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Shift-and-add (SAA) is a simple method for celestial speckle imaging. However, the raw SAA-image, a direct output of
the SAA operations, is not useful, because a seeing-dependent huge background is superimposed on the high-resolution
image of the object. To obtain the latter, a background subtraction (BGS) is applied on the raw SAA-image. The BGS-
image so obtained includes negativities due to an over-subtraction that causes brightnesses of the object’s image biased
downward. The negativity in the BGS-image can be removed by a deconvolution with a point-spread-function (PSF)
that has negative values. In this paper, we model the PSF with a shape that possesses peak and concave portions, and
perform a deconvolution by iteratively estimating the object’s image and the model parameters. The simulated
experiment has shown that the present algorithm can restore the object’s image with unbiased brightnesses. Processing
the observed speckle data of Io (a Jupiter satellite) by the present method has yielded a feasible lo image with reduced
negativities. (© 2009 The Optical Society of Japan
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1. Introduction

Shift-and-add (SAA)V is a data reduction method for the
high-resolution imaging of celestial objects from their
atmospherically degraded short-exposure images, or speckle
images. In the SAA algorithm, each short-exposure frame is
shifted so that the peak (maximum point) of the instanta-
neous speckled point-spread-function (PSF) is centered, and
is added to the SAA-image obtained from the frames that
have been similarly processed. A speckle image can be
interpreted as a set of randomly translated distorted versions
of the diffraction-limited object’s image, and the SAA
operations average the most intense replicas of the object in
the individual frames.? The SAA is a simple algorithm, and
has the potential to be operated in real-time as a simple
adaptive optics in the visible band.® Since the raw SAA-
image (the direct output of the SAA operations) is the first
order result of averaging the shifted specklegrams, some
additional processes are required to obtain a useful high-
resolution image of the object. Efforts to augment and make
versatile the SAA method are continuing.

Because the SAA operations are linear, the raw SAA-
image a(r) can be represented by a convolution of the
diffraction-limited object’s image o(r) and some point-
spread-function (PSF) A(r),

a(r) = o(r) * h(r) (D

(“x” denotes the convolution operation), provided that
the extent of the object is sufficiently small so that the
instantaneous PSF due to the atmospheric turbulence is shift-
invariant over the object’s support.”” The PSF of the raw
SAA-image (hereafter SAA-PSF), h(r), can be considered as
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a superposition of two parts,” a seeing-dependent broad
fog and a compact core. Due to the former part, a huge
background is superimposed on the high-resolution object’s
image in the raw SAA-image.

Subtracting the background”!"1? is the most direct way
to extract the high-resolution object’s image from the raw
SAA-image. The background subtraction (BGS), however,
causes negativities of the resultant image due to over-
subtraction and the brightnesses biased downward.'® An-
other approach to obtain a background-free image is the
deconvolution using data of an unresolvable object (refer-
ence) with the Wiener inverse filter,*'¥ with the CLEAN-
algorithm (subtractive deconvolution),!? with the iterative
algorithm,' and so on. This approach requires that the
seeing conditions (mainly characterized by the Fried
parameter ry'®) under which the object and the reference
are observed match, otherwise the image can be damaged
by the deconvolution. Hebden et al.'” have applied the
CLEAN-algorithm to background subtracted SAA-images
(hereafter BGS-images). The weighted SAA (WSAA)
method produces a background-free image'3?" without
using the reference. However, the WSAA method requires
all the object’s replicas included in the individual speckle
frames to be located. Since these replicas can overlap each
other, locating them can be difficult unless the extent of the
object is small and/or it has few intense points. Davey
et al.' have proposed a reference-free blind algorithm,
where the zero-and-add technique®? is applied on multiple
raw SAA-images obtained from different subsets of speckle
images.

