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Based on quantum entanglement, secure anonymous ballot systems are introduced to realize voting among numerous
candidates in this paper. By searching individuals, each voter may cast a vote for his desired candidates of which
number may be more than one. Therefore, the system based on the proposed algorithm may be applied voting among
many candidates, such as a network ballot with the development of a quantum network. Finally, the security of the
present scheme is investigated. # 2008 The Optical Society of Japan
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1. Introduction

Practically, a ballot system always has some applications
such as for election and so on. An universally verifiable
voting scheme should be one which is open to authentication
by all interrelated parties. In the scheme, each legitimate
user can vote just once for a candidate and no one can learn
any intermediate result. A reliable voting scheme should
hence be a private, secure and verifiable scheme. In a
classical secret ballot scheme the secrecy is generally
protected by making use of one-time pads which are shared
between all pairs of voters,1) otherwise, the security is
vulnerable. As a resource in quantum communication,
quantum entanglement which has unique properties and
primary features in quantum theory, is the subject of much
studies.2,3) Based on the creation of a multipartite entangled
state in quantum computation, the quantum gate that lies
beyond the capabilities of linear optics, can be implemented
practically.4) By means of a series of single qubit measure-
ments that are performed on an initial state of a highly
entangled cluster state, Raussendorf et al., showed the
universal quantum computation.5) Motivated by these devel-
opments in quantum entanglement, we investigate its
application in quantum voting with the relation between
entanglement and quantum phase transition.6,7) In quantum
information, the security and anonymity in quantum ballot
system are based on quantum mechanics. Some researchers
have focused on quantum voting scheme,8–10) such that
proposed in ref. 8 of a traveling ballot protocol, in which
voting and surveying processes are initially explored. These
previous papers focus mainly on the case of a candidate and
the voting on a single ballot object. However, on some
occasions, such as the electronic balloting or the select on of
more prevalent books in network, people want to vote for
their desired individuals among numerous candidates and a
single voter may cast for individuals more than one. This
motivates us to seek application of an appropriate ballot
system, such as quantum network voting. Quantum network
plays a key role in quantum information processing.11) A
general network may be characterized by a quantum state

shared by different nodes. With the development of a
quantum network, the realization of voting in such a network
becomes possible. For instance, a set of quantum repeaters
can be considered as a simple quantum network where the
goal is to establish quantum communication over long
distances. Therefore, the traveling voting scheme proposed
in ref. 8 may be realized with a one-dimensional quantum
network based on quantum repeaters.

Generally, two authorities in a ballot system are
addressed to complete the voting scheme, one called the
agent who prepares the ballot states and one called the
tallyman who counts the votes. The quantum system with
two authorities ensures the privacy of each vote and the
anonymity of each voter, thus it increases security of the
voting scheme. In the voting process, the ballot should
include the voter’s identity, by secretly marking it during or
prior to the vote. Each participate is designated on the every
ballot objects only to caste a vote. To each vote, the voter
has to decide between yes or no. After all votes have been
casted, the tally of every candidates can be determined by
counting by the tallyman, and read directly from his
computation basis states. In this paper, we describe
quantum systems of anonymous voting using two different
methods in quantum networks. In the present system, an
agent first prepares entangled-particle system pairs (or pair)
to assure the ballot secrecy and sends them to voters by
different methods. After receiving the list of candidates
from the agent, each voter decide his choice (maybe more
than one), and then casts his vote to them. Finally, the
tallyman counted the vote for all candidates. In the voting
process, the identities of the participants are always kept
private to outsides, although the total of the votes is made
public. Therefore, users of the ballot protocol can anony-
mously find the winning individuals with low computational
complexity. This paper is arranged as follows. We devote
§2 to the description of systems, which includes two
approaches, the traveling ballot system and the distributed
ballot system. In the next section, security against some
attack strategies is analyzed. Finally, conclusions are drawn
in §4.
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2. General Descriptions of Quantum Anonymous
Voting Scheme

In this section, we will describe the design of the voting
systems in detail. By making use of an entangled state of
particles, each voter may cast his or her ballot using the
traveling ballot system or the distributed ballot system. In
this process, voters first search and decide on their desired
candidates and then cast them corresponding votes which
may be yes or no. Following the completion of the
anonymous voting, all of the ballots are sent to the
designated tallyman who counts them by measuring the
multiparticle state and is thereby able to determine the total
number of votes for each candidates.

