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In this article, we propose an efficient and accurate compressive-sensing-based method for estimating the light transport
characteristics of real-world scenes. Although compressive sensing allows the efficient estimation of a high-
dimensional signal with a sparse or near-to-sparse representation from a small number of samples, the computational
cost of the compressive sensing in estimating the light transport characteristics is relatively high. Moreover, these
methods require a relatively smaller number of images than other techniques although they still need 500–1000 images
to estimate an accurate light transport matrix. Precomputed compressive sensing improves the performance of the
compressive sensing by providing an appropriate initial state. This improvement is achieved in two steps: 1) pseudo-
single-pixel projection by multiline projection and 2) regularized orthogonal matching pursuit (ROMP) with initial
signal. With these two steps, we can estimate the light transport characteristics more accurately, much faster, and with a
lesser number of images. # 2011 The Japan Society of Applied Physics
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1. Introduction

In computer graphics, it is important to reproduce a real-
world scene under arbitrary lighting conditions. The conven-
tional model-based approach accurately reproduces an
object scene only if the object scene has no complex light
transport effects, such as caustics, inter-reflection, subsur-
face scattering, and occlusion, which occur depending on
the scene. In contrast, an image-based approach — the
acquisition of light transport characteristics from an object
scene — is suitable for such complex scenes, but requires a
vast number of images. For this reason, a number of image-
based methods with fewer images have been proposed.
These proposed methods include environment matting,1–3)

dual photography,4) symmetric photography,5) and the kernel
Nyström method.6) Moreover, methods based on compres-
sive sensing have attracted much attention.7–9) Compressive
sensing is a recently proposed method that recovers a high-
dimensional sparse signal from a small number of non-
adaptive samples. We selected regularized orthogonal
matching pursuit (ROMP)10) because it is a fast and easily
implementable compressive sensing method. However, the
computational cost of ROMP is relatively high, as each pixel
of the reproduced image must be calculated; moreover,
it takes 5 – 7 h by multithread computation with the CPU
Intel� Core� i7-965 Processor Extreme Edition. Moreover,
the optimal reproduction parameters, the number of iter-
ations, and the number of bases added for each iteration
differ among scenes (Fig. 1). Smaller parameters are

insufficient for studying complex effects, and larger param-
eters are also not always the best; larger parameters cause
noise on simple effects by adding unnecessary non-zero
coefficients. In other words, the best reproduction needs to
assign the optimal parameters for each pixel separately.
However, no such assignment methods have been reported
yet, as they are considered to be very complicated and slow.
Still, even if possible, diverse iteration is not suitable for
parallel processing such as graphics processing unit (GPU)
computing, although ROMP is naturally suitable for GPU
computing.

In this article, we propose a series of methods termed
‘‘precomputed compressive sensing’’. Precomputed com-
pressive sensing consists of the following two steps:
1) ‘‘pseudo-single-pixel projection by multiline projection’’
for estimating a coarse light transport matrix by projecting
multiline patterns, and 2) ‘‘ROMP with initial signal’’, one
cycle of ROMP with low parameters to sophisticate the
coarse light transport matrix. In summary, the salient points
of this article are as follows:

. We propose ‘‘pseudo-single-pixel projection by multi-
line projection’’ for estimating the coarse light transport
matrix, which is a coarse transport matrix but accurate
enough for determining an initial signal.

. We propose ‘‘precomputed compressive sensing’’, i.e.,
coarse light transport estimation and one cycle of
ROMP, which allows us to calculate the matrix at low
cost with greater accuracy and fewer images.