These previously proposed methods have been demon-
strated for a restricted class of objects, where the object has
isolated intense points and/or its size is sufficiently small so
that its replicas in specklegrams little overlap. As a contrary
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case, there is the application to an object that extends
over the frame. Sudo et al.?® have applied the SAA and the
self-deconvolution post-processing to a solar imaging.” We
have previously reported the SAA-imaging results of Io
(a Jupiter satellite), where its size is comparable with that of
the seeing disk.'® There, the background is estimated by
smoothing the raw SAA-image and is subtracted from the
latter. We have applied the BGS to the raw SAA-images of
both the object and the reference to minimize the influence
of the inconsistency between the seeing conditions, and
then deconvolved the object’s BGS-image by that of the
reference.

Though the BGS can reduce the seeing-dependency of the
SAA-PSF, inconsistencies between the BGS-PSFs of images
of the object and the reference still remain, and some
deconvolutional iterative refinements must follow to absorb
these residual inconsistencies. The iterative blind deconvo-
lution algorithm proposed by Ayers and Dainty?¥ (AD) can
be used for this purpose. However, the AD-algorithm
requires both the object and the PSF to be non-negative,
and, in principle, cannot be applied to deconvolve a BGS-
image, because it must be deconvolved by a PSF possessing
negative values. Fortunately, the PSF of the BGS-image can
be assumed to have a simple shape, and to be approximated
by a peak-concave model representable by a few parameters.
In this paper, we propose an approach to deconvolve the
BGS-image by a modeled PSF, and verify the method using
simulated data. We also report results of the SAA-imaging
with the observed speckle data of Io.

2. Principles

2.1 Background subtraction

The background component is estimated by smoothing
(low-pass filtering) the raw SAA-image a(r), and is
subtracted from it. The BGS-image i(r) so obtained is then
expressed in the Fourier space by

1(f) = {1 = G NA), @

where f is the spatial frequency vector, and an image-space
function and its Fourier transform are represented by a
lower-case letter and the corresponding upper-case one,
respectively. For the smoothing (low-pass) filter G(f), we
use a Gaussian one
Vik
G(f) =exp| ——— ), 3
) p( Yl 3
where w represents the width of the Gaussian function. Note
that 7(0) = 0, or equivalently,

/ / i(ryd*r = 0. “4)

2.2 Deconvolution by modeled PSF

The BGS-image i(r) can be represented by a convolution
of the diffraction-limited object’s image o(r) and a certain
PSF (hereafter, BGS-PSF) p(r):

i(r) = o(r) * p(r). (&)
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Fig. 1. Profile of the BGS-PSF model. The model parameters to
be estimated are §, o and s. The parameter y is related to ¢ and s by

eq. (8).

Inspections of the BGS-images of point-like (unresolvable)
objects make us conceive a model for the BGS-PSF, the
profile of which comprises a peak and a concavity as shown
in Fig. 1. Modeling both the peak and the concavity by two
Gaussian functions, we have a specific expression for the
modeled BGS-PSF p(r; §) with a set of model parameters, 6,

Ir|? Ir|?
p(r;0) = ﬂ[@m(— ﬁ> - VCXP<— 2—32)] (6)

where o and s represent the widths of the peak and the
concavity, respectively. The zero-integral of i(r) as in eq. (4)
is attributed to the zero-integral of p(r), that is, the modeled
PSF must satisfy

/ / p(r;0)d*r=0 or P(0;6)=0. (7)

The model parameters to be estimated are §, o and s, that is,
0 = (o, s, B). Due to the condition of eq. (7), the parameter y
is derived from o and s by

Y= ®)

We have carried out an experiment using the simulated data
of a point-like object to verify our PSF-model. Figure 2
shows the radial profiles of the BGS-images obtained using
the low-pass filters G(f) with various values of w, and
demonstrates that the point-response of the SAA/BGS
algorithm well fits our PSF-model for any w-value over a
wide range.

