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This paper proposes a new blind deconvolution method with additional phase spectral constraints for a blurred image. A
degradation of an original image is mathematically modeled by a convolution of an original image and a point-spread
function (PSF). The proposed method consists of the following three steps: (i) projection onto a complex set satisfying
the phase spectral constraint in a frequency space; (ii) minimization of a cost function preserving the constrained phase
spectra; and (iii) projection onto an image space satisfying nonnegative and support constraints. This method restores
both the original image and the PSF with high accuracy. The effectiveness of the proposed method is verified by
applying it to some blind deconvolution problems for digital images, and the experimental results show that the
performance is superior to the conventional blind deconvolution methods. # 2006 The Optical Society of Japan
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1. Introduction

In general, the degradation of the original image is
mathematically modeled by a convolution of the original
image and the point-spread function (PSF). PSF is a function
to blur an image. The problem of retrieving an original
image from the blurred image is a kind of image restoration
problem. The conventional linear image restoration algo-
rithms usually assume that the PSF is known beforehand.1–7)

In many practical situations, however, the PSF is unknown
and little can be known about the original image. Therefore,
the conventional linear image restoration techniques are not
applicable for these practical cases. A blind deconvolution
has been proposed to treat these cases.8–13) The objective of a
blind deconvolution is to estimate a PSF and to retrieve an
original image from a blurred image, using only a-priori
information on support of the image and the nonnegativity of
a pixel value.

Ayers and Dainty’s algorithm (A–D algorithm) is one of
the useful methods for a blind deconvolution.14,15) This
algorithm retrieves an original image and at the same time
estimates a PSF by iteratively applying an inverse filter
under constraints of support of the image and the non-
negativity of a pixel value. This algorithm is often applied to
many blind deconvolution problems due to its low computa-
tional complexity. However, its convergence property is
uncertain. Furthermore, the algorithm is sensitive to initial
values and, what is worse, is often unstable.

In order to improve the convergence property of an
iterative algorithm, a cost function and a gradient method
have been brought into its iterative procedure.16–18) This
algorithm now has a stable convergence property, however,
it tends to be trapped at local minima.

There is also a zero-sheet separation method.19) Good
restoration results are obtained, but its algorithm is very

complicated and requires high computational cost; thus it is
not suited for real-time processing.

In this paper, we propose a gradient-based blind decon-
volution method with additional constraints in order to
improve restoration performance. The additional constraints
are phase spectra of the original image and of the PSF.
Those are obtained by Takajo’s technique,20) which is one of
the phase retrieval methods21–24) and can acquire each phase
spectrum from the observed image without any additional
information.

The effectiveness of the proposed method is verified by
applying it to blind deconvolution problems for digital
images.

2. Blind Deconvolution and Conventional Method

Here, we first briefly summarize a conventional blind
deconvolution based on a gradient method.

A blurred image gðx; yÞ is represented by a convolution of
an original image f ðx; yÞ and a PSF hðx; yÞ as follows:

gðx; yÞ ¼
X
x0

X
y0

hðx� x0; y� y0Þ f ðx0; y0Þ; ð1Þ

where ðx; yÞ is a coordinate in image space. f ðx; yÞ and hðx; yÞ
are real and nonnegative. Gðu; vÞ, Fourier transform of
gðx; yÞ, is given by:

Gðu; vÞ ¼ Hðu; vÞFðu; vÞ; ð2Þ

where Hðu; vÞ and Fðu; vÞ are Fourier transforms of hðx; yÞ
and f ðx; yÞ, respectively.

If a PSF is known in advance, the original image is
restored by using an inverse filter or Wiener filter.25) In many
cases, however, the PSF is unknown. A blind deconvolution
is intended to retrieve the original image from the blurred
image without any knowledge of the PSF.

The conventional gradient-based method consists of the
iterative steps. Those are minimization of a cost function,
and a projection onto an image space satisfying nonnegative�E-mail address: suetake@sci.yamaguchi-u.ac.jp
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and support constraints. Figure 1 shows a block diagram of
this method.