. Our proposed method is suitable for GPU computing.
The conventional method8) on GPU was approximately
30 times faster than that on CPU (central processing
unit), and our proposed method on GPU is even 3 times
faster than the conventional one.
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Medicine, Keio University, Shinjuku, Tokyo 160-8582, Japan.
E-mail address: may-s@umin.net
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2. Related Works

Light transport characteristics — reflectance field — have
been defined as the eight-dimensional (8D) function com-
posed of a four-dimensional (4D) incident light field
(illumination) and a 4D exitant light field (view). Each 4D
is composed of two-dimensional (2D) coordinates and 2D
directions. Since this 8D function is too large to measure,
many research studies are focusing on a slice of this 8D
function by various methods. For example, brute-force
sampling is the simplest method of 4D reflectance field
acquisition, which entails capturing images and changing the
light direction, one by one. Debevec et al. measured the 4D
reflectance field from a fixed viewpoint under directional
lighting condition with a light stage.11) Wenger et al.
extended this method to reproduce moving objects.12) These
methods are not suitable for reproducing high-frequency
light transport effects owing to low sampling of the light
sources. Hawkins et al. resolved this problem using
Helmholtz reciprocity.13) These methods, based on brute-
force sampling, are simple, but require many images, which
takes much time and a very large amount of data. Therefore,

certain methods have been focusing on reducing the number
of images.

The simplest reduction method is overlapping. Sen et al.
measured the 4D reflectance field from a fixed viewpoint
under dense sampling lighting from one direction.4) They set
as many lights as possible, being careful not to allow them to
affect each other. Then the optimal overlapping pattern was
decided by illuminating a multiscaled block pattern adapted
to each scene. Masselus et al. also proposed an overlapping-
based method of measuring a six-dimensional (6D) reflec-
tance field without adaptation.14) They projected horizontal
and vertical block array images with respective blocks
independent of each other and without interaction between
them. In general, an adaptive approach requires complex
implementation because measurement and calculation are
performed simultaneously. Our proposed method is a non-
adaptive one in both steps.

Other methods assumed the reflectance field as a para-
metric model function. Zongker et al. assumed the reflec-
tance field as a block function.3) Chuang et al. extended this
method by replacing the box function with the oriented
Gaussian function.1) Matusik et al. proposed a weighted sum
of the rectangular function to relight the natural scene
under arbitrary lighting condition.15) As these methods
require nonlinear optimization for each pixel of the image,
the computational cost is very high. Although our proposed
method also recovers signals pixel by pixel, it is much faster
since the calculation cost of the pixel is lower and it is
suitable for GPU computing.

Wang et al. developed the Nyström method to estimate a
low-rank matrix from a small number of column vectors and
row vectors.6) This method can measure the reflectance field
with a small number of images (a few hundred). However,
the measurement device needs a diffuser between the light
emitter and the object scene, making it impossible to
reproduce the object scene under high-frequency lighting.
Our method also requires no more than a few hundred
images, and no special device is required other than a
projector and a camera.

Peers et al., Gu et al., and Sen and Darabi applied
compressive sensing to assume the reflectance field. Peers
et al. developed a novel hierarchical algorithm based on the
correlation among image pixels.7) However, their algorithm
is complex and the calculation cost is high. Gu et al.
recovered inhomogeneous participating media with com-
pressive structured light.16) In their method, inhomogeneous
participating media such as milk drip in water were recovered
properly, but this method is limited to monochrome media.
Sen and Darabi developed a modified ROMP method by
limiting the number of coefficients.8) In this method, all
pixels are computed with the same parameters and the same
number of iterations; however, this method is not suitable
for a scene with diverse non-zero coefficients, as shown in
Fig. 1. Although our proposed method uses a similar strategy
to Sen and Darabi’s method, our method can process each
pixel with various parameters according to the light transport
effect. Our proposed method is simple and accurate despite
the fact that it does not consider pixel correlation.

Ground truth

11.1 min 120.1 min Calculation time 

ROMP ROMP
(Large parameter) (Small parameter)

Fig. 1. (Color online) Relighting with conventional ROMP. The
top image represents the object scene. Each boxed scene was
magnified; red: the scene with subsurface scattering, blue: with
inter-reflection, green: single reflection with no non-zero coeffi-
cient. Ground truth and reproduced images are shown in the
respective columns; left: ground truth, real-scene image, center:
image reproduced by ROMP with large parameter ðb ¼ 10;
it ¼ 10Þ, right: image reproduced by ROMP with small parameter
ðb ¼ 3; it ¼ 3Þ. The parameters are shown in Fig. 5.
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3. Proposed Method

The schematic flow is shown in Fig. 2.
In this method, we assumed the use of one fixed projector

and one fixed camera, restricting the direction of incident/
exitant light, and then the reflectance field is determined as
4D function — 2D for the incident light and the other 2D for
the exitant light.