To obtain the diffraction-limited object’s image o(r), the
BGS-image i(r) is deconvolved by the modeled PSF p(r; 6)
with properly estimated parameters #. The deconvolution
can be performed by the inverse filtering, because the
modeled PSF has no zero-points in the Fourier space except
at f = 0. Thus, the Fourier spectrum of the object’s image,
O(f), for f # 0 is given by

)
o) = P(f;6)

where the Fourier transform of the modeled PSF as given by
eq. (6) with eq. (8) is

f#0), €))
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Fig. 2. Radial profiles of the BGS-images of a point-like object as
reconstructed from the simulated speckle images are plotted with
solid lines. The BGS has been performed using the frequency-
domain Gaussian filters with different w-values of (a) 20, (b) 50,
and (c) 80% of the cutoff frequency of the telescope’s diffraction-
limit. The curves of broken lines are the best fit peak-concave
models [eq. (6)] to the individual radial profiles. The abscissas of
the graphs represent the distance from the center in pixels.

P(f;0) = 2o’ [exp(—27°0° | f1*)
—exp(=2775%|f ). (10)
The value of O(0) has to be obtained separately, and can be
calculated by
I 1-G
) A(0) - lim 1=6¢)
IfI=0 P(f;0)

0(0) = lim =
0 IfI=0 P(f; 0)
where eq. (2) has been used. The specific form of the limit
in eq. (11) can be obtained using egs. (3) and (10), and
invoking the I’Hospital theorem:

I 1 - G(f) =G'(f)
120 P(f;0) Ui PY(f3 )
1
© (1) Buo(s2 — o0?)
where G”(f) and P”(f;0) are the second order derivatives
with respect to |f| of G(f) and P(f’;0), respectively.

In the implementation of the algorithm, the image and
the Fourier spaces are sampled into N x N pixels with the
sampling intervals of Ar and Af = (NAr)~!, respectively.
The sampled data-sets of i(r) and I(f) are denoted by vector
notations, i = {i,;,} and I = {Iy}, respectively, with i,,, and
I;; representing the individual sampled data. The two data-
sets i and I are related by the discrete Fourier transform
(DFT) pair, and there are relationships

, (1D

, 12)

Lun = I(mAr, nAr), (13)

Iy = (A - IASLIAS). (14)
Similarly, the discrete versions of the continuous functions
a(r), A(f), o(r), O(f), p(r;0) and P(f;6) are denoted by
vectors (sets of the sampled data) a = {a,,}, A = {Au},
0 = {om}, O = {Ou}, p(0) = {pu(0)}, and P(0) = {P(0)},
respectively, where the individual components (sampled
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data) of each of the vectors are related to the corresponding
continuous function by the similar equation of eq. (13) or
(14), and two vectors identified by a lower-case letter and its
corresponding upper-case letter form a DFT pair.

The flow of the present deconvolution algorithm is shown
in Fig. 3. The algorithm is started with the initial estimates
of the diffraction-limited object’s image o and the PSF-
model parameters o and s. The BGS-image i to be
deconvolved may be positionally deviated from the frame
center (origin of the coordinate in the image space). This
must be corrected before the model fitting, that is, the
BGS-image i is properly shifted so that the shifted image
has the maximum correlation with the convolution image
of the object’s estimate o and the modeled PSF p(#) with
B=1 (B is a scaling parameter in the ordinate, and its
value does not affect the position of the correlation peak).
Given the estimates of o, s, and o, the next step is to
determine the value of 8 so as to minimize the sum of square
errors,

N=IN-1
E@.0)=) % llu—Ou-Pu®).
1=0 k=0
Such a value of B is found by solving dE/df = 0 for B, and
is given by

5)

) (16)

where Py(o,s, 1) is Py(#) with 8= 1. We have here a
complete set of estimates of the PSF-model parameters.

The estimate of the parameter set 6 = (o,s, 8) can be
iteratively refined: for given estimates of 8 and o, the values
of o and s that minimize eq. (15) are searched by the
steepest descent or the conjugate gradient algorithm, and the
estimates of o and s are updated by those values. For the
updated estimates of o and s, an estimate of § is calculated
by eq. (16) to obtain a refined version of #. The iteration
loop for the parameter refinement is shown as the inner loop
in Fig. 3. The refinement is continued until the estimations
of the model parameters sufficiently converge.

