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A new three-dimensional (3-D) imaging technique is proposed. The images are obtained as spatial 
distributions of Walther's first and second definitions of the generalized radiance function. The generalized 
radiance function can be retrieved from the cross-spectral density measured across an observation plane 
using a propagation law described in the Fourier domain. The longitudinal resolution of the second 
generalized radiance function is much higher than that of the hrst definition, so that the second generalized 
radiance function is thus useful for the 3-D imaging. Full mathematical descriptions of the principle are 
given. Results of experimental demonstrations conducted by incorporating uncorrelated two point sources 
are also reported. 
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1. Introduction 

The propagation of spatial coherence functions such as 
cross-spectral density or mutual intensity has recently 
attracted attention.1-4) An interferometric imaging tech-
nique5) which is based on measuring the spatial coher-
ence function propagated from sources has also been ac-
tively studied.6-8) The well-known relation between the 

source intensity distribution and the propagated spatial 
coherence function is described by the van Cittert-
Zernike theorem.9) According to this theorem, the two-
dimensional intensity distribution across a spatially 
incoherent planar source is proportional to the Fourier 
transform of the mutual intensity of the paraxial far field. 

An imaging technique based on the van Cittert-Zernike 
theorem has long been employed in astronomical observa-
tions.10,n) Unlike these methods that are implemented by 

measuring the spatial interference fringe, new tech-
niques for obtaining the angular separation or an angular 
diameter of sources using the spectral interference have 
also been proposed.12,13) 

These interferometric imaging techniques based on 
the van Cittert-Zernike theorem are simple and easy to 
apply to practical observations, however, retrieved im-
ages have no information on the source distance. In other 

words, they are regarded as an image forming system 
with an infinite focal depth. A principle for three-dimen-

sional (3-D) imaging has thus been needed and new 
methods were recently proposed.6,14,15) Using the inverse 

propagation law of the cross-spectral density described 
in the four-dimensional Fourier domain, we also 
proposed a new technique for retrieving the 3-D intensity 
distribution.16,17) This distribution is reconstructed by 

retrieving sequential cross-spectral densities across 
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planes perpendicular to an optical axis unlike most exist-

ing methods in which the object image is obtained di-
rectly from the measured spatial coherence function. 
The propagation law of the cross-spectral density in the 
Fourier domain,18-20) which plays a central role not only 

in this technique but also in the principle proposed in this 

article, has been well known for many years. However, 
no attempt was ever made to apply this sophisticated 
representation to 3-D imaging techniques. 

In contrast, problems in the relationship between the 
spatial coherence and radiometry have been investigated 
for the last three decades.21) Various definitions of the 

generalized radiance function (GRF) have been pro-
posed, and theoretical investigations of propagating 
properties of the radiance dependent upon the source cor-
relation have also been made since Walther first general-
ized this concept.22) Walther defined two types of GRFS 
in his pioneering publications.22,23) 

From this background, we propose a new interferomet-
ric 3-D imaging technique based on retrieving the spatial 
distributions of Walther's GRF. Both the first and the sec-

ond GRF distributions are retrieved from the measured 
cross-spectral density across the observation plane that 
is perpendicular to the optical axis. It is known that 
Walther's first GRF well conserves along rays particu-
larly in the paraxial resume. Therefore, the first GRF is 
useful in such as tomography rather than for 3-D imag-
ing. In contrast, conservation 0L the second GRF is much 
worse than that of the first except for the limit of short 
wavelength. The second GRF is thus useLul for 3-D imag-
ing. One advantage of this method is the rapidity of 
required processing. Retrieving the 3-D image by 
the present method is completed much faster than 
the method based on retrieving sequential cross-spectral 
densities.16,17) A detailed discussion is given in Sect. 4. 

The 3-D image is also reconstructed with an image 
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Fig. 1. Geometry of optical system considered. 

forming lens by moving the focal point stepwise. How-
ever, a large aperture is needed to obtain the higher 
spatial resolution in such an ordinary image forming sys-
tem. Moreover, the spectral range is limited to the visible 

in many cases. On the other hand, a higher resolution can 
be obtained with a longer two-point separation in the in-
terferometric imaging method, and may be more practic-
able than using a huge image forming lens. A wide spec-
tral range is also available as seen in radio astronomical 
observations. 

We explain the principle of the 3-D imaging technique 
by summarizing the propagation law of the cross-spectral 
density described in the Fourier domain and the relation 
between Walther's first and second definitions of GRF 
and the cross-spectral density in Sect. 2. The point 
spread functions (PSFs) of the proposed imaging tech-
nique are also derived. Next, numerically calculated sim-
ple examples of GRF images are presented, and differ-
ences between the first and second GRFS are discussed 
in Sect. 3. We report results of experimental demonstra-
tions conducted by incorporating two uncorrelated point 
sources in Sect. 4. Although Walther's second GRF is 
originally defined as a real part of the complex radiance 
function,19) we also deal with the magnitude of this func-

tion. The retrieved 3-D image displayed by the magni-
tude of the complex radiance function clearly designates 
the source location compared with that displayed by the 
real part of the function. 

2. Theoretical Foundation 

The principle of our imaging technique is based on the 
propagation law of cross-spectral density in the four-
dimensional Fourier domain and the relationship be-
tween the cross-spectral density and Walther's radiance 
functions. These materials are common in literature on 
radiometry and coherence, so we quickly summarize the 
relevant part of the theory, which we use to describe the 
optical system in the geometry illustrated in Fig. 1. We 
assume planar, quasi-monochromatic light sources in a 
source plane located at z = z* > O and an observation plane 
at z = O which is parallel to the source plane . The origin of 

the coordinate system is on the observation plane. Let us 
concentrate our attention on the propagating waveflelds 
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toward a negative direction of the z axis in free space. 
We represent a particular point by a 3-D position vector 
r=(ri , z ) = (x, y, z). Since each plane is perpendicular to 

the z axis, we represent a location of a point by (rl , z) in 

the following equations. The space-dependent part of the 
scalar wavefield U(')(rl; v) exp (-27civt) satisfies the 

Helmholtz equation: 

(V +k )U(')(rl; v)=0, (1) 
where v is the optical frequency, k=27Tv/c, and c is the 
speed of light in free space. At any location, the field may 

be represented as a Fourier integral: 

ll: _ 
U(')(ri; v)= ~(')(ki; v) exp (irl 'ki )d2ki, (2) 

where k=(kl , kz)=(kx' ky, k.) is the wavenumber vector. 
On substituting Eq. (2) into Eq. (1), the following differen-
tial equation with respect to ~(')(ki; v) is obtained: 

a2 ( 2 ) ' +k~ ~(')(k~; v)=0 (3) az 

where 
f k.- ~[k2-k~]l/2 (ki~k) (4) 
-i[k~-k2]l/2 (ki>k). 

As a solution of Eq. (3), the propagation law of the angu-

lar spectrum is represented by 

~(o)(ki; v)=exp (ikzz)~(')(ki ; v), (5) 

where ~(o)(kl ; v) is the angular spectrum at the observa-

tion plane. According to Eq. (4), the field with ki > k is 

evanescent. However, we will take only the propagating 
wave into account. Note that k. ~ O means that the light 
propagates toward the negative direction of z since the 
origin of the coordinate system is on the observation 
plane. 

Next, we consider the cross-spectral density24) and its 

propagation law. The cross-spectral density is defined as 
the cross-correlation of the wavefields at two points (ri, 
z) and (rl , z) as 

W(')(rl , ri; v)=<U(')*(rl ; v) U(')(rl; v)>, (6) 

where the angular brackets denote the ensemble average 
and the asterisk denotes the complex conjugate. The 
four-dimensional Fourier transform of the cross-spectral 
density with respect to ri and rl is written as 

~V(')(kl, ki; v)=(217T)2JJJJ: W(')(rl, ri; v) 

" 
x exp [-i(ki 'rl ~kl 'rl )]d2rid2rl . 

(7) 

Note that we use exp [-i(ki 'ri -kl ' rl)] for consis-
tency to the related work (See Eq. (5) of Ref. 20)). For 
convenience of the following explanations, we call the 
four-dimensional Fourier transform the angular cross-
spectral density. Equations (2), (6), and (7) Iead to another 

representation of the angular cross-spectral density: 
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W~ (')(kl , ki; v)=<~(z)* (kl ; v)~(')(ki; v)>. (8) 

On substituting Eq. (5) into Eq. (8), the propagation law 
of the cross-spectral density from the reference plane to 
the observation plane is obtained as 

W(o)(kl , ki; v)=exp [i(k.-k~ )z]~~~V(')(kl , ki; v). (9) 

This propagation law of the cross-spectral density 
represents an exact relationship between T~(')(kl , ki ; v) 

and ~V(o)(kl, ki; v) since this equation is derived with-

out a paraxial approximation. 
Next, we introduce GRF over the reference plane at z. 

Walther's first GRF22) is defined by 

B(1's}(rl' s; v) 

k2 = ) JJ W(')(ri-Pi/2, ri+p /2 v) ( "-

Is.l 
27T 

' 
lk p )d2pi xexp(-' i' i 

= Is.