The projector resolution is denoted by p� q for emitting a
dense sampling lighting pattern, and the camera resolution
p0 � q0 for capturing images of the object. Then the
relationship between the camera image and the projector
image is expressed as

c ¼ Tl; ð1Þ

where l denotes a column vector of p� q length, represent-
ing a lighting pattern, c denotes a column vector of p0 � q0

length, representing a captured image corresponding to each
lighting pattern, and T is a matrix representing the light
transport between the camera image and the projector image.
The matrix T is called the ‘‘light transport matrix’’, and our
goal is to acquire T accurately with a low calculation time
and as small a number of images as possible. An accurate
T allows us to reproduce the object scene image under
arbitrary lighting conditions more accurately. Herein, each
element tij of the matrix T represents the light transport
coefficient from the j-th projector pixel to the i-th camera
pixel. The i-th row vector of the matrix T is called the
‘‘reflectance function’’ of the i-th camera pixel. The j-th
column vector of the matrix T represents the image that is
illuminated in the object scene only by the j-th pixel of the
projector.

Below we present the first step — pseudo-single-pixel
projection by multiline projection — in §3.1, and the concept
of the second step — ROMP with initial signal — in §3.2.
We demonstrate a detailed method of recovering the light
transport matrix in §3.3.

3.1 Pseudo-single-pixel projection by multiline projection
In this section, we present a method of acquiring a coarse

light transport matrix by projecting multiline patterns. The
schematic flow is shown in Fig. 3. A rough matrix was
recovered from a smaller number of images and directed to
the next step, ROMP. First, we illuminated the horizontal
and vertical line strip patterns with a width of w pixels.
To reduce the image counts, we projected multiple lines
simultaneously. The acquired images were then binarized
and clustered by k-mean clustering, and each cluster was
correlated with each line by its sequence. As all the projector
pixels within a row and a column are assumed to be
independent of each other, pseudo-single-pixel images are
approximated depending on the scene’s geometric and
material properties. When a single line was projected,
each pixel ðx; yÞ of each pseudo-single-pixel image Am;n is
calculated as

Am;nðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hmðx; yÞ � Vnðx; yÞ

p

ðHbin
m ðx; yÞ ¼ 1 ^ Vbin

n ðx; yÞ ¼ 1Þ
Am;nðx; yÞ ¼ 0 ðHbin

m ðx; yÞ ¼ 0 _ Vbin
n ðx; yÞ ¼ 0Þ;

ð2Þ

where Hm denotes the image illuminated with an m-th
horizontal line strip pattern, and Hbin

m is its binarized image.
Vn denotes the image illuminated with an n-th vertical line
strip pattern, and Vbin

n is its binary image.
Then we extended this to multiple lines. Assuming each

clustered line to be a single-line image, we separated the
cross-sectional image into respective pseudo-single-pixel
illuminated images. When two lines are projected simulta-
neously, this process reduces the number of images to 25%,
and to as low as 11% when three lines are projected.
Generally, it requires ðpþ qÞ=zw images, where p and q are
the projector resolution p� q, z is the number of lines
simultaneously projected, and w is the width of a projected
line. Although this pseudo-pixel estimation contains estima-
tion errors due to wrong clustering and different complex-
ities of scenes in a pseudo-pixel, such errors are corrected by
the following ROMP process. That is, the ‘‘crude’’ estima-
tion is more than sufficient. Then, the coarse light transport
matrix Tini was constructed as follows: 2D pseudo-single
illumination images were transformed into one-dimensional

