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The imaging system based on a fish-eye lens generally has to correct the distortion of fish-eye images. The distortion
correction based on the Bayer image signal is valuable, such as reducing the computation burden of image signal
processing chips and providing a new imaging system structure of fish-eye lens. In this paper, a distortion correction
method of fish-eye lens based on the Bayer image signal is proposed. Firstly, a distortion correction method that focuses
on vertical straight lines and processing delay is proposed. Secondly, according to the correlation among color channels
of the Bayer image, a novel Hermite interpolation method appropriate for Bayer image signal is proposed. Finally, a
prototype system of fish-eye-lens-based imaging is established and the real-time field-programmable gate array (FPGA)
implementation of the proposed method is demonstrated. The experiment demonstrates that the proposed distortion
correction is not only characteristic of real-time processing and the smaller computation amount, but also applicable to

embedded hardware.
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1. Introduction

Since a fish-eye lens can view scenes within a wide angle
(reaching or even exceeding 180°), they have been widely
applied in the area of video surveillance. However, fish-eye
images are inappropriate for viewing owing to their serious
distortion, which may represent straight lines in the scenes
as curves. Therefore, it is necessary to correct the fish-eye
images into “visual” normal images by eliminating or
reducing distortion, which is generally known as distortion
correction of the fish-eye lens.

Although many studies on the distortion correction of the
fish-eye lens have been reported, almost no research has
taken the characteristics of the imaging system into account.
General distortion correction methods suppose that the input
and output are color images in RGB format or grey images.
However, in imaging systems, the original signals collected
and output by a complementary metal oxide semiconductor
(CMOS) or charge-coupled device (CCD) imaging sensor
are generally are Bayer image signals. In Bayer images,
every pixel has only one value of green, red, and blue color
channels. Among all pixels, 50% are green, while red and
blue account for 25% each. Figure 1 shows the Bayer format
image. To get the final RGB images, a series of processing
(e.g., white balance, demosaicing, color correction, and
gamma correction) must be conducted for the original Bayer
image signal, which is generally known as image signal
processing (ISP). In addition to the imaging sensor, the
image signal processing chip is also an important component
of the imaging system. A distortion correction based on the
Bayer image signal that can be carried out before the ISP
procedure has some advantages. For example, it can be
carried out using independent hardware or be integrated into
a CMOS sensor to output corrected Bayer images to ISP
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Fig. 1. (Color online) Bayer format image.

chips, thus reducing the computation burden of ISP chips
and improving the flexibility of imaging system design."
However, the distortion correction based on the Bayer image
signal faces some challenges. For example, it has a high
demand of the processing delay of the image signal.
Furthermore, interpolation of the Bayer image, which is
required in distortion correction, cannot be well accom-
plished by using traditional image interpolation methods.
We aim to study how to conduct distortion correction of
the fish-eye lens on a Bayer image signal. Since the imaging
sensor outputs Bayer image signals successively, memory
buffering and delayed processing of Bayer image signals are
necessary in correction. Generally, directly applying the
traditional distortion correction methods, which neglect the
image processing delay, into Bayer image signal processing
will bring a one-frame delay, thus influencing the real-time
performance of the imaging system. We focus our attention
on the image processing delay in our distortion correction
method. Furthermore, the vertical distortion of vertical
objects (e.g., buildings, pedestrians, etc.) in the fish-eye
images severely impacts viewing, which is a key factor that
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determines the correction method. Based on the processing
delay and vertical straight lines, a new distortion correction
method is proposed, which can process images without delay
and correct vertical straight lines in the scenes. The image
distortion correction requires image interpolation (that is,
estimating the pixel value of the pixel with decimal
coordinates). The traditional image interpolation algorithm
cannot achieve a good interpolation effect when applied
directly into Bayer image interpolation since it is only
applicable to grey images or RGB images.” Based on the
known strong correlation among color channels, the Hermite
interpolation of a Bayer image is proposed, which is
experimentally shown to be more accurate without increas-
ing computation complexity compared with the traditional
interpolation methods (e.g., cubic interpolation). To test the
proposed algorithm, an experimental fish-eye imaging
system is established. Different from the traditional fish-
eye imaging system, a piece of a FPGA module is added
between the CMOS sensor and the ISP chip. The distortion
correction of the Bayer image signal is conducted on the
FPGA module, thus enabling the ISP chip to receive the
corrected Bayer image signal directly. The proposed
algorithm is implemented on an FPGA board and the
processing delay as well as the resource consumption are
analyzed.

Section 2 gives a brief introduction to distortion correc-
tion of the fish-eye lens. Section 3 gives our correction
method and the Hermite interpolation of the Bayer image.
In Sect. 4, the experimental analysis of the Bayer image
interpolation method is given firstly, and then the experi-
mental fish-eye imaging system, FPGA implementation
details, and analysis of correction delay and resource
consumption are presented. Section 5 concludes the paper.

2. Brief Introduction to Distortion Correction of Fish-
Eye Lens

Lens distortion correction is a basic research problem
in the imaging field. Researchers mainly focus on the
establishing and solving of a camera model, which
represents the mapping between a 3D spherical surface
and the 2D camera plane.>® The distorted images with a
normal viewing angle can be mapped on a 3D spherical
surface through the camera model and then projected using
the perspective projection to obtain orthoscopic images. This
indicates that the camera model and perspective projection
determine the correction method. However, perspective
projection is inapplicable for the distortion correction of
wide-angle images. If an image with a wide viewing angle is
corrected by using the perspective projection, the image
edge will be stretched severely. Theoretically, the perspec-
tive projection of a 180° fish-eye image will be an infinite
image. In conclusion, although the camera model could
represent the mapping relation between the fish-eye image
and the 3D spherical surface, it is not able to provide a
projection method to show the fish-eye image.

A complete 180° fish-eye image corresponds to a
hemispherical surface. If longitude and latitude are taken
as the coordinate system of the spherical surface, every pixel
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of the fish-eye image has a corresponding coordinate
according to the fish-eye camera model. Therefore, the
distortion correction of a fish-eye image can be viewed as
the projection of the hemispherical surface onto a flat image
plane. In fact, representing spherical maps onto a flat plane
was an early challenge that cartographers faced. Scientists
have proposed hundreds of projection methods,”® including
Mercator projection and Gauss—Kruger projection. The
projection methods are differ from each other because of
different demands or constraints. For example, Mercator
projection characteristically represents loxodromes as
straight segments, which conserve the angles with the
meridians, so it is widely applied in drawing nautical and
aviation charts. It is intuitive to represent fish-eye images by
using cartographic projections. For instance, the open source
software of panorama tools” applies different projection
methods to map panoramic images, including fish-eye
images and stitched panoramic images. There are also
projection methods specially designed for representing
panoramic images, such as Pannini.!”? However, none of
these projection methods can eliminate all the distortions in
fish-eye images of various different kinds of scenes. Carroll
et al,'V Kopf et al.,'” and Wei et al.'¥ employed self-
adaptive projection and calculated different projections
according to different scene contents to adapt to different
scenes and requirements and reduce the distortion of
important image contents. The method of Carroll et al.'V
calculates projections with minimum distortion according to
the image knowledge as horizontal straight lines, vertical
straight lines and other straight lines marked by users on the
image and the automatic detected face region. Such a self-
adaptive projection method can correct most fish-eye images
to obtain images appropriate for observation by the human
eye. However, its application is significantly restricted
owing to the requirement of manual marking of straight
lines, which is impractical for a video capture system.
Furthermore, corrected images output by self-adaptive
projection have irregular shapes and often require abundant
tailoring to obtain standard rectangular images, which will
decrease image content. Memory buffering and processing
delay have to be considered when correcting fish-eye image
signals. No associated research has been reported yet
according to our literature review.

Distortion correction will involve the calculation of pixels
with decimal coordinates. Image interpolation is required for
computing those pixels’ values. Classical image interpola-
tion includes bilinear interpolation and bicubic interpola-
tion,>'¥ both of which are based on grey or color images.
Direct application of them on a Bayer image will only
provide a poor interpolation result. Note that the demosai-
cing technique in the imaging field is sometimes called
Bayer image interpolation,'” which focuses on the inter-
polation of the two absent colors on the Bayer image. This is
different from our interpolation of Bayer images. To avoid
confusion, the Bayer image interpolation referred to in this
paper dose not mean demosaicing of the Bayer image. No
research on Bayer image interpolation has been reported yet
according to our literature review.
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Fig. 2. (Color online) Distortion correction of fish-eye image
includes two steps: firstly, project the fish-eye image onto a
spherical surface by using a fish-eye camera model; secondly, re-
project the spherical surface onto a 2D plane through a certain
projection method to obtain the corrected image.

