyperbolic wavelets and the temporal TV regularization,
we propose to solve the under-determined problem in
Eq. (4) by solving the following ‘1 minimization problem

argmin
f

kð¼h � ¼v � ¼tÞvecðfÞk1 þ �kfkTV
s:t: k�vecðfÞ � vecðyÞk2 	 �; ð14Þ

where � is the variance of the measurement error. In all our
experiments we fix the parameters � ¼ 0:5 and � ¼ 0:1.

4. Experimental Results

4.1 Validity of the proposed method
We first verified the performance and capability of the

proposed method through simulation. We simulated the
low-speed coded video using Eq. (1) with a 1000 fps video
sequence ‘‘ResolutionChart’’ dataset credited to Amit
Agrawal. For implementing convenience, we cropped the
video sequence to a spatial resolution of 256� 256 pixels
and normalized the pixel values to the range of ½0; 255�.
Figures 2(b) and 2(c) are the reconstructed high-speed
frames (frame 56) using our proposed method and
Holloway’s method7) at 8� temporal super-resolution,
respectively. Both of the two results have good visual
quality and high peak signal-to-noise ratio (PSNR).
Figures 2(d) and 2(e) are the corresponding recovered
high-speed frames using the proposed method and
Holloway’s method at 16� temporal super-resolution,
respectively. Although there is abundant texture information
at the central part of the frame, the quality of our
reconstructed result is good enough to distinguish these
details, and the improvement of the visual quality is apparent
over the result in Fig. 2(e). Because Holloway’s method
only exploits the redundancy along the temporal dimension,
the quality of the reconstructed video decays quickly when
the temporal super-resolution factor increases, while our
method can still maintain good reconstructed quality at 16�
temporal super-resolution. The fine details in Fig. 2(f ) are
the close-up versions of the regions in Figs. 2(d) and 2(e)
labeled with rectangles, respectively. The comparison of the
close-up versions further verifies the superiority of the
proposed method.

Figure 3 depicts the PSNR curves of the first 64 recovered
high-speed frames of ‘‘ResolutionChart’’ dataset using the
proposed method and Holloway’s method at 16� temporal
super-resolution and 8� temporal super-resolution, respec-
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tively. The PSNR values obtained by the proposed method
and Holloway’s method at 8� temporal super-resolution
fluctuate around 34 and 33 dB respectively, while the PSNR
values derived by the proposed method and Holloway’s
method at 16� temporal super-resolution fluctuate around
29 and 22.5 dB, respectively. Apparently, with the increase
of temporal super-resolution factor, the decay speed of the

quality of reconstructed HSV of our proposed method is not
as quick as Holloway’s method in terms of PSNR.

4.2 The influence of sparse representations and TV
regularization

In this section, one intent is to demonstrate the superiority
of the proposed use of 3D hyperbolic wavelets by showing
the reconstruction performance comparison for different
sparse representations, and the other is to show the
improvement of incorporating TV prior knowledge in the
proposed method. The input low-speed coded frames
were simulated on ‘‘Cardmons’’ dataset using Eq. (1).
‘‘Cardmons’’ dataset has a frame rate of 250 fps and the
spatial resolution of each frame is 256� 256. For a fair
comparison, we only use the sparse representations to
exploit the video redundancy without adding the TV prior
knowledge in the reconstruction process, i.e., we set � ¼ 0

in Eq. (14). Figures 4(b)–4(e) are the recovered frames
(frame 11) at 16� temporal super-resolution using 3D DFT,
3D DCT, 3D isotropic wavelets and 3D hyperbolic wavelets
for sparse representations in the reconstruction process,
respectively. It can be seen visually that the result in
Fig. 4(e) gets the best performance, which demonstrates
the superiority of using 3D hyperbolic wavelets for sparse
representation of HSV. Since we did not incorporate the TV
prior knowledge, the reconstructed result in Fig. 4(e) is
actually not ideal; there are some ghost artifacts around the
edges in the frame, especially in the playing card area.
Hence, the PSNR of Fig. 4(e) only achieves 22.40 dB.