Horizontal
line

patterns

Vertical
line

patterns

Binary
images

Clustered
images

Captured
images

Pseudo-single
pixel

images

Coarse light transport matrix

Relighting result

Bernoulli
patterns

Accurate light transport matrix

Captured
images

One cycle of ROMP

1) Pseudo-single pixel projection by multi-line projection 2) ROMP with initial signal

Relighting result

Illumination
pattern

Fig. 2. (Color online) Flow of proposed method ‘‘precomputed complex sensing’’.
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(1D) column vectors, and set to the corresponding points of
Tini, where the single-pixel illumination pattern is expected
to be. In other words, we stacked duplicates of each 1D
column vector w� w times into Tini. In the next step, tini,
each row vector of Tini, was employed as a default signal.
A relighting scene with the coarse transport matrix is shown
in Fig. 4.

3.2 ROMP with initial signal
In this section, we explain the theory of compressive

sensing. First, to recover the sparse signal v from x, we
employ

x ¼ �v; ð3Þ

where v denotes a column vector of n length, x denotes a
column vector of m length, and � is an m� n matrix, called
the sensing matrix. We can easily recover the signal v
accurately, if only m � n. On the other hand, in the case of
m� n, compressive sensing is utilized. To perform com-

pressive sensing, � has to meet the restricted isometric
condition (RIC):10)

ð1� "Þkvk2 � k�vk2 � ð1þ "Þkvk2; ð4Þ

with the parameters ð"; �Þ, where " 2 ð0; 1Þ for all �-sparse
vectors v. RIC enables any set of � column vectors of matrix
� to form an approximate orthogonal set. To meet RIC,
certain methods have been proved useful, namely, the use
of the Gaussian, binary, and Fourier ensembles.17) In this
article, we employed the binary ensemble, in which the
Bernoulli matrices are used for the sensing matrix, because
in this kind of projector–camera system, black and white
images such as Bernoulli patterns are suitable because
such images have the highest contrast; the Bernoulli matrix
is composed of randomly selected 1 and �1, with a mean
of 0.

There are two strategies for signal recovery — L1 mini-
mization and greedy pursuit. They have trade-offs: the
former has good performance with high computational cost
and the latter has relatively poor performance and low cost.
We selected the latter, i.e., greedy pursuit, for the fast
estimation of T. In this greedy-pursuit-based compressive
sensing, there are a number of methods; we selected ROMP,
which is especially suitable for fast estimation.10) The
algorithms of modified ROMP by Sen and Darabi8) and our
second step are shown in Fig. 5, where it and b are the
parameters that we determine when we start the calculation.

ROMP consists mainly of three steps, i.e., identification,
regularization, and optimization. In the identification and
regularization steps, ROMP searches contributing bases for
the output signal. This is the same as finding a non-zero
coefficient index of the recovering signal. This process
requires large matrix-vector multiplication and the sorting
of vector values. These processes are performed for each
iteration and are therefore time-consuming. Additionally, in
the simple lighting scene, the performance to find correct
contributing bases deteriorates with increasing numbers of
unnecessary non-zero coefficients in the recovering signal.
Once the incorrect bases are added to the index list, ROMP
cannot recover the exact signal because incorrect bases are
not removed at the following iteration; ROMP is a non-

Fig. 4. (Color online) Relighting scene with coarse light transport
matrix. Red: magnified image. Blue: corresponding position of
ground truth, real-scene image.

1st line

2nd line

Illuminated with 1st line
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Horizontal
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Vertical
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line image
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Fig. 3. (Color online) Flow of pseudo-single-pixel projection by
multiline projection. The coarse light transport matrix was
computed by multiline projection, clustering, and pseudo-single-
pixel elimination.
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zero addition algorithm and not a deletion algorithm. Our
proposed method of precomputed compressive sensing —
precomputed ROMP — is shown in Fig. 5(b). The conjugate
gradient method was used in the optimization step.

