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In order to utilizing the local and non-local information in the image, we proposed a novel sparse scheme for image
restoration in this paper. The new scheme includes two important contributions. The first one is that we extended the
image prior model in conventional total variation to the dual-prior models for combining the local smoothness and non-
local sparsity under regularization framework. The second one is we developed a modified iterative Split Bregman
majorization method to solve the objective function with dual-prior models. The experimental results show that the
proposed scheme achieved the state-of-the-art performance compared to the current restoration algorithms.
# 2013 The Japan Society of Applied Physics
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1. Introduction

As is known to all, image restoration is a significant field
of image processing, which wants to reconstruct the original
signal from its degradation observation. Generally, the
observation can be written as the following form:

y ¼ Hxþ n ð1Þ
where y is the degradation observation, x and n is the
original signal and additive white noise, and the matrix H is
usually the degradation matrix. With the model in Eq. (1),
the restoration is implemented by minimizing the following
objective function:

min
x
fky�Hxk22 þ �priorðxÞg: ð2Þ

Here, the priorðxÞ represents the prior knowledge of original
signal x and � is called regularization parameter. By the
Eq. (2), we can get that the prior model of signal plays a
great role in image restoration. It means that the different
prior model decided the different restoration performance. In
the past decades, for this inverse problem, there are many
creative prior expressions to make the performance more
and more perfect. Its development looks like the biological
evolution, initially it adopted the energy form kxk2, and then
the smoothness form kLxk22 (L is a smooth operator), next
robust statistical distribution form for pðLxÞ and so on.1)

Although the results are improved but we still did not find a
reasonable form until the total variation (TV) produced.2–4)

The TV method is though to be most effective among the
classic regularization models, because the natural image
satisfies the smoothness constrain commonly. It means that
the performance is guaranteed by the piecewise constant
assumption, but which is only satisfied in the local area of
image practically. And then, for improving the prior model,
some methods based sparsity regularization emerged. These
methods understand that the original signal x is consist
of linear combination of base function. Meanwhile, the
representation coefficients satisfy the sparsity property under

the base framework. So we can explore some robust prior
model for the coefficient, which is widely used to solve the
inverse problem.5–7) In this paper, what we want is to
combine the TV and sparsity prior model. On one hand,
for utilizing their advantages respectively, we take the TV
prior model as the local smoothness constrain item and
the sparsity prior model as the non-local sparsity constrain
item. On the other hand, for solving the novel objective
function, we develop a modified iterative Split Bregman
majorization.

The paper is organized as follows. We began in Sect. 2
with a description of the TV and sparsity prior model, and
how to establish the novel objective function with them. In
Sect. 3, we will give a modified iterative Split Bregman
majorization and its application to the objective function in
Sect. 2. Section 4 shows the simulation results compared
to the current algorithms. We summarize and conclude in
Sect. 5.

2. Dual-Prior Constraint Models

As to the minimization problem in Eq. (2), many
publications adopted the TV regularization which is widely
used in the image inverse problem to solve it in recent
years.8,9) In the TV method, the prior model is defined as
follows:

priorðxÞ ¼ TVðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrh

i; jxÞ2 þ ðrv
i; jxÞ2

q
; ð3Þ

where the r�
i; j is the first-order partial differential operator

of the patch whose center is xði; jÞ, h, and v represent the
horizontal direction and vertical direction respectively. That
is, the TV regularization can be seen as

min
x
fky�Hxk22 þ �TVðxÞg: ð4Þ

And it often shows good performance with the local
smoothness assumption. Yet, Bioucas-Dias talked in Ref. 3
that though both smooth and sharp edge have the similar
TVðxÞ, but it did not mean the TV regularization favor the
sharp edge relatively to the smooth one. In addition, it only
constrained the local information, but ignored the non-local
geometrical similarity.�E-mail address: liyibing0920@sina.cn
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Unlike the classic regularization whose prior model is
established for the original signal itself, the sparse regu-
larization established the prior model for its coding with
certain dictionary.10) Take the Laplace distribution as the
prior model, it is usually written by the Bayesian framework
as follows:

min
�
fky�HD�k22 þ �k�k1g; x ¼ D�: ð5Þ

Here, � is the coefficient of x and D is the base function set.
The optimization in Eq. (5) is also called sparse coding,
which is effective in many signal processing applica-
tions.11,12) The advantage of prior model in Eq. (5) is that
it can constrain the sparsity. Specially, if D is a non-
singular matrix, the formularization in Eq. (5) can be
rewritten as:

min
x
fky�Hxk22 þ �kT ðxÞk1g: ð6Þ

Here, T ðxÞ can be seen as the invertible transformation for x.
In order to develop the advantages both of the TV and

sparse model, we try to combine the two above prior models,
and establish a dual-prior optimization problem. Motivated
by the non-local mean method, we want to utilize some non-
local geometrical similarity in image. First, we divided the
image into many patches whose size is 8� 8. Then, suppose
xi;j is a patch of them and ði; jÞ can be decided by the center
pixel of each patch. Xi;j is the matrix that includes the
patches similar to xi;j. We construct the following novel
objective function:

min
x
fky�Hxk22 þ �1TVðxÞ þ �2kTsparseðXi;jÞk1g

Xi;j ¼ ½column1; column2; � � ��
ð7Þ

where Xi;j can be seen a set of patches similar to xi;j. We
suppose the x1i;j, x

2
i;j, x

3
i;j, . . . are patches similar to xi;j, and

we construct the Xi;j as follows:

xi;j 2 R8�8 ! column1 2 R64�1

x1i;j 2 R8�8 ! column2 2 R64�1

x2i;j 2 R8�8 ! column3 2 R64�1

..

.

And the k � k1 is a sparsity measure. Equation (7) realizes
our idea to establish an objective function with dual-prior
model, which can constrain not only the local smooth but
also the non-local sparsity among the similar patches. As to
the Tsparseð�Þ, we can select any 2D transformation, such as
wavelet, contourlet and so on.

3. A Scheme for Dual-Prior Constraint Models
Optimization

In this section, a new scheme for solving the optimization
problem in Eq. (7) will be introduced. Recently, a so-called
Split-Bregman method proposed by Goldstein and Osher13)

shows its advantage for solving the l1 minimization.14) Based
on the Split-Bregman, we develop a modified iterative Split-
Bregman algorithm to solve the dual-prior constraint model
proposed in Sect. 2.

With the splitting technique, the optimization can be
changed to be the following constraint formulation:

min
x;!;s

fky�Hxk22 þ �1TVð!Þ þ �2kTsparseðSÞk1g
s:t! ¼ x and S ¼ X

ð8Þ

Next, by the Bregman, we can change Eq. (8) into the
following unconstraint optimization problem.

ðx̂kþ1; !̂kþ1; ŝkþ1Þ

¼ argmin
ky�Hxk22 þ �1TVð!Þ þ �2kTsparseðSÞk1
þ �1kx� ð!þ pkÞk22 þ �2kX� ðS þQkÞk22

( )

ð9Þ
Then, pk and Qk are updated by:

pkþ1 ¼ pk � ðx̂kþ1 � !̂kþ1Þ
Qkþ1 ¼ Qk � ðX̂kþ1 � Ŝkþ1Þ ð10Þ

With the Eqs. (9) and (10), a modified Bregman method is
proposed to divide the optimization into three minimization
problems and get the x̂kþ1, !̂kþ1, and Ŝkþ1 separately. The
pseudo code for algorithm is shown in Algorithm I.
Specially, we set ŝk and q̂k are the first column of the Ŝk

and Q̂k respectively.
In Algorithm I, we should notice that the optimization ‹

is a quadratic convex programming, so the solution can be
expressed as:

x̂kþ1 ¼ ðHTH þ �IÞ�1A;

A ¼ HTyþ �1ðpk þ !̂kÞ þ �2ðqk þ ŝkÞ ð11Þ
Here, � ¼ �1 þ �2 and I is the identity matrix.

Table 1. Synthetic algorithm.

Algorithm I

1. Initialization: k ¼ 0, p0 ¼ q0 ¼ 0, !̂0 ¼ ŝ0 ¼ 0,
�1 ¼ �2 ¼ 0:2, �1 ¼ �2 ¼ 0:1;

2. For k ¼ 0 to MaxIterNum do

3. x̂kþ1 ¼ argmin
ky�Hxk22 þ �1kx� pk � !̂kk22þ
�2kx� qk � ŝkk22

� �
; ‹

4. ~!k ¼ x̂kþ1 � pk, � ¼ 2�1=�1;
5. !̂kþ1 ¼ argminf�k!� ~!kk22 þ TVð!Þg; ›

6. ~sk ¼ x̂kþ1 � qk, � ¼ 2�2=�2;
7. ŝkþ1 ¼ argminf�ks� ~skk22 þ kTsparseðSÞkg; fi

8. pkþ1 ¼ pk � ðx̂kþ1 � !̂kþ1Þ;
9. qkþ1 ¼ qk � ðx̂kþ1 � ŝkþ1Þ;

End

Table 2. Algorithm for optimization fi.