0 10 20 30 40 50 60 70
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45

Frame Index
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N
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B

)

Proposed(8X)
Proposed(16X)
Holloway's(8X)
Holloway's(16X)

Fig. 3. (Color online) PSNR values of the first 64 recovered
frames using the proposed method and Holloway’s method at 8�
and 16� temporal super-resolution respectively with respect to
frame index.

(a) (b) (c)

(d) (e) (f)

Fig. 2. (Color online) Reconstructed results of HSV sequence ‘‘ResolutionChart’’ dataset credited to Amit Agrawal.
(a) The ground truth. (b) and (c) are the reconstructed frames (frame 56) using our method and Holloway’s method at 8�
temporal super-resolution with PSNR of 33.03 and 32.59 dB, respectively. (d) and (e) are the corresponding reconstructed
frames using our method and Holloway’s method at 16� temporal super-resolution with PSNR of 29.18 and 22.56 dB,
respectively. (f ) is the close-up version of the corresponding regions labeled with rectangles in (d) and (e).
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Figure 4(f) is the final result recovered by the proposed
method using 3D hyperbolic wavelets and incorporating the
TV prior knowledge at 16� temporal super-resolution. It is
apparent that the ghost artifacts are significantly reduced.
Actually, the PSNR of Fig. 4(f) achieves 27.49 dB which is
about 5 dB higher than the PSNR of Fig. 4(e) that did not
incorporates the TV prior knowledge in the reconstruction
process.

4.3 Real-data results
We implemented the HSV system by employing a Point

Grey Flea2 video camera to capture a moving toy train. Flea2
works in IEEE DCAM Trigger mode 5 which supports coded
exposure functionality. The coded exposure pattern was
provided by an external trigger using an Arduino Duemilanove
board. The experimental setup is given in Fig. 5.

Flea2 video camera has a maximum frame rate of 7.5 fps
in trigger mode 5 due to hardware limitation. In our
experiment, the random binary sequences were set to 16 in
length, resulted a compression factor of 16�. Hence, the
HSV we recovered using the proposed method had a frame
rate of 120 fps. Figure 6 (top-left) shows one of the coded
frames captured by our camera. For simplicity and without
loss of generality, we selected fixed regions which had
abundant texture information from these coded frames as the
input of the proposed method, as shown in Fig. 6 (top-right).
The bottom row in Fig. 6 shows three reconstructed frames.
Notice that the blurring is significantly reduced, which
demonstrates the validity of the proposed method.

4.4 Implementation details
In our experiments, the 3D wavelet basis is built with

order 8 Daubechies wavelet bases deployed by the Rice
Wavelet Toolbox (RWT).17) In consideration of the
computational complexity, we divided the video into
16� 16 patches and reconstructed them in sequence.
Recalling our coded sampling process, we know that the
measurement matrix � is a block diagonal matrix with many
zeros which means the randomness of � will decrease with
the number of input coded frames. In addition to computa-
tional load, we cannot recover arbitrarily many high-speed
frames at a time. We tested the input coded frame number K
in our experiment, and found K ¼ 4 was a good choice.

Fig. 5. (Color online) Experimental setup.

(a) (b) (c)

(d) (e) (f)

Fig. 4. Performance comparison of different sparse representations. (a) The ground truth. (b)–(e) are the recovered
high-speed frames (frame 11) at 16� temporal super-resolution using 3D DFT, 3D DCT, 3D isotropic wavelets and 3D
hyperbolic wavelets for sparse representations in the reconstruction process with PSNR of 20.24, 19.53, 17.34, and
22.40 dB, respectively. (f ) is the recovered frame using the proposed method which incorporates TV prior knowledge,
with PSNR of 27.49 dB.
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5. Conclusion

In consideration of easy implementation in modern
sensors, this paper further exploits the possibility of the
recovery of HSV using a single flutter shutter camera. We
fully account on the nature of HSV that it has different
degrees of smoothness along different dimensions and
construct a 3D hyperbolic wavelet basis based on Kronecker
product to jointly model its spatial and temporal redundancy.
We also utilize the flexibility of ‘1 minimization problem
and incorporate TV regularization in our reconstruction
model. Experimental results on simulated video and real
data are promising and demonstrate the efficacy of the
proposed method. CMOS sensor cameras usually use rolling
shutter and can be controlled very easily. Combination of
rolling shutter and coded exposure together to find some
interesting applications will be our future work.
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