Our method pre-optimizes and adds just one loop of
ROMP for the initial signal — the coarse light transport
matrix. Here, Iini and vini were induced from tini as default
signals, where Iini denotes the possession of non-zeros in tini,
and vini denotes the number of non-zeros in tini. With this
initialization, the respective pixels have diverse non-zero
coefficients. In other words, this method allows us to acquire
the optimal parameters for each pixel, which is stated
as impossible in §2. Thus, pre-optimization and only one

cycle of ROMP with small parameters are necessary for
sophistication. In Fig. 1, we showed that extra non-zeros
induced noise on the simple effect, but that the addition of
small non-zeros in this process did not cause any visible
change.

The number of bases to be added b was set at five
empirically, which is so called ‘‘small’’. Actually, additional
ROMP is not necessary for all the pixels. The first pre-
optimization is sufficient in most cases even in complex and
simple scenes, but it is necessary for the edges of objects
(Fig. 6). This is because of the very small non-zeros on
the edges where normal is nearly orthogonal to the light
direction. Additional ROMP effectively eliminated this
noise. As those parts cannot have many non-zeros, additional
one cycle and five non-zeros were more than sufficient.

3.3 Light transport matrix recovery
In this section, we introduce a detailed method of light

transport recovery. This process is similar to that discussed
by Sen and Darabi,8) but is included here for completeness.
Now, returning to eq. (1), which is extended for plural
images as follows:

C ¼ TL; ð5Þ

where

ðC ¼ ½c1; c2; . . . ; ck	; L ¼ ½l1; l2; . . . ; lk	Þ;

where k denotes the number of images, ck denotes the
column vector representing captured images under each
illumination pattern, and lk denotes the column vector
representing an illumination pattern. Transposing the two
sides of eq. (3), we get CT ¼ LTTT. The i-th camera pixel
values from all the acquired images ci are written as

ci ¼ LTti; ð6Þ

where ti is the row vector of the matrix T. Equation (6) is
similar to eq. (3), and thus we reconstructed ti from the three
vectors ci, L, and tini with the compressive sensing theory,
because it fits the condition for compressive sensing, where
ti is sufficiently sparse. When ti is not sufficiently sparse,
compression with appropriate bases such as a wavelet is
necessary. We confirmed that ti is recovered adequately
without compression in this experiment.

(a) Modified ROMP (b) Proposed method
INPUT:

•  Sensing matrix L
•  Measurement matrix C
•  Number of iteration it
•  Number of bases for iteration b

OUTPUT:
•  Non-zero coefficient index set I

t

•  Reconstructed signal v

PROCEDURE:
Initialization

Residual vector r
0
 = v

Index set I
0
 = {0}

Approximation v
0
 = {0}

LOOP (t = 1 to it)

Identification
Choose the set J of b biggest absolute
values of observation vector u = LTr

t
.

Regularization
Divide J into subsets J

k
, which

satisfies |u
i
| < 2|u

j
| for all i, j    J

k
, and

choose subset J
0
 with maximum

energy of ||u
J0
||

2
.

Optimization
Set I

t
 = I

t-1
U J

0
, and

calculate the new output approximation
by the least-squares equation,

Start with c = v
t-1

, and update the residual

INPUT:
•  Sensing matrix L
•  Measurement matrix C
•  Initial non-zero index set I ini

•  Initial non-zero coefficient set v ini

•  Number of bases for ROMP loop b

OUTPUT:
•  Non-zero coefficient index set I
•  Reconstructed signal v

PROCEDURE:
Initialization

Index set I = I ini

Pre-optimization
Calculate the new output approximation 
by the least-squares equation,

Start with c = v ini, and update residual

v
t
 = arg min||C − L

It
z||

2
.

r
t
 = C − L

It
v

t
.

v = arg min||C − L
 
z||

2
.

r = C − Lv.

One cycle of ROMP loop

z   RI

z   RI

Fig. 5. Modified ROMP and proposed method. b and it are the
optimization parameters. We set b ¼ 5, empirically for the
proposed method. The conjugate gradient method was used in the
optimization step.