After the refinement is completed with a fixed BGS-PSF
p(0), the next step is to revise the object’s estimate by
deconvolving the BGS-image i with p(#). The direct output,
D = {Dy}, of the deconvolution by the inverse filtering can
be written as

Iy
B+E2+£0
D — P(0) ( 70 (17)
T Awo 1-G(f) (k:l:O)’

5+ lim :

(Af)” Ifi=0 P(f;0)
where the specific value of the limit is given by eq. (12).
The result of the inverse filtering, D, is a solution of O that
minimizes (actually makes zero) the cost function E(6, O)
for a given PSF P(#). The non-negative constraint is then
applied on the deconvolved image D in the image space.
The non-negative image so obtained is to be the revised
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Fig. 3. Algorithm flow of the present deconvolution method.
The algorithm is composed of two (inner and outer) loops. The
estimates of the PSF-model parameters, B, o and s, are refined by
the inner loop under a fixed object’s estimate. For every PSF
determined, the object’s estimate o is updated, the iteration of
which forms the outer loop.

object’s estimate Q. The update of the object’s estimate is
repeated until it sufficiently converges, which corresponds
to iterating the outer loop as in Fig. 3.

3. Experiments and Results

3.1 Simulated data

The present algorithm has been applied to the SAA-image
produced from the numerically simulated speckle images of
an assumed object as shown in Fig. 4(a). One of the speckle
images is shown in Fig. 4(b), where the values of the
simulation parameters are summarized in Table 1. Poisson
noises have been added to the speckle images. In the data
reduction by SAA, we have used a modified algorithm
proposed by Gingras and Aruga,'” where each of the speckle
frames is shifted so as to have the maximum correlation with
the SAA-image obtained from those similarly processed so
far, and is added to it. The SAA-image so obtained is shown
in Fig. 4(c), where the 1000 speckle images have been
shifted and added. The image after BGS is shown in
Fig. 4(d), where 21.6% of the cutoff frequency has been
taken for the value of w. In the BGS-image, the object is
surrounded by the negative pixels as displayed by a black-
level, which are caused by the over-subtraction of the
background component.

The deconvolution algorithm as shown in Fig. 3 has been
applied to the BGS-image. Figure 4(e) is the resultant
object’s image o obtained after 10 iterations of the outer loop
(10 times updates of the object’s estimate) that have been
started with the initial object’s estimate of a uniform disk
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Fig. 4. Images in the simulated experiment. (a) An assumed
object. (b) One of the noisy speckle images of the object. (c) The
raw SAA-image. (d) The BGS-image. (¢) The deconvolved image
of (d) by a modeled PSF.

Table 1. Values of the simulation parameters.
Diameter of the telescope aperture (m) 2
F-number of the telescope 12
Magnification x5
Wavelength 4 (nm) 515
Fried parameter ry (cm) 12
Sampling interval Ar (um) 14

Photon count per frame 1.4 x 10°

with a diameter equal to that of the true image. For every
object’s estimate offered, the PSF-model parameters are
iteratively refined until the change rates of the estimated
values of o and s become small. We have iterated the
refinement (inner loop) until the relative changes of the
parameter estimates become less than 0.05%. The number
of times of refinement required for the convergence depends
on the initial estimates of the parameters.

In Fig. 5, the cost-function value E(#, O) and the error of
the object’s estimate o to the true image ¢ are plotted against
the number of iterations of the outer loop, where the error
e has been computed by

(18)

o t '
lo| |t|[
which is equivalent to the root-mean-square (RMS) differ-
ence between the normalized versions of o and ¢. The
changes of the model-parameter estimates as the iteration
proceeds are shown in Fig. 6, where the plots are given at
each time the refinement is completed. Figures 5 and 6 show
that the estimates of the object and the BGS-PSF almost
converge after the first few iterations. The number of the
outer loop iterations needed for a convergence may vary
depending on the initial estimate of the object.
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Fig. 5. Value of the cost function E(@, Q) and the RMS error of
the estimated object’s image are plotted against the number of
iterations of the outer loop by a solid line and a broken line,
respectively.
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Fig. 6. The estimated values of the model parameters, o and s, are
plotted against the number of iterations of the outer loop by a solid
line and a broken line, respectively.