Algorithm II

1. Initialization: ~sk, � ¼ 2�2=�2
2. Search the similar patches of ~sk in the image.
The measurement is the Euclidean distance
between the two patches: S ¼ fsjks� ~skk2 � �g
(� is the threshold to control the precision);

3. Implement the 2D Sparse Transformation to the S:
C ¼ T 2D

sparseðSÞ
4. Shrinkage the coefficients: Cnew ¼ shrinkðCÞ;
5. Implement the inverse transformation to the Cnew:
Snew ¼ T�1ðCnewÞ;

6. Output: the first column of Snew as the ŝkþ1;
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About the optimization ›, we take the method called
FISTA in Ref. 8 to solve our total variation problem. As to
the optimization fi, due to its huge computation cost for
searching the similar patches, we adopt the shrinkage

scheme15,16) whose pseudo code is outlined in Algorithm II
to get the approximate solution.

The transformation in Algorithm II can select any 2D
sparse transformation. Here, we adopt the non-subsampling

(a) (b)

(d) (e)

(c)

(f)

Fig. 1. The results comparison of House with the noise deviation 20. (a) Noisy; (b) C-LLD; (c) TV; (d) SRD; (e) NL-
mean; (f ) proposed algorithm.

(a) (b) (c)

(d) (e) (f)

Fig. 2. The results comparison of Butterfly with the noise deviation 20. (a) Noisy; (b) C-LLD; (c) TV; (d) SRD; (e) NL-
mean; (f ) proposed algorithm.
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contourlet transformation (NSCT),17) which shows so many
advantages in representing the image signal.

4. Experimental Results

To evaluate the proposed algorithm, we carried out
several experiments on the natural image compared to the
current restoration algorithms. Here, we take the denoising
task as the example. That is, we set the degradation matrix
H ¼ I, only leaving the noise matrix n. The test image are
respectively Lena (512� 512), Peppers (256� 256), House
(256� 256), and Butterfly (256� 256). The comparison is
conducted between the C-LLD (clustering-based locally
learned dictionary),18) TV (total variation regularization) in
Ref. 9, SRD (sparse restoration by l1 minimization with
over-completed DCT) by Ref. 12, NL-Mean (non-local
mean filter) in Ref. 19 and the proposed algorithm. Due to
the limited space, we only present the local results of House
and Butterfly in Figs. 1 and 2, respectively. Meanwhile,
the peak signal-to-noise ratio (PSNR) curves with different
noise deviations are depicted in Fig. 3.

Among the visual results, the C-LLD gets the worst effect
and generates many scratches. But specially, as to the Lena
(it is not shown here), C-LLD shows some advantages in
presenting the hair. The TV and SRD are good at recovering
the smooth regions, but fail in the texture regions. The result
of NL-mean is a little mottled, but shows some advantage on
PSNR. The proposed algorithm shows not only best visual

quality but also the satisfactory PSNR value among the
comparison methods. Beside, compared to the other curves,
our algorithm exhibits largo decline with the increasing
noise deviation. In addition, we test the performance with
two specific cases, whose parameters are �2 ¼ �2 ¼ 0, �1 ¼
0:2, �1 ¼ 0:1 and �1 ¼ �1 ¼ 0, �2 ¼ 0:2, �2 ¼ 0:1 sepa-
rately. We do so is to test the performance constrained by
only TV or non-local sparsity regularizer. Compared to the
second group of parameters, the first group (only with TV
regularizer) generates better performance on local smooth-
ness, but worse result on the texture that can be guaranteed
by the non-local geometrical similarity. So, the proposed
algorithm with dual-prior constraint models can show
advantage on both of the smoothness and texture.

5. Summary and Future Work

In this paper, we proposed a novel method for image
restoration. Firstly, in consideration of the advantage of the
TV model and sparse model, we combined the two models
in one optimization problem and construct an objective
function with dual-prior constraint model, which took the
TV model to constrain local smoothness and the sparse
model to constrain non-local sparsity. Secondly, we devel-
oped a scheme to solve the novel optimization, which can be
seen as a modified iterative Split-Bregman method. The
results showed the proposed algorithm can be a valuable tool
for the image restoration task. Future work can be extended
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Fig. 3. (Color online) PSNR curves with different deviations. (a) House; (b) Butterfly; (c) Peppers; (d) Lena.
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to: i) applications to image super-resolution or image
inpainting and so on; ii) a study of how to select the 2D
Transformation with different task.
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