Assume there are K voters V1; . . . ;VK , N ballot items
B0; . . . ;BN�1 and two authorities, i.e., an agent and a
tallyman. Let N2-dimensional space H ¼ HV �HT be
Hilbert space, where HV and HT are N-dimensional
subspaces. Assume fj0i; . . . ; jN � 1ig is a set of computa-
tional orthonormal basis states, i.e., hijji ¼ �ij; i; j 2
f0; 1; . . . ;N � 1g. Let an entangled state in space H be

jAi ¼
1ffiffiffiffi
N

p
XN�1

n¼0

jn;N � n� 1i

 !
¼ UðjAiV � jAiT Þ; ð1Þ

which is carried by particle pair (pv; pt) for pv 2 HV ,
pt 2 HT , where jn;N � n� 1i ¼ jniV � jN � n� 1iT and
U is entanglement state generation operator. After the
operation is completed, we will introduce two approaches
for voting, the anonymous traveling ballot system and the
distributed ballot system.

2.1 Quantum anonymous traveling ballot system
In the traveling ballot system, the main idea is that the

voters cast their votes with the traveling ballot state. The
agent distributes ballot state carried by pv to the first voter
V1. Receiving the particle from the agent, V1 determines the
candidate for whom he wishes to cast his vote. If he does not
vote for any one among these candidates, then V1 sends pv to
the next voter. Otherwise, let � be the desired candidate for
whom he wants to cast his vote. In terms of the generalized
Grover algorithm,12) jAiV may be expressed as jAiV ¼
sin�j�i þ cos�j�i, where � ¼ arcsinð1=

ffiffiffiffi
N

p
Þ, and j�i ¼

j�i; j�i ¼ ð1=
ffiffiffiffi
N

p
Þ
P

n6¼� jni. Employing a searching oper-
ator Q on state jAiV for times of r ¼ round½ð�=2Þ

ffiffiffiffi
N

p
�, V1

may obtain the desired state j�i with a passibility near 1. To
ascertain wether the found element is state j�i, V1 may resort
to an ancilla state jqi in a register R1 which is held by
himself. With a Boolean function f ðxÞ: f0; . . . ;N � 1g !
f0; 1g, ultimately V1 can obtain his desired state with respect
to the following state

j�0i ¼ QrðjAiV1
jqiÞ ¼ j�ijq� f ð�Þi: ð2Þ

Namely, by measuring the ancilla state in register R1, V1 can
judge whether or not he has found the desired state j�i.

In the following, he will cast his vote for candidate �.
Denote phase shifting operator acted by Vk as MðkÞ

n ¼
expði�nÞ, where �n ¼ 2n�=N. State j�i after V1 casted his
vote becomes

jV1i ¼ Mð1Þ
� j�i ¼ expði��Þj�i: ð3Þ

After V1 completes his voting, the ballot state jAiV can be
expressed as

jA1i ¼
1ffiffiffiffi
N

p
X
n6¼�

jn;N � 1� ni þ jV1ijN � 1� �i

 !
: ð4Þ

Then, V1 sends jA1i to the next voter V2. As described
before, V2 also similarly handle his received ballot state so
that jA2i is obtained. The process is repeated until the
final voter casts his vote and state jAKi is obtained, after
which he returns the ballots to the tallyman. The agent
also returns pt to tallyman. By calculating the entangled
state carried by received particle state, the tallyman will
obtain the number of yes vote of every candidate Bnðt ¼
0; . . . ;N � 1Þ. With respect to the eigenvalue of each state
vector, the tallyman determines the total tally from the
expectation hAK jT̂TnjAKi ¼ Mn, where T̂Tn ¼ njTnihTnj, is the
corresponding multipartite tally operator for

jTni ¼
1ffiffiffiffi
N

p
XN�1

j¼0

expðij�nÞjj;N � 1� jÞi: ð5Þ

Consequently, after all the ballots have be translated to the
tallyman, he will count the votes for each candidate. The
circuit of the traveling ballot system is shown in Fig. 1.