(a) (b)

Fig. 6. (Color online) Effects of additional ROMP cycle. (a) Proposed method with additional ROMP, and (b) without
additional ROMP. Noises are apparent on the edge after pre-optimization (b) but eliminated by additional ROMP (a).
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3.4 Implementation on GPU
Our proposed method and ROMP are suitable for parallel

processing because the recoveries of the respective ti
are independent of each other. We used NVIDIA CUDA
2.2 SDK and implemented three steps of ROMP, i.e.,

identification, regularization and optimization, as kernels.
First, we loaded all matrices on the main memory and then a
partial matrix representing 1024 reflectance functions was
copied to the global memory of GPU. Data on the global
memory were processed by multi-processors of GPU in
parallel, and results on the global memory were copied to the
main memory (Fig. 7).

4. Experiments and Results

Our setup is built inside a darkroom, as shown in Fig. 8.
We used an XGA DLP projector Mitsubishi LVP-XD205R
for illumination and a single-lens reflex digital camera

Global Memory

GPU

Multi-processor

Main memory

Kernel 1: Optimization

Kernel 2: Identification

Kernel 3: Regularization

Kernel 1: Optimization

CPU  
(1) Load all matrices on main memory
(2) Copy sensing matrix to global memory

(3) Copy partial matrices to global memory

(5) Copy partial refined matrix to main memory

(4) Send kernels to GPU sequentially

Sensing matrix Measurement matrix

L

Recovered signals

Non-zero indices and coefficients of
initial light transport matrix

Non-zero indices and coefficients of
refined light transport matrix

Initial signals

Repeat steps 3-5

L

I v

C

I 

ini v 

ini

Cpart

Cpart

I 

ini
part v 

ini
part

Ipart vpart

I 

ini
part v 

ini
part

Ipart vpart

Precopied
sensing matrix

Fig. 7. (Color online) Proposed method with GPU computing.

Camera
Projector

Scene

Fig. 8. (Color online) Photograph of measurement setup. Our
setup is built in a darkroom, and the scene is set in a box lined
with black cloth. A DLP projector illuminates the respective
patterns, and a camera records the illuminated scene.

(a) (b)

Fig. 9. (Color online) Reproduction result with fewest images. Each image is recovered using 128 images. (a) Our
proposed method recovered with 64 Bernoulli patterns and 64 line strip patterns, and (b) conventional method recovered
with 128 Bernoulli patterns.

Fig. 10. (Color online) Relighting result of the proposed method under arbitrary lighting condition.
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Nikon D3x for image acquisition. To illuminate the �1

value of the Bernoulli pattern, we illuminated the positive
and negative components separately and subtracted the
negative image from the positive one. Three images were
taken for each scene at different exposures; each image had a
480� 640 resolution, a three-color channel, and 8 bits for
each channel. Then, the images were merged into a high-

dynamic-range (HDR) image. A GPU NVIDIA Tesla�
C1060 and a CPU Intel� Core� i7-965 Processor Extreme
Edition were employed for computation.

Our proposed method was compared with the conven-
tional method by Sen and Darabi.8) Figure 9 shows the
recovery result with the fewest images. Each image is
recovered using 128 images; 64 Bernoulli patterns and 64

(a) 
Subsurface 
scattering 

(c) 
Transparent 

object 

(b) 
Complex 

shape 

(d) 
Inter- 

reflection 

Fig. 11. (Color online) Reproduction result with various scenes. (a) Subsurface scattering, (b) complex-shape object,
(c) transparent object, and (d) inter-reflection. The conventional method is of Sen and Darabi.8) In each scene, the top-left
image shows the ground truth; from the left, first column images are reproduction results obtained by conventional
method ðb ¼ 10; it ¼ 10Þ, second column images are those obtained by conventional method ðb ¼ 3; it ¼ 3Þ, third column
images are those obtained by proposed method. Each row represents the number of images used for estimation: 512, 256,
128, and 64 Bernoulli patterns from the top. Additional 64 images were used for the proposed method, in the first step.
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line strip patterns are used for our proposed method, and 128
Bernoulli patterns are used for the conventional method. Our
proposed method shows better recovery when the smallest
number of images is used. The details are shown in Fig. 11,
which present the recovery result with various types of
scenes — subsurface scattering, complex object, transparent
object, and inter-reflection. We set the projector resolution
to 128� 128. The projection line width was set to 2 pixels,
and two lines were emitted simultaneously. We set these
numbers empirically since the optimal parameters vary
between scenes. In short, 64 images were taken in the first
step. To refine the initial light transport matrix, we used 512,
256, 128, 64 Bernoulli patterns for ROMP. Additionally,
Fig. 10 shows the relighting result under various lighting
conditions. Our proposed method was applied to other
scenes with indirect illumination, simulating such conditions
as those in a movie theater (Fig. 12). In these scenes, a
model-based approach is common; however, an image-based
approach shows better simulation on a slightly irregular
surface of a dish and a complex-shaped glass. Our proposed
method can be extended to display-camera systems by
displaying the same patterns on TV, simulating a room
where a TV is left on.