The negativity present in the BGS-image reduces after
the deconvolution, which is shown by the profiles in Fig. 7.
The power (sum of squared pixel values) of the negative
pixels in the BGS-image amounts to 23.5% of the total
power, and has been reduced to 0.174% after the deconvo-
lution. A quantitative evaluation for the deconvolved image
is shown in Fig. 8, where the average pixel values over the
five regions of interest (ROIs) are individually compared
with those of the true image. Figure 8 shows a good
linearity, implying that the relative values of the pixels
well hold in the restored image. A similar graph for the
BGS-image before the deconvolution is given in Fig. 9.
Comparing Fig. 8 with Fig. 9 shows that the negative bias
present in the BGS-image has been eliminated by the
deconvolution.

3.2 Observational data

We have applied the present method to the observed
speckle images of lo. The observation conditions are
summarized in Table 2. The number of speckle frames we
have acquired is 1000, which has been limited by the rate
of the acquisition system, the term of the seeing condition

S. KUWAMURA et al. 591

120 T T

SAA/BGS-image

Deconvolved image ---------
True image -

100

Pixel value

0 20 40 60 80 100 120

Column number

Fig. 7. Profiles of Figs. 4(d) and 4(e), the images before and after
the deconvolution, are plotted by a solid and a broken line,
respectively, where the profiles have been taken along the
horizontal center line of the frame. The profile of the original
(true) image is also given by a dotted line.
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Fig. 8. Pixel values averaged over the individual five ROIs (four
circular ones labeled “A”, “B”, “C”, and “D”, and the other
labeled “disc”) in the resulting image of the deconvolution are
plotted against those in the true image to graph the reproducibility
of the relative pixel values.

80 T T T T T T
ROIA  +
g 70 + ROI B x o
5 ROIC *
E 60F ROID = o 1
L2 50+ disc . 1
8 regression line ------ 7
g 40r g 1
S 30t * 1
M -
5 20t - 1
z +
o 10 F 1
=)
<
5} 0
>
< ot ]
20 . L L L L L L
0 10 20 30 40 50 60 70

Average over ROl in true image

Fig. 9. A graph similar to Fig. 8 is given for the BGS-image (an
image before the deconvolution). The negativity present in the
BGS-image causes the pixel values to be biased downward.
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Table 2. Observation conditions of the speckle data of Io.

Site Nishi-Harima Astronomical Observatory
Epoch 13:41-13:44 UT, June 7, 2006
Telescope 2m Nayuta telescope (F/12)
Magnification x5

Wavelength 4 (nm) 515

Bandwidth A4 (nm) 20

Exposure time (s) 1/30

CCD pixel size Ar (um) 14

Fig. 10. Results of processing the observational speckle data of
Io. (a) One of the speckle images. (b) The raw SAA-image. (c) The
BGS-image. (d) The deconvolved image of (c) by a modeled PSF.

Relative change of object estimate

Iteration

Fig. 11. Relative change of the object’s estimate to the previous
one is plotted every time the estimate is updated in deconvolution
of the BGS-image of Io.