In the minimization of the cost function, f̂f ðx; yÞ is adjusted
to minimize the following cost function in a frequency
space:

E ¼
X
u;v

Gðu; vÞ � ĤHðu; vÞF̂Fðu; vÞ
�� ��2; ð3Þ

where ĤHðu; vÞ and F̂Fðu; vÞ are Fourier transforms of the
estimated f̂f ðx; yÞ and ĥhðx; yÞ, respectively. In this method,
the gradient descent method is employed for an update of
f̂f ðx; yÞ as follows:

f̂f newðx; yÞ ¼ f̂f oldðx; yÞ � � f̂f

@E

@ f̂f oldðx; yÞ
; ð4Þ

where superscripts ‘‘old’’ and ‘‘new’’ represent the before
and after updating. � f̂f is a descent parameter.

In the projection onto an image space, f̂f ðx; yÞ is updated
by imposing nonnegative and support constraints as follows:

f̂f newðx; yÞ ¼
f̂f oldðx; yÞ ðx; yÞ =2 � f̂f

0 ðx; yÞ 2 � f̂f

(
; ð5Þ

where � f̂f is a set of position vectors in a negative space or
outside the support of f̂f ðx; yÞ.

ĥhðx; yÞ is also updated in the similar manner as f̂f ðx; yÞ as
shown in Fig. 1. These procedures are iterated until the cost
function converges.

Although this algorithm has reasonably low computa-
tional complexity and stable convergence property, it tends
to be trapped at local minimum solutions and has insufficient
accuracy of restoration.

3. Proposed Blind Deconvolution Method

In this section, we propose a new blind deconvolution
method. It is based on the gradient descent method, and has
additional constraints. Those constraints concern the phase
spectra of the original image and of the PSF. The phase
spectral information is obtained by applying Takajo’s
method to the amplitude spectrum of the observed image
without any additional observation.

3.1 Acquisition of the phase spectral information
The phase spectral information, which is employed in this

paper as the additional constraint, is obtained using Takajo’s
method. The concept is the same as Lane and Bates’s
method,22) which uses an error reduction algorithm
(ER algorighm) to obtain the phase spectral information
concerning Fðu; vÞ and Hðu; vÞ. The ER algorithm gives
us one of the following four estimates, Fðu; vÞHðu; vÞ,
Fðu; vÞH�ðu; vÞ, F�ðu; vÞHðu; vÞ or F�ðu; vÞH�ðu; vÞ. In this
algorithm, the amplitude spectrum of the blurred image
jGðu; vÞj is used as the amplitude constraint. Pseudo-random
phase distributions are usually used as the initial states of
the algorithm.22) The superscript � stands for a complex
conjugate.

Among these four estimates, only Fðu; vÞH�ðu; vÞ and
F�ðu; vÞHðu; vÞ are valid for the acquisition of the phase
spectral information. Fðu; vÞHðu; vÞ and F�ðu; vÞH�ðu; vÞ can
be easily found and excluded because these are identical
with Gðu; vÞ and G�ðu; vÞ, respectively. The algorithm is
iteratively executed starting from various initial estimates
until Fðu; vÞH�ðu; vÞ or F�ðu; vÞHðu; vÞ is obtained.

Let ĜGðu; vÞ be either Fðu; vÞH�ðu; vÞ or F�ðu; vÞHðu; vÞ.
In case Fðu; vÞH�ðu; vÞ is obtained, the phase spectral
information is extracted as:

2�Hðu; vÞ ¼ tan�1 Gðu; vÞ
ĜGðu; vÞ

� �
; ð6Þ

and

2�Fðu; vÞ ¼ tan�1 Gðu; vÞ
ĜG�ðu; vÞ

� �
; ð7Þ

where �Hðu; vÞ and �Fðu; vÞ correspond to the true phase
spectra of Hðu; vÞ and Fðu; vÞ, respectively, with modulo �.