Computational cost was measured with both CPU and
GPU, as ROMP is supposed to fit with GPU computing.
The conventional method was implemented on CPU first
with Cþþ, and then was reimplemented on GPU with
CUDA. As the conventional method ran very fast on GPU,
the proposed method was implemented on GPU. Table 1
shows the calculation time for each method. The conven-
tional method on GPU was approximately 30 times faster
than that on CPU, and the proposed method on GPU was
even 3 times faster than that.

5. Limitations

First, the clustering of multiline images is not applicable
to some geometry, because the line strips in the acquired
image are distributed over various locations in the image.
In such a case, we have to emit a single line strip, and the
number of required images increases. Second, although the
proposed method works well for subsurface scattering and

inter-reflection, it does not work well for transparent objects
such as glass when relatively fewer images are used, owing
to the many non-zero coefficients especially on edges of
transparent objects. Third, dot noise occurs when vivid
patterns are projected. This noise is observed in the same
pixels on the image sensor, but not on the real image by the
same image sensor. Our scene reproduction first calculates
a matrix when each pixel of the projector illuminated
the scene, and integrates them for arbitrary illumination.
Therefore, a small difference in sensitivity among pixels
might have been accumulated despite the calibration of the
image sensor.

6. Conclusions and Future Work

In this article, we propose a precomputed compressive
sensing method of measuring the light transport character-
istics of a real-world scene. To obtain the initial light
transport matrix, we propose a method of acquiring coarse
light transport characteristics using a few hundred images at
a low calculation cost. Moreover, we applied a procedure
with GPU computing to shorten the calculation time. Our
method is nonadaptive and superior to the conventional
compressive-sensing-based method in image number and

Table 1. Calculation time (min). The calculation time under each
condition is shown. The numbers above show the numbers of
Bernoulli patterns used for calculation. The maximal non-zero
coefficient was set to 50 for comparison.

Number of Bernoulli patterns

1024 512 256 128

Proposed (GPU) 13.66 7.79 5.84 5.36
Conventional (GPU) 29.82 21.33 18.53 18.22
Conventional (CPU) 1394 721.5 385.0 212.9

Conventional method: We set the parameters for b ¼ 10 and
it ¼ 5, which sets the maximum number of non-zero coefficients
to 50. This method is of Sen and Darabi.8Þ

Proposed method: We used 50 non-zero coefficients for all
initial reflectance functions, which sets the maximal coefficient
to 55. Additional 64 images were used the proposed method
(e.g., 1024þ 64 ¼ 1088 images, for the first column).

(a) (b)

Fig. 12. (Color online) Reproduction result with indirect illumination. (a) Scene with specular reflection (china dish)
and (b) scene with transmitted light (glass). Irregular surface of the dish and complex shape of the glass are magnified in
the center.
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calculation time. For our future study, we are planning to
develop a method of acquiring coarse light transport
characteristics with even fewer images and to reconstruct
the reflectance function. Improvement in the presently
proposed method will be necessary to recover an appropriate
basic level for the succeeding compressive sensing. Fur-
thermore, to reproduce a higher dimension of light transport
characteristics, we are currently trying another slice of 8D
function using the proposed method.
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