3. Distortion Correction based on Bayer Image Signal

3.1 Projection method

In Fig. 2, we suppose that the camera locates in the center
O; of a 3D sphere; then, the fish-eye lens with a 180°
imaging angle can view all scenes within the range of a
hemisphere. The longitude (0) and latitude (¢) are taken as
the spherical coordinate system. Considering the most
common shooting direction OgW (horizontal front), we can
suppose both the longitude and latitude of the shooting
direction as 0°. Let Py = (us, vs, ws) be a point on the
spherical surface, Py = (x4, yq) is the projection of P; on the
fish-eye image plane (i.e., distorted image plane), and
Py, = (x4, yy) is the corresponding point on the undistorted
image plane. Thus, a distortion correction method is
equivalent to a conversion from (x4, yq) to (xy, yy).

The camera model of a fish-eye image in this paper is the
most common equidistance model

a=-"2 (1)

where « is the angle between the incident ray OgPs and the
principal axis OsW, rq = /x5 + y3 is the distance between
the image point Py and the principal point Oq4 (i.e., image
center), and f is the equivalent focal length of the fish-eye
lens. To better illustrate the problem, we let the radius of the
sphere also be f, as shown in Fig. 2.

The coordinates of point Ps can be computed from (x4, y4)
by using

us = fsina - x4/rq,

Vs =fsina - yq/rq, 2)
ws = f cosa.
Let P’ be the projection of P on the plane UO;W. The
spherical coordinates of P are
0 = [ WO,P = tan" ' (us/wy),
¢ =L P OPs = sin" vy /f).
Thus, by combining Egs. (1)—(3), the coordinates of the fish-
eye image (x4,yq) can be converted into spherical coordi-
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nates through the following formula:

o= - [ tan V) V)
@ =sin"! [yd sin<m/f>/m]_

Now, the problem becomes how to project P to Py
(i.e., the re-projection step in Fig. 2). The ideal projection
method is the perspective projection, which enables all
straight lines in the scene to remain as straight lines in the
projected image. Since the corresponding projected image of
a fish-eye image with a 180° viewing angle is theoretically
an infinite image, perspective projection is inapplicable
owing to its limited processing viewing angle. In fact, no
practical projection method can ensure that all straight lines
in a fish-eye image can be projected as straight lines. In
a practical application, it is necessary to make a choice
according to the specific requirements to obtain a satisfac-
tory projection method. As a result, our projection method
is developed from factors of vertical straight lines and
processing delay.

“

3.1.1 Vertical straight lines

During horizontal shooting, the distortion of vertical
objects (e.g., buildings and pedestrians) in the scene
influences the visual effect significantly. To maintain
vertical objects, the image’s coordinates have to satisfy

Xy = f0. (%)
Combining Eq. (5) with Eq. (1), then,

Xy = ftan”! [xd tan(«x?1 + yﬁ/f)/\/xﬁ + y(zi]. 6)

3.1.2 Delay

The delay of the correction algorithm refers to the time
difference between the output signal and the input signal,
which is mainly determined by the distance between the
output image coordinate and the input image coordinate. The
distance between coordinates is mainly measured by the
vertical coordinate since image signals are arranged in rows.
To reduce the image signal processing delay, the corrected
vertical coordinate shall be the same as that of the source
image (fish-eye image):

Yu = Y- @)

A new projection method is determined according to
Egs. (6) and (7). Figure 3 represents the longitude and
latitude map of the corresponding fish-eye model and the
proposed projection. The longitude and latitude ranges are
0e(—mm), ¢ €(—m/2,7/2), which represent a hemi-
sphere. The intervals between both longitudes and latitudes
are 10°.

Figure 4(a) is a fish-eye image and Figs. 4(b)—4(e) are the
corrected images by the proposed new projection method
and other existing correction methods. It can be seen from
Fig. 4(e) that the proposed algorithm could correct the
vertical straight lines. Also, our corrected image has no
black edging, which means our algorithm can be applied
directly without tailing and losing information content.
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Fig. 3. Longitude and latitude maps of (a) fish-eye model and (b) proposed projection.

(a) (b) (©)

(d) ©

Fig. 4. (Color online) Fish-eye image correction effect of new projection method and other existing correction
methods: (a) input fish-eye image, (b) perspective projection, (c) Mercator projection, (d) the method of Carroll et al., and
(e) proposed projection method.
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Fig. 5. (Color online) Simplified correction method: (a) correc-

tion method and (b) approximation error.

3.2 Approximate correction method

The distortion correction calculation expressed by
Egs. (6) and (7) is relatively complicated, and involves
calculation of the trigonometric function. These complicated
calculations will consume some hardware resources when
applied in an embedded system. For this reason, we apply a
simplified approximate formula:

{ Xy = kxgq
Yu = Yd
where k is the stretching factor. We can assume that the size

of the whole fish-eye image with a 180° viewing angle is
2R*2R. We use the following equation to compute k

h=— R ©)

The distortion correction method described by Egs. (8)
and (9) is proximate to the projection model previously
proposed. This can be interpreted by using Fig. 5(a). Firstly,
the y-axis remains the same according to the requirement of
no delay, that is, y, = y4. Secondly, all pixels in the same
row stretch by using the stretching factor k, that is, x, = kxq.
Be sure that the whole image is only filled with effective
pixels after the stretching. In other words, all pixels on the
straight line AB are stretched on the straight line A’B’. To
analyze the approximation error, we compute an error image

; ®)
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(b)

Fig. 6. (Color online) Simplified method:
latitude map and (b) correction effect.

(a) longitude and

according toerr(R+ 1 +xg, R+ 1+ yq) = |xf]1) - xfl2)|,xd €
[—R,R],ya € [-R, R], where x(V is computed by using
Eq. (6) and x{? is computed by using by Eq. (8). Figure 5(b)
shows the error image when R is 100, and we can see that
the approximation error is small in the middle part of the
image. The average error is 2.38. If we only use the image
with an aspect ratio of 16 : 9 in the middle part, the average
error will be 0.80.

The correction effect and longitude and latitude of the
simplified algorithm are shown in Fig. 6. Comparing Fig. 6
with Figs. 3(b) and 4(e), the simplified longitude and
latitude show evident differences on the top and bottom
parts, but a small difference in the middle part. The
simplified algorithm can guarantee the correction effect of
most image contents. The experimental image demonstrates
that the corrected image basically can maintain vertical
objects, as shown in Fig. 6(b). The simplified correction
formula is very simple, only requiring one multiplication for
every pixel and calculating one stretching factor for every
row of pixels.
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Fig. 7. One-dimensional Bayer image interpolation.
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Fig. 8.

Traditional interpolation methods and our Hermite interpolation method: (a) nearest neighbor interpolation and

linear interpolation, (b) cubic interpolation, and (c) Hermite interpolation. G(x) is the pixel values of interpolating G
channel. The nearest neighbor interpolation and linear interpolation use the neighboring two G pixels for interpolation,
while cubic interpolation uses four neighboring G pixels for interpolation. Hermite interpolation uses five neighboring
pixels for interpolation, which involves both G and R channel information.

3.3 Hermite interpolation of Bayer image

The distortion correction involves the calculation of
decimal pixel values, which is known as image interpolation.
During horizontal distortion correction, two-dimensional
Bayer image interpolation can be simplified into one-
dimensional interpolation. Every row of the Bayer image
contains pixel values of two channels. Take the G and R
pixel row for example. G pixels and R pixels occurred
alternatively in one pixel row. In Fig. 7, rings represent the
pixels on the source image and boxes are the pixels on the
corrected image. The corrected pixel values are also G pixels
and R pixels alternatively. Therefore, one-dimensional
Bayer image interpolation means to calculate the corrected
G or R pixel value when given G, R, G, ..., R pixel values
of the source image.

There are many image interpolations, mainly including
the nearest neighbor interpolation, linear interpolation, and
cubic interpolation.'® Since general image interpolations are
used to process two-dimensional images, the linear inter-
polation and cubic interpolation are commonly known as
bilinear interpolation and bicubic interpolation. It is easy to
deduce their interpolation formulas for one-dimensional
Bayer images. To better introduce our Hermite interpolation,
the nearest neighbor interpolation, linear interpolation, and
cubic interpolation for a one-dimensional Bayer image are
described.

(1) Nearest neighbor interpolation. In Fig. 8(a), suppose
the pixel value G(x) at x needs interpolation and GO, R1, and
G?2 are the pixel values of Positions 0, 1, and 2, respectively;
then, G(x) is determined by the nearest G pixel values. The
interpolation formula is:

GO, 0<x<l,

G2, (10)

Gl = { l<x<2.

(2) Linear interpolation. In Fig. 8(a), linear interpolation,
similar to the nearest neighbor interpolation, also involves
the neighboring two G pixel values. Suppose G(x) is the
linear equation of x and given two equations (G(0) =
G0, G(2) = G2) of two end points; then, it can get the linear
interpolation equation of G(x):

G(x)=(1—f).Go+f.Gz. (11)
2 2

(3) Cubic interpolation. The cubic interpolation supposes
the pixel value is the cubic function of the coordinate and
involves four neighboring pixel values. Keys proposed the
cubic interpolation equation.'® Similarly, the cubic inter-
polation for a one-dimensional Bayer image supposes G(x)
is the cubic equation of x; then, according to Fig. 8(b), the
cubic interpolation of G(x) involves GO, G2, G4, and G6
(dotted boxes). Based on Keys’ cubic interpolation equation,
the cubic interpolation equation for a one-dimensional Bayer
image can be inferred as

3 2 3 2
G(x)=<—x—+x——f)-co+(3i—si+1>

16 4 4 16 8
3 % x
2 ——+—+-]-G4
x G +( 16+2+4) G

X3 X2
+ <E - §> . G6. (12)
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Fig. 9. Hermite interpolation of Bayer image (three intervals).

The distance between pixels of the same channel is
widened owing to the cross arrangement of different color
channels in the Bayer image. As a result, the pixel interval
of Bayer image interpolation takes 2 unit lengths, while
the pixel interval of traditional image interpolation is
1 unit length. An increased pixel interval will reduce the
interpolation precision. The above-mentioned interpolations
neglect the neighboring R pixels during the interpolation
of G pixels. In fact, different color channels are strongly
correlated with each other. Proper utilization of such
correlation can contribute to higher interpolation precision.
Therefore, the Hermite interpolation, which uses the
correlation among different color channels for Bayer image
interpolation, is proposed.

The Hermite interpolation algorithm divides the inter-
polation interval into several sub-intervals, which are used
to solve the cubic polynomial curve of fitting variables.
Different sub-intervals have different cubic polynomial
curves. Although the fitting function is a piecewise function,
it requires smooth connection between two neighboring sub-
intervals. In other words, the cubic polynomial curve shall
have the same function value and functional derivative value
at the connection between two neighboring sub-intervals.
According to Fig. 9, GO, R1,G2,...,G6 is a section of a
Bayer image, which is divided into three intervals, namely,
[—2,0], [0,2], and [2,4]. The corresponding cubic poly-
nomial curves of these three G channel intervals are Ggy(x),
G(x), and G46(x), respectively.

In view of the smooth connection of Hermite interpola-
tion, the curves shall satisfy:

G(0) = Gr(0),
G(2) = Gus(2),
G'(0) = G,(0),
G'(2) = Gi(2).

According to the above two conditions, it can be known
that the cubic polynomial curve equation (with four
unknown parameters) can be solved if the function value
and functional derivative value of two end points of the
interval are known. In one-dimensional Bayer image
interpolation, the function value of two interval end points
of the G channel is known, whereas their derivative values
are unknown and have to be calculated through other
approaches.

The three color channels of the RGB image are closely
correlated with each other. Generally speaking, if one pixel
has a larger R pixel value, it also has larger G and B pixel
values. Furthermore, the correlation of gradient image

13)

(convolution result of image and gradient operator) among
these three color channels is more evident. Generally,
different color channels have relatively similar high-
frequency information. In natural images, the gradient values
of these three color channels of most pixels can be viewed as
equal. Such priori knowledge implies that the gradient value
of one color channel can be estimated by the gradient
information of other color channels, which is widely applied
in demosaicing. On this basis, the derivative value of the R
channel can be used to substitute the derivative value of
the G channel approximately, thus providing a derivative
equation for solving the Hermite equation.

Take the G(x) in Fig. 9 for example. According to the
priori hypothesis, we can obatin the following four equations:

G(0) = G2,

G(2) = G4,

R3 — R1
Y
R5 — R3
—
Suppose the equation of the G(x) curve is:

G'(0) = (14)

G'(2) =

G(x) = ap + arx + arx* + azx°. (15)
Then, the known four equations are
G(0) =ap = G2,
GR) =ag + 2a, + 4a, + 8az = G4,
R3 — R1
2 9
G/(Z) =a; +4a, + 12a; =

G'(0)=a = (16)

R5— R3
5 .
Based on Eq. (16), we can obtain,

ag = G2,
R3 — R1
“="3

3(G4—-G2) 2Rl —R3—RS5
a 4 4 ’

G2—-—G4 R5-—RI
asz = 1 + 3 .

Now, the Hermite interpolation formula of the one-
dimensional Bayer image is known. G(x) is solved from
Egs. (15) and (17). During the interpolation of G(x), four
parameters (ag,a;,az,as) shall be calculated first by
substituting five pixel values (R1, G2, R3, G4, and RS5)
into Eq. (17). Then, the demanded G(x) shall be calculated
by substituting x coordinates into Eq. (15). In addition, the

a7)

az
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Fig. 10.

solution of G(x) also can be expressed by Eq. (18) which
has a different computation mode. It calculates the weights
of five interpolations (fr1,fc2,fr3,fc4,frs) according to x
coordinates, based on which it calculates the weighted
average of five pixel values (R1, G2, R3, G4, and RS) to
obtain the needed G(x). These two algorithms can be
selected according to practical situations.

3 2 3 2
G(x):(_ui_f).RH(i_Ll)

8§ 2 2 4 4
2 x X 3
XG2+(—Z+§)-R3+(—Z+T>
2 AP
G4 ———1]-RS5 18
« +<8 4) (18)

2 fri(x) - R1 4 foa(x) - G2 4 fra(x) - R3 + foa(x)
x G4 + fgs(x) - RS.

The Hermite interpolation formula based on Bayer priori
information involves the nearest two G pixels and three R
pixels. Hermite interpolation has several advantages. On one
hand, traditional cubic interpolation completely neglects the
neighboring R channel information, while Hermite inter-
polation makes use of the neighboring R pixels. Theoreti-
cally, rational utilization of pixel information of other
channels can improve the interpolation precision to a large
extent. In view of this principle, most demosaicing
algorithms tried various means and achieved better inter-
polation effect. Therefore, Hermite interpolation shall have a
higher interpolation precision compared than cubic inter-
polation. On the other hand, although both Hermite
interpolation and cubic interpolation belong to cubic
polynomial interpolation, Hermite interpolation involves
five neighboring pixels, smaller than the interpolation range
of cubic interpolation (eight neighboring pixels). This brings
the Hermite interpolation advantages (e.g., small calculation
amount).

(Color online) Test images from Kodak dataset.

4. Experimental Methods

In this section, firstly, we experimentally analyze Bayer
image Hermite interpolation. Secondly, the proposed distor-
tion correction method is verified on an FPGA board.

4.1 Experimental analysis of Bayer image interpolation

Among traditional image interpolations, the nearest
neighbor interpolation is hardly used owing to its severe
aliasing artifact. Cubic interpolation obtains higher accuracy
than linear interpolation. Therefore, bicubic interpolation is
commonly applied in image interpolation. To test the effect
of Hermite interpolation on Bayer images, experiments of
three interpolations (linear interpolation, cubic interpolation,
and Hermite interpolation) are carried out under the same
conditions for Bayer images. Taking the linear interpolation
and cubic interpolation for reference, the proposed Hermite
interpolation on a Bayer image is evaluated from the visual
effect and peak signal-to-noise ratio (PSNR) of the image.
The experiments use the Kodak dataset.'® The dataset has
24 images (Fig. 10), in which many image details enable us
to evaluate the effect of Hermite interpolation intuitively.
For this reason, this dataset is the favorite dataset of
researchers of demosaicing in evaluating the interpolation
effect of various algorithms. Although the studied interpola-
tion is different from that of demosaicing, their requirements
and evaluation on the interpolation are similar.

To test the Bayer image interpolation in distortion
correction, the images from the Kodak dataset are added
with distortion and mosaic to obtain the distorted Bayer
images. Based on these distorted Bayer images, three
interpolations are applied for Bayer image interpolation in
distortion correction, thus providing the corrected Bayer
images. To evaluate and compare the interpolation effect of
corrected Bayer images, on one hand, the corrected Bayer
images are demosaiced'” to obtain RGB images for the sake
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(Color online) Comparison experiment of Bayer image interpolation effect.

Fig. 12.
interpolation, and (c) Hermite interpolation.

of intuitive evaluation and comparison of the interpolation
effect from the perspective of the image effect. On the other
hand, the original images from the Kodak dataset are added
with mosaic to obtain Bayer images, which are used as a
reference to calculate the PSNR of the corrected Bayer
images, thus providing the quantitative comparison result
of these three interpolations effects. Distortion correction

(Color online) Visual results of interpolation effect comparison: (a) linear interpolation, (b) cubic

applies the correction method described by Eqs. (8) and (9).
A distortion adding equation can be obtained through the
reciprocal transformation of the distortion correction equa-
tion. The basic experimental process is shown in Fig. 11.
Figure 12 represents the experimental results of an image.
The three images of the first left column are the results of
three interpolation methods and the images of the right two
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Table 1. Testing PSNR (dB) of three interpolations. For all 24
testing images, the proposed Hermite interpolation achieves
a higher PSNR compared with linear interpolation and cubic
interpolation.

Method Linear Cubic Hermite
1 28.3397 28.6264 31.1430
2 34.6072 34.7776 36.8320
3 37.2506 37.9944 40.4508
4 34.8381 35.3573 37.6632
5 27.7612 28.2699 30.9813
6 32.0905 32.4734 34.8706
7 35.2795 36.0861 38.6636
8 24.4214 24.6689 27.0478
9 33.9174 34.3457 36.7068

10 33.5049 34.1129 36.6462
11 32.3943 32.8305 35.2668
12 35.3424 35.8074 38.1037
13 26.4063 26.6969 29.1076
14 31.8545 32.3717 34.8103
15 31.5073 31.8176 33.9694
16 37.8926 38.5464 41.0116
17 32.9059 33.3530 35.8067
18 29.5375 29.8183 32.2079
19 29.9253 30.2310 32.3098
20 33.0676 33.5107 35.7215
21 31.6363 32.0334 34.5214
22 31.9587 32.3180 34.6598
23 36.8203 37.7203 40.1037
24 27.9189 28.2316 30.5792
Avg 32.1324 32.5833 34.9660

columns are the highlighted areas of the first left column
images. Viewed from the images of the first column, the
three interpolations accomplish correct correction interpola-
tion and obtain correct images. The images of the second
column are the amplified results of the yellow frame in the
images of the first column, which reveal that linear
interpolation and cubic interpolation produce evident color
spots (within the red frame in the images), with the former
producing the most color spots. Relatively speaking,
Hermite interpolation produces smaller color spots. The
images of the third column are the amplified results of the
blue frame in the images of the first column, which reveal
that linear interpolation and cubic interpolation destroy the
image edges (red rings), while Hermite interpolation keeps
the image edges almost completely. Hermite interpolation
has obvious visual superiorities.

According to the experimental process in Fig. 11, the
PSNR is calculated for the quantitative evaluation of the
interpolation effect. The design formula of PSNR is

25572
PSNR = 1010g10 M_SE, N

19)
where MSE is the mean square error of the image. The
PSNR test result is listed in Table 1. Cubic interpolation has
a higher PSNR than linear interpolation. The PSNR of
Hermite interpolation is 2-3dB higher than that of the
previous two interpolations, indicating obvious superiorities.
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Fig. 13. (Color online) The experimental system: (a) hardware
structure and (b) experimental system.

4.2  FPGA experimental verification

An experimental system is designed to verify the proposed
algorithm. The hardware structure of the system is shown in
Fig. 13. Figure 13(a) describes the hardware structure,
including the fish-eye lens, CMOS sensor, FPGA, and ISP
chip. Figure 13(b) is the experimental system (side perspec-
tive). The image sensor is Micron’s MT9P031, which is a
1/2.5” CMOS image sensor with an active-pixel array of
2592H x 1944V (5Mp). In our experiments, a windowing
function is used to obtain a 1920H x 1080V x 30fps
(1080p30fps) video, where the pixel number is 2 Mega
(2Mp). The fish-eye lens is Sunex’s DSL215 miniature lens
for a 1/2.5” format imager, whose effective focal length is
1.55 mm and approximate horizontal fov is 186°. The FPGA
is a Xilinx Spartan-6 LX25, a low-cost FPGA offering a
good solution for cost-sensitive embedded applications. The
ISP chip is Texas Instruments’s TMS320DM368 digital
media processor, which supports Bayer image signal input.

This system without the FPGA module is a common fish-
eye imaging system. The fish-eye lens can capture lights
within the 180° scene. The CMOS sensor converts the
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Fig. 14. (Color online) Image processing procedure.
Table 2. Hardware resource consumption of the algorithm.
Resources Slices Slices Reg LUTs BRAM/FIFO DSP48A1
(3758 total) (30064 total) (15032 total) (52 total) (38 total)

Quantity
(Percentage) 355 (9.4%) 723 (2.4%) 772 (5.1%) 2 (3.8%) 6 (15.8%)

optical image into the electronic signal to output the Bayer
image signal. The ISP chip receives the Bayer image signal
output by the CMOS sensor and then accomplish the ISP
procedure to obtain and output (display, store, or transfer)
standard RGB images (video). To verify the distortion
correction of the Bayer image, an FPGA module is added
behind the CMOS sensor in the imaging system, which
makes the Bayer image signal output by the CMOS pass
through the FPGA module before being delivered to the ISP
chip. FPGA accomplishes the previously mentioned correc-
tion of fish-eye Bayer images. The image processing
procedure is shown in Fig. 14, which demonstrates that the
ISP chip receives the corrected Bayer images.

Since distortion correction only involves the x-axis, the
correction of one row of pixels can be accomplished within
the row of pixels. Because the fish-eye image is bilaterally
symmetrical, the correction of the left half image only
involves the left half image and the correction of the right
half image only involves the right half image. As a result, we
only have to use a Block Ram for one row of pixels in the
FPGA to cache the successive Bayer image signal. The
image correction starts after a half row of pixels have been
cached. The corrected Bayer images are output to the ISP
chip directly rather than being stored in the Block Ram. On
one hand, the correction algorithm only requires a Block
Ram for one row of pixels instead of abundant RAM (image
cache). On the other hand, the correction algorithm will only
bring a half row of pixels delay (less than 0.02 ms for an
1080P 30FPS video).

To save FPGA computing resources, the algorithm makes
some fine turning during the correction on FPGA. When
calculating the distortion correction coordinates using
Eq. (8), the calculated stretching factors k of all rows are
stored in the memory, which can be read when needed. This
saves calculation of the stretching factor k (involving the
square, square root, and other operations). As a result, the
coordinate calculation of every pixel only requires one
multiplication, consuming less computing resources.

Equation (18) is applied during the Hermite interpolation
on one-dimensional Bayer images. Take the interpolation of
the G channel at the GR pixel row as an example. After the

interpolation coordinate xq4 is calculated through Eq. (8), the
five neighboring pixel values (R1, G2, R3, G4, and RS5) can
be located and their corresponding interpolation coordinates
x can be calculated. It can be found from Eq. (18) that the
weights (fr1(x), f2(x), fr3(x), fg4(x), and fgs(x)) have to be
calculated according to the x coordinate, which involves
square and cubic operations. We discretized the domain of
x (x € [0,2]) into 64 positions with equidistance. The five
weights of these 64 positions were calculated in advance and
stored in the memory. Two neighboring weights will be
selected for linear interpolation to obatin the final weightes.
Thus, the calculation of the weights is simplified into lookup
and interpolation. Next, we conduct weighted average to the
previous located five pixels according to the weights, thus
finishing the Hermite interpolation and obtaining the final
pixel value G(x).

Table 2 presents the FPGA synthesis results for the
distortion correction algorithm, including the number of
slices, slices reg, look-up tables (LUTs), Block Ram
(BRAM), and DSP48A1. The hardware resource utilization
is reported for the Xilinx Spartan-6 LX25 device. The total
resources of the device and percentages of the algorithm
used are presented as well. The percentages show that our
algorithm consumes very few resources. For example, on
average, our algorithm consumes less than one-tenth of the
total resources. This shows that our algorithm can be carried
out using very low cost independent hardware or integrated
into a CMOS sensor with few additional hardware resources.

5. Conclusions

In this paper, we propose a distortion correction of the
fish-eye lens based on a Bayer image signal, which can be
used in a real-time imaging system of the fish-eye lens and
reduce distortions brought by the fish-eye lens. The
experiment based on FPGA verifies this algorithm. In fact,
the experimental system based on FPGA also implies a
prototype system of fish-eye imaging product. For CMOS
developers, such distortion correction can be integrated into
the CMOS chip owing to its simple calculation and prompt
data processing, thus saving the FPGA chip. This distortion
correction method mainly focuses on the correction of
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vertical objects. However, the correction of non-vertical
straight lines is also of great significance. Therefore, further
study on a new distortion correction method with wider
applicability is still necessary. Since this distortion correc-
tion only changes the horizontal axis, the interpolation only
involves the one-dimensional image interpolation. However,
with the variation of distortion correction, two-dimensional
Bayer image interpolation will be challenged in future.
Therefore, how to develop two-dimensional Hermite inter-
polation from one-dimensional Hermite interpolation also
deserves detailed investigation.
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