In case F�ðu; vÞHðu; vÞ is obtained, the phase spectral
information is extracted as:

2�Fðu; vÞ ¼ tan�1 Gðu; vÞ
ĜGðu; vÞ

� �
; ð8Þ

and

2�Hðu; vÞ ¼ tan�1 Gðu; vÞ
ĜG�ðu; vÞ

� �
: ð9Þ

However, as is well known, the ER algorithm has a local
minimum problem, and thus it cannot retrieve exact
Fðu; vÞH�ðu; vÞ and F�ðu; vÞHðu; vÞ when trapped at a local
minimum. The hybrid input–output algorithm (HIO algo-
rithm) with a small feedback constant is therefore employed
in Takajo’s method instead of the ER algorithm. Takajo’s
method can break the local minimum problem to get
the global minimum solution. Using Takajo’s method,
Fðu; vÞH�ðu; vÞ and F�ðu; vÞHðu; vÞ are retrieved with high
accuracy, and thus phase spectral information is accurately
estimated.

3.2 Algorithm of the proposed method
The proposed blind deconvolution algorithm consists of

the following three procedures: (i) projection onto a complex
set satisfying the phase spectral constraints on a frequency
space, (ii) minimization of a cost function preserving the
constrained phase spectra, and (iii) projection onto an image
space satisfying nonnegative and support constraints.

A block diagram of the proposed method is shown in

Impose image constraints

Impose image constraints

Update f̂ (x, y)

ĥ(x, y) ĥ(x, y)

f̂ (x, y) f̂ (x, y)

(x, y)ˆ
0h

Update ĥ(x, y)

(x, y)0̂f

Fig. 1. Block diagram of a gradient-based method. f̂f 0 and ĥh0 are
initial estimates. f̂f ðx; yÞ and ĥhðx; yÞ are an estimated image and a
PSF, respectively. These procedures are repeated until the estimates
converge.
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Fig. 2. The right and the left hand parts of the figure show
the procedures for updating f̂f ðx; yÞ and ĥhðx; yÞ, respectively.
These sequences are repeated alternately so that the cost
function converges.
(i) Projection onto a complex set

Figure 3 shows a block diagram of this procedure. In
this procedure, f̂f ðx; yÞ is transformed to F̂Fðu; vÞ by Fourier
transform. Then, F̂Fðu; vÞ is updated using the additional
constraint of the phase spectral information. The updating of
F̂Fðu; vÞ is achieved by replacing its phase spectrum with the
one retrieved by Takajo’s method.

The retrieved spectrum �Fðu; vÞ is congruent to a phase
spectrum of Fðu; vÞ modulo �.24) That is, the following
relationship holds:

�Fðu; vÞ ¼ �Fðu; vÞ or �Fðu; vÞ � �; ð10Þ

where �Fðu; vÞ is a phase spectrum of Fðu; vÞ. In the proposed
method, the phase spectrum is updated by using �Fðu; vÞ or
�Fðu; vÞ þ �, as follows:

�new
F̂F

ðu; vÞ ¼
�Fðu; vÞ ðu; vÞ 2 S

�Fðu; vÞ þ � ðu; vÞ =2 S

�
; ð11Þ

with

S ¼ fðu; vÞjd1ðu; vÞ 5 d2ðu; vÞg; ð12Þ

d1ðu; vÞ ¼ �old
F̂F
ðu; vÞ � �Fðu; vÞ; ð13Þ

d2ðu; vÞ ¼ �old
F̂F
ðu; vÞ � ð�Fðu; vÞ þ �Þ; ð14Þ

where �F̂Fðu; vÞ is a phase spectrum of F̂Fðu; vÞ. d1ðu; vÞ and
d2ðu; vÞ are in the range of (��, �]. F̂Fðu; vÞ is thus updated
by using �new

F̂F
ðu; vÞ without changing its amplitude spectrum

jF̂Fðu; vÞj as shown in Fig. 4.
(ii) Minimization of the cost function

Figure 5 shows a block diagram of this procedure, in
which F̂Fðu; vÞ is adjusted so that the cost function, defined by
eq. (3), is minimized. For minimization of the cost function,
the gradient descent only on the amplitude spectrum is
applied to preserve the phase spectrum already constrained
in the previous procedure.