being steady, and the period of the object’s image being
unchanged (in the present case, determined by Io’s rotational
speed). Figure 10(a) is one of the 1000 speckle frames
acquired, and the raw SAA-image obtained from these
frames is shown in Fig. 10(b). Figures 10(c) and 10(d) are
the BGS- and the deconvolved images, respectively. As the
initial object’s estimate for the iterative deconvolution, we
have employed a non-negative image obtained by clipping
(forcing to be zero) the negative pixels of the BGS-image.
The inner loop has been iterated until the relative changes of
the parameter estimates reach less than 0.05%. The relative
change of the object’s estimate to the previous one at each
outer loop iteration is plotted in Fig. 11. Correspondingly,
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Fig. 12. Estimated values of the model parameters, o and s, in

deconvolution of the BGS-image of lo are plotted against the

number of outer loop iterations, where the solid line is for o and the
broken line for s.
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Fig. 13. Profiles of Figs. 10(c) and 10(d), Io’s images before and
after the deconvolution, are taken along the horizontal center line of
the frame, and are plotted by a solid and a broken line, respectively.

the estimated values of the model parameters, ¢ and s,
have varied as shown in Fig. 12. The resultant image of the
deconvolution as shown in Fig. 10(d) has been obtained
after the object’s estimate is updated seven times (after
seven iterations of the outer loop), at which the relative
change of that estimate has reached less than 1% and the
values of the model parameters have almost converged.
The image profiles of Figs. 10(c) and 10(d) are compared
in Fig. 13 to show the reduction of the negativity; the
negativity has been reduced from 9.58 to 0.522%. The
resulting image as in Fig. 10(d) is still noisy. We have
applied the non-linear Gaussian edge-preserving filter? to
denoise the noisy image and to emphasize the significant
structures present on Io’s surface. The filtered image so
obtained is shown in Fig. 14(a). For comparison, a close-up
image of the green band taken by the Voyager II spacecraft
is given in Fig. 14(b), where the image is of the surface
facing the Earth on the observation date, and its scale and
the position angle match those of our observational data.
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Fig. 14. The deconvolved image shown in Fig. 10(d) is denoised
by the non-linear Gaussian filter, and is compared with the image
taken by the spacecraft Voyager II. (a) The denoised image of
Fig. 10(d). (b) The Voyager’s close-up image of lo. The gray
arrows in (b) point to the pateras on Io’s surface, and those in (a)
indicate the dark spots found at the corresponding positions in the
restored image.

In Fig. 14(a), there are found significant dark spots at the
positions corresponding to those of 1o’s pateras as indicated
in Fig. 14(b). This comparison by the visual inspection
rather well verifies our result.

4. Discussion

In our procedure to obtain a feasible object’s image from
the raw SAA-image, it is once reduced to a zero-mean image
by BGS, and then deconvolved by a zero-mean PSF to
restore the non-negative object’s image. This procedure
appears detoured: straightforward is the deconvolution of
the raw SAA-image a(r) by the SAA-PSF h(r) that can be
modeled by a “core-fog” model. This model needs essen-
tially three parameters, the widths of the core and the
fog parts, and the ratio between the heights of both parts;
whereas our peak-concave model has essentially two
parameters, o and s, to be estimated, and the ratio of the
concavity depth to the peak height is automatically deter-
mined by the zero-mean condition as given by eq. (7). The
present algorithm is not a completely blind deconvolution,
because it requires an initial estimate of the object. However,
the BGS leaves a high-resolution object’s image which
is fairly feasible except that it has “sunk” to the negative
direction, and an object’s estimate can be relatively easily
obtained from the BGS-image to be deconvolved.

5. Conclusions

We have proposed a deconvolution algorithm to refine the
background subtracted SAA-image. This corrects the neg-
ativity due to over-subtraction which is unavoidable because
of the difficulty in exact identification of the background
component. In our algorithm, the alternate estimations of the
PSF’s model-parameters and the object’s image are iterated
under the non-negativity constraint on the object, where the
model parameters are estimated so as to minimize the cost
function as in eq. (15), and the object is estimated by the
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inverse filtering. The main effect of the deconvolution is to
reduce the negativity. This effect has been demonstrated by
the experiments using the simulated and the observational
speckle data. In the simulated experiment, it has been shown
that the negative bias of the BGS-image is effectively
eliminated by the deconvolution. The present method can
serve as a sophisticated post-processing algorithm in the
SAA-imaging.
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