2.2 Quantum anonymous distributed ballot system
In contrast to the traveling ballot system, in the anony-

mous distributed ballot system, all voters and the agent share
a multipartite entangled state in a quantum multiuser
channel. This system makes use of (K þ 1)-particle entan-
gled state, in which the agent holds one particle and the
voters hold the remainder. Each of the K voters receives one
particle and performs an operation on it corresponding to
his or her vote. Then, all of the particles (the voters’ and
the agent’s) are sent to the tallyman, who measures the
multi-particle state system and is thereby able to determine
the tally for each candidate. As the information about the
votes is contained in the correlations between the particles,
the quantum state realizes no information about how
individuals voted.

The agent also first prepares originally a multiparty ballot
state system in register R1 as jA0i ¼ jAi�K , where jAi is the
state system in eq. (1), i.e., jA0i is carried by K entangled
pairs ðpv1 ; pt1 Þ; . . . ; ðpvK ; ptK Þ. Then, the agent distributes

vp

tp tp

vp

vp vp

vp

tp
vp

U

M 
(1)

M 
(2)

M 
(  )κ

V 2

V 1

Agent

Vκ

Tallyman

TallyTκˆ

Fig. 1. Quantum circuit system of anonymous traveling described
ballot scheme. The white ball in the above figure denotes a vacant
state carried by pt, the black ball is carried by pv being cast by
voters, and U is an entanglement state generation unitary operator.
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particles pv1 ; . . . ; pvK to voters V1; . . . ;VK respectively, and
remains the left particles. Similarly, each voter Vk (k ¼
1; . . . ;K) can quickly find his desired candidate employing
quantum algorithm as before, and determine that whether or
not to cast a vote for that individual, i.e., transforming MðkÞ

to state jAi. All voters cast their respective votes at their
unique assigned voting sites. The voting can be formalized
as mapping Mð1Þ � � � � �MðKÞ ! M ¼

NK
k¼1 MðkÞ. Con-

sequently, the initial state cast by K voters becomes

jVi ¼ MjA0i ¼
OK
k¼1

MðkÞjAiVk

 !
jAiT

¼
1ffiffiffiffi
N

p
XN�1

n¼0

expði�KÞjn; . . . ; n;KðN � n� 1Þi; ð6Þ

where �K ¼
PK

k¼1 i�
ðkÞ, and jn; . . . ; n;KðN � n� 1Þi ¼

jniV1
� � � jniVK

jKðN � n� 1ÞiT for K voting sites V1; . . . ;VK

and an authority site. After all entangled particles of the
voters and the agent are translated to the tallyman, the
tallyman can determine the corresponding tallies cast by
voters in terms of the eigenvalues.

Assume the corresponding multipartite tally operator to
eq. (6) is given by

jT̂Tni ¼
XN�1

n¼0

njTnihTnj; ð7Þ

where

jTni ¼
1ffiffiffiffi
N

p
XN�1

j¼0

expðij�nÞj j; . . . ; j;KðN � j� 1Þi: ð8Þ

Consequently, the tallies of all candidates may be counted
from the expectation hV jT̂TnjVi ¼ Mn. The circuit of the
distributed ballot system is shown in Fig. 2.

Next, we consider the case of casting more than one ballot
for a candidate, e.g., m > 1 candidates are entitled to be cast
by a voter. After using the multi-object search operator QðmÞ

to act on jAi for times of

rm ¼ round
�

4

ffiffiffiffiffi
N

m

r
1þO m

N

� �� �( )
; ð9Þ

each voter may also obtain the his desired states j�1i; . . . ;
j�mi with probability Pm ¼ cos2ðrm�� �Þ, where � ¼
sin�1ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðN � mÞ

p
=NÞ and � � �=2 for m � N. Then,

voter Vk applies ballot operator MðkÞ ¼
Qm

j¼1 Mj on his
selected state

jVki ¼ MðkÞjAiVk

¼
Ym
j¼1

MjjAiVk

1ffiffiffiffi
N

p

 Xm
j¼1

expði��jÞj�j;N � 1� �ji

þ
XN
n 6¼�j

jn;N � 1� ni

!
: ð10Þ

The final tally of each candidate also may be counted by the
tallyman as before. Namely, employing tally-counting
operator T̂Tn into hVkjT̂TnkjVki ¼ Mnk, one may get the tally
of candidate Bn cast by Vk, where

jTnki ¼
1ffiffiffiffi
N

p
XN�1

j¼0

expðij�nÞjjiVk
jN � j� 1iT : ð11Þ

Ultimately, the total tally of Bn will be revealed by Mn ¼
hV jT̂TnjVi for T̂Tn ¼

NK
k¼1 T̂Tnk. With respect to the character of

present anonymous distributed voting system, it may be
applied in scenarios with many candidates, such as network
election.

Because of the physical properties, only collective
features of the set of votes are calculated and made public,
that is the tally of yes and no votes, so that the ballot
information can be kept secret. In the correlations between
the entangled pairs, the quantum state hence contains no
information about how individuals voted. If the two
separated ballot authorities separately have attack for the
scheme, then this attack will be detected one half of the time.
After detecting the attack, the qubit system should be
immediately returned to the voter following the action by
tallyman for further confirmation. If the voters take attack
together and compare the projections onto phase states,
then the total particle number the attack should be altered
on average with probability ðN � 1Þ=N.

3. Security Analysis

In this section, we will analyze the present protocols
against some attacks. We are first concerned with an
eavesdropping strategy that consists of applying a coherent
attack on a qudit sequence of finite length. Here, we use an
uncertainty principle by Hall that puts a limit on the sum of
voters’ and Eve’s information when both groups measure
the same quantum system.

Theorem: Assume Eve who is not one of the participants
in the scheme implements the entangled state attack strategy,
namely, Eve takes an attack strategy by applying an arbitrary
operation UVE on ballot state jAi. His intervention can then
be detected by the agent, which implies that Eve can not
change the ballot results of voters without being detected.

Proof: Suppose Eve tries to attack the scheme by
entangling his own particle as an ancilla with the ballot
state jAi. Without loss of generality, in the quantum
anonymous traveling ballot scheme we consider that Eve
wants to change the ballot result of voter Vk. Eve entangles
her state jEik with Vk’s ballot state in the quantum network.
Correspondingly, the complex state of jVki and jEik can be
denoted by jViVTE ¼ jVki � jEik. At the voting site of Vk,
unitary operation UðkÞ

VE applied by Eve on jViVTE yields

1v
p

kvp
Kvp

1t
p

kt
p

Kt
p

1v
p

Kvp

1t
p

Kt
p

1V κV κV

M 
(1) M 

(   )κ M 
(   )κ

Agent

Tallyman

TallynT̂

Fig. 2. Quantum circuit system of anonymous distributed ballot
scheme.
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UðkÞ
VEjViVTE ¼

1ffiffiffiffi
N

p
XN�1

n¼0

jn;N � 1� nijEnik; ð12Þ

where {En: n ¼ 0; . . . ;N � 1} is a set of the Schmidt base.
After voting by Vk, the ballot state should be

jTEk
i ¼ MkjUðkÞ

VEj�iVTE

¼
XN
n¼0

expðiak�nÞjn;N � 1� nijEnik: ð13Þ

Denote jA00i as the state held by the tallyman after voting.
By computing hA00jT̂TEk

jA00i, where the form of T̂TEk
is similar

to eq. (7), the tallyman may see that the total tally is
changed. He then sends the states to corresponding voters to
detect the destroyed votes. Therefore, whether Vk or not
casts to jAi, the result can always be detected by voters,
which implies that Eve cannot intervene the procession of
the ballot.

In fact, denote V̂V and ÊE as voters’ and Eve’s measurement
operators applied to the particles sent from agent, then

IAVk
þ IAE � 2 log2ðNmax

k; j
jhvkjekjijÞ; ð14Þ

where jvki and jekji are the eigenstates of V̂Vk and ÊE,
respectively. The inequality holds with IAVk

and IAE being
information on the qudit without knowledge of the basis
chosen by agent. Because voters and Eve may get the same
average information when measuring the different basis, one
obtains the possible upper bound on IAE for a given IAVk

by
assuming that Eve measures an observable ÊE complementary
to V̂Vk, i.e., IAVk

þ IAE � 2 log2 N, for jhvkjekjij ¼ N�1=2;8k; j.
In order to ensure the security of the scheme with a nonzero
rate, it should be IAVk

> IAE. So, it may be introduced that
IAB > ðlog2 NÞ=2 is a sufficient condition against coherent
attacks for a large number of candidates.13) Q.E.D.

Furthermore, we consider another general attack strategy,
i.e., individual eavesdropping based on the use of a quantum
cloning machine for qudits, that K systems are used in the
distributed ballot scheme. An individual eavesdropping
strategy based on the use of a quantum cloning machine
for qudits, can be detected in the quantum distributed ballot
system.

Here we only consider the case of a single ballot system of
certain voter Vk, and mainly investigates how Eve makes an
individual eavesdropping attack with a cloner to a single
ballot site. Eve employs an unitary operator

Us;t ¼
XN�1

n¼0

expðit�nÞjnþ sihnj; ð15Þ

for s; t ¼ 0; . . . ;N � 1 to obtain a cloner of the ballot system
jAiVk

, where the subscripts s; t are shift errors and phase
errors, respectively. Let amplitudes as;t with

PN�1
s;t¼0 jas;tj

2 ¼
1 be of the characteristics cloner. In terms of cloning
transformations, the gotten state is

jAEiVk
¼
XN�1

n¼0

as;tUs;tjniVk
jBs;�tiE;E0 ; ð16Þ

where E and E0 at right in above equation are Eve’s clone
and the cloning machine, respectively, while jBs;�tiE;E0 is a

set of orthonormal maximally entangled states of a two-
particle system

jBs;tiE;E0 ¼
1

N

XN�1

n¼0

expðit�nÞjniEjnþ siE0 : ð17Þ

Tracing the output joint state of eq. (16) over EE0 held by
the tallyman, implies that the agent’s state jAiVk

is trans-
formed, at voting sites, into the mixture

	V ¼
XN�1

s;t¼0

jas;tj2Us;tjAEiVkVk
hAEjUy

s;t: ð18Þ

Thus, after the state jAiVk
undergoes a Us;t, the error

probability is jas;tj2. On any ballot jni in the computational
basis, if voter Vk does not cast a vote for any candidate, the
phase errors clearly do not play any role in the above
mixture since Us;tjni ¼ expðit�nÞjnþ si. So, voter fidelity
can be expressed as

F ¼ hnj	Vk
jni ¼

XN�1

t¼0

ja0;tj2: ð19Þ

Denote j �nni ¼ F jni as the dual of computational basis jni
of a candidate for n ¼ 0; . . . ;N � 1, where F is Fourier
transform. If Vk casts a vote to the voting sites, then after
a vote is cast by voter Vk Eve may get Us;tj �nni ¼
expðit�nþsÞjnþ si. So, the shift errors ðs 6¼ 0Þ do not play
any role and voters’ fidelity becomes

�FF ¼ h �nnj	Vk
j �nni ¼

XN�1

s¼0

jas;0j2: ð20Þ

For the cloner to copy equally well the states of both cases,
Eve chooses a proper N 	 N amplitude matrix. The
amplitude matrix may result in a cloning fidelity FE for
Eve. Maximizing Eve’s optimal fidelity FE for a given value
of Vk’s fidelity F yields the optimal cloner. Let us see how
Eve can maximize her information on the ballot state. To the
ballot state jni, it is then clear from eq. (16) that Eve can
obtain voter’s shift error s simply by performing a partial
Bell measurement on EE0. In order to infer agent’s state, Eve
must distinguish between N nonorthogonal states regardless
of the measured value of s. Denote IAVk

the corresponding
mutual information between agent and voter Vk. By taking a
optimal fidelity FE, Eve’s information IAE consequently may
be obtained. However, if the agent, voter Vk and Eve share
many independent realizations of a probability distribution,
then with the great of candidates in the present scheme, it is
sufficient that IAVk

> IAE for each voter Vk. Therefore, the
introduced ballot is secure especially in a network election.
Similarly, the attack strategy on the whole distributed ballot
system of K entangled pairs can also be analyzed.

4. Conclusions

In this paper, we have introduced two kinds of quantum
ballot to ensure an anonymous ballot in different scenarios.
With all the information about the votes contained in the
correlations between the particle systems, the quantum state
contains no information about how individuals voted.
Because of the physical properties, only collective features
of the set of votes are calculated and made public, such as
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the tally of yes and no votes, so that the ballot information
can be kept secret. After all votes have been made, the vote
tally can be determined by a collective measurement.
Because of the minimal complexity in searching for the
desired objects among the great of candidates, the present
protocol may be applied to network voting with the
development of quantum networks.
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