The following is an updating procedure:

F̂Fnewðu; vÞ
�� �� ¼ F̂Foldðu; vÞ

�� ��� �F̂F

@E

@ F̂Foldðu; vÞ
�� �� ; ð15Þ

where �F̂F is a descent parameter. The gradient of the cost
function with respect to jF̂Foldðu; vÞj is given by:

@E

@ F̂Foldðu; vÞ
�� �� ¼ �2< e�i�F̂F ðu;vÞĤH�ðu; vÞ"F̂Fðu; vÞ

� �
ð16Þ

with

"F̂Fðu; vÞ ¼ Gðu; vÞ � F̂Foldðu; vÞĤHðu; vÞ; ð17Þ

where <½ � � stands for a real part of a complex number.
The descent parameter �F̂F is determined in order to

minimize the cost function. After the updating of F̂Fðu; vÞ, the
cost function becomes:

(i) Projection onto a
complex set

(ii) Minimization of
the cost function

(iii) Projection onto
an image space

(u, v)F̂

(u, v)F̂

(x, y)f̂(x, y)ĥ

(u, v)Ĥ

(u, v)Ĥ

(x, y)0̂f(x, y)ˆ
0h

(i) Projection onto a
complex set

(ii) Minimization of
the cost function

(iii) Projection onto
an image space

Fourier transform Fourier transform

(u, v)Ĥ (u, v)F̂

(u, v)ˆ
0H

Fig. 2. Block diagram of the proposed method. f̂f 0 and ĥh0 are
initial estimates. f̂f ðx; yÞ and ĥhðx; yÞ are an estimated image and a
PSF, respectively.

Fourier transform

Impose a phase constraint

(u, v)ˆ newF

(u, v)ˆ oldF

(x, y)ˆ oldf

Fig. 3. Block diagram of the projection onto a phase spectral set.

Re

Im

(u, v)φ

(u, v)old
F̂

θ

Im

(u, v)φ
Re

(u, v)ˆ oldF

(u, v)new
F̂

θ

ˆ newF (u, v)

Fig. 4. Geometrical representation of the projection onto a phase
spectrum. The solid and dashed vectors represent F̂Fðu; vÞ and a unit
vector with retrieved phase spectrum, respectively. The left and
right hand parts of the figure stand for the situations before and
after updating, respectively.

Update procedure

(u, v)ˆ newF

(u, v)ˆ oldF (u, v)Ĥ

Fig. 5. Block diagram of the minimization of the cost function.
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EF̂F ¼
X
u;v

Gðu; vÞ � F̂Fnewðu; vÞ
�� ��ei�F̂Fðu;vÞĤHðu; vÞ

�� ��2: ð18Þ

EF̂F is a quadratic convex function with respect to �F̂F .
Therefore, �F̂F minimizing the cost function satisfies the
following equation:

@EF̂F

@�F̂F

¼ 0: ð19Þ

Accordingly, �F̂F is given by:

�F̂F ¼ �

X
u;v

< e�i�F̂F ðu;vÞDF̂Fðu; vÞĤH
�ðu; vÞ"F̂Fðu; vÞ

� �
X
u;v

D2
F̂F
ðu; vÞ ĤHðu; vÞ

�� ��2 ð20Þ

with

DF̂Fðu; vÞ ¼
@E

@ F̂Foldðu; vÞ
�� �� : ð21Þ

From a geometrical point of view, this minimization
procedure means that jF̂Foldðu; vÞj is adjusted to minimize the
cost function without changing its phase spectrum �F̂Fðu; vÞ as
shown in Fig. 6.
(iii) Projection onto an image space

A block diagram of this procedure is shown in Fig. 7. In
this procedure, f̂f ðx; yÞ is obtained by an inverse Fourier
transform of F̂Fðu; vÞ. f̂f ðx; yÞ is also updated by eq. (5) in a
similar manner as described in §2.

ĥhðx; yÞ is updated in the same way as f̂f ðx; yÞ. As shown in
Fig. 2, these procedures are alternately iterated until the cost
function converges.

4. Experimental Results

In the experiments, the following four kinds of images are
employed as original images. As shown in Fig. 8, these are:
cropped parts of ‘‘Lena,’’ ‘‘Barbara,’’ ‘‘Building,’’ and
‘‘Text’’ in a standard image database (SIDBA).26) Each
cropped image in SIDBA is constituted of 64� 64 pixels.
The resolutions of the original images are all 8 bits gray-
level in the range of ½0; 1�.

As the PSFs, four kinds of images shown in Fig. 9 are
employed: three typical PSFs of ‘‘Disk,’’ ‘‘Line,’’ and
‘‘Gaussian,’’ and a complex shaped PSF of ‘‘Complex,’’
which are constituted of 15� 15, 5� 7, 6� 6, and 7� 5

pixels, respectively. Their resolutions are the same as those
of the original images. ‘‘Disk’’ and ‘‘Line’’ shaped PSFs are

known as models of out-of-focus and motion blur, respec-
tively. A ‘‘Gaussian’’ shaped PSF is a model of atmospheric
turbulence.

The observed images employed in the experiments are
generated by the convolution of all possible combinations of
the four original images and four PSFs. The restoration
simulation is executed for all 16 (4� 4) kinds of the
observed images.

Im

Re

(u, v)ˆ oldF

Im

Re

(u, v)ˆ oldF

(u, v)ˆ newF

(u, v)
F̂

θ (u, v)
F̂

θ

(u, v)ˆ newF

Fig. 6. Geometrical representation of the updating of F̂Fðu; vÞ. The
left and right hand parts of the figure stand for the situations before
and after updating, respectively.

Inverse Fourier transform

Impose image constraints

(x, y)ˆ newf

(x, y)ˆ oldf

(u, v)ˆ oldF

Fig. 7. Block diagram of the projection onto an image space.

(a) (b)

(c) (d)

Fig. 8. Original images employed for the experiments. (a)
‘‘Lena.’’ (b) ‘‘Barbara.’’ (c) ‘‘Building.’’ (d) ‘‘Text.’’

(a) (b)

(c) (d)

Fig. 9. PSFs employed for the experiments. (a) ‘‘Disk.’’ (b)
‘‘Line.’’ (c) ‘‘Gaussian.’’ (d) ‘‘Complex.’’
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For a comparison, two typical conventional methods, ‘‘A–
D algorithm’’ and ‘‘gradient-based method’’ are used. The
restoration performance is evaluated by an average and a
standard deviation of root mean squared error (RMSE) for
some trials to each observed image. RMSE is defined by:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
x;y

f ðx; yÞ � f̂f ðx; yÞ
� 	2

N

vuuut
; ð22Þ

where N stands for the number of pixels of f ðx; yÞ.
In the proposed method, the phase spectral information is

estimated by using Takajo’s method beforehand. The phase
estimation performance is evaluated by RMSE for the
estimated phase spectral information (RMSEP). RMSEP is
defined as:

RMSEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
u;v

�T ðu; vÞ � �Fðu; vÞ
� 	2

N

vuuut
; ð23Þ

where �T ðu; vÞ is the true phase spectral information
corresponding to �Fðu; vÞ. j�T ðu; vÞ � �Fðu; vÞj is in the
range of ½0; ��. For all the experiments, the feedback

constant in the HIO algorithm is assigned to 0.2.
RMSEPs for all the observed images are shown in Table 1

and are confirmed to be reasonably small for all the observed
images. Furthermore, the images of the true phase spectral
information and the estimated one for the observed image,
generated by the convolution of ‘‘Barbara’’ and ‘‘Disk,’’
are shown in Fig. 10. The phase spectral information is
estimated almost perfectly. The estimated phase spectral
information is used as the additional constraint of the
proposed method.

Ten experimental trials are executed for each observed
image with random initial estimates. Averages of RMSE are
shown in Fig. 11; it is seen that averages of the proposed
method are less than those of the conventional methods for
all the images. Furthermore, it is also seen that the standard
deviations of RMSE of the proposed method are sufficiently

Table 1. RMSEPs for all the observed images.

Original image
PSF

Disk Line Gaussian Complex

Lena 0.254 0.005 0.512 0.478
Barbara 0.051 0.210 0.157 0.024
Building 0.316 0.013 0.303 0.023
Text 0.295 0.004 0.136 0.138

(a) (b)

Fig. 10. Images of phase spectral information for the observed
image generated by the convolution of ‘‘Barbara’’ and ‘‘Disk.’’ (a)
True phase spectral information. (b) Estimated phase spectral
information.

Lena Barbara Building Text
0

0.1

0.2

0.3

0.4

(a)

A
ve

ra
ge

 o
f 

R
M

SE

A-D algorithm
Gradient-based method
Proposed method

Lena Barbara Building Text
0

0.1

0.2

0.3

0.4

(b)

A
ve

ra
ge

 o
f 

R
M

SE

A-D algorithm
Gradient-based method
Proposed method

Lena Barbara Building Text
0

0.1

0.2

0.3

0.4

(c)

A
ve

ra
ge

 o
f 

R
M

SE

A-D algorithm
Gradient-based method
Proposed method

Lena Barbara Building Text
0

0.1

0.2

0.3

0.4

(d)

A
ve

ra
ge

 o
f 

R
M

SE

A-D algorithm
Gradient-based method
Proposed method

Fig. 11. Averages and standard deviations of RMSE. (a), (b), (c), and (d) show the results when PSFs are ‘‘Disk,’’
‘‘Line,’’ ‘‘Gaussian,’’ and ‘‘Complex,’’ respectively.
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small. These facts make it clear that the proposed method
has good and stable restoration performance in comparison
with the conventional methods.

Examples of restoration results are shown in Figs. 12 and
13. From them, the superiority of the proposed method is
also visually confirmed.

For restoration examples shown in Fig. 12, the normalized
costs versus iterations are shown in Fig. 14. The normalized

cost NC is defined by:

NC ¼

X
u;v

Gðu; vÞ � F̂Fðu; vÞĤHðu; vÞ
�� ��
X
u;v

F̂Fðu; vÞ
�� �� ĤHðu; vÞ

�� �� : ð24Þ

In Fig. 14, the solid, dashed, and dotted lines show the
results of the proposed method, gradient-based method, and
A–D algorithm, respectively. It is observed that the
normalized cost of both the proposed method and the
gradient-based method converge, although the cost of the A–
D algorithm fluctuates. Furthermore, the final cost of the
proposed method is lower than other methods.

RMSEs of the examples shown in Fig. 12 versus iterations
are shown in Fig. 15. The meanings of the lines are the same
as in Fig. 14. The error of the proposed method converges
quickly to minimum value; furthermore, it is far smaller than
other methods. Thus, restoration accuracy of the proposed
method is superior.

(a) (b)

(c) (d)

Fig. 12. Examples of restoration results. (a) The observed image
generated by the convolution of ‘‘Barbara’’ and ‘‘Disk.’’ (b), (c),
and (d) are the restored images by the A–D algorithm, the gradient-
based method, and the proposed method, respectively.

(a) (b)

(c) (d)

Fig. 13. Examples of restoration results. (a) The observed image
generated by the convolution of ‘‘Text’’ and ‘‘Line.’’ (b), (c), and
(d) are the restored images by the A–D algorithm, the gradient-
based method, and the proposed method.
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Fig. 14. The normalized cost vs iterations. These results show the
restoration processes for the case shown in Fig. 11. The solid,
dashed, and dotted lines represent the results of the proposed
method, the gradient-based method, and the A–D algorithm,
respectively.
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Fig. 15. RMSE vs iterations. These results show the restoration
processes for the case shown in Fig. 11. The solid, dashed, and
dotted lines represent the results of the proposed method, the
gradient-based method, and the A–D algorithm, respectively.
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5. Conclusions

In this paper a new blind deconvolution method based on
a gradient method with a phase spectral constraint has been
proposed. The proposed method consists of the following
three procedures: (i) projection onto a complex set, (ii)
minimization of a cost function, and (iii) projection onto an
image space. Procedure (i) restricts the solution set to satisfy
the phase spectral information. Procedure (ii) minimizes the
cost function and carries on the convergence property of the
gradient-based method. Procedure (iii) restricts the solution
set to satisfy the nonnegative and support constraints.

The normalized cost and RMSE converged reasonably
quickly for the proposed method. Furthermore, the restora-
tion performance of this method was far superior to those of
A–D algorithm and gradient-based method. Experimental
results suggest that the phase spectral constraint works
efficiently.

Future plans involve removing the support constraint and
investigating the noise robustness in order to increase the
practicality of the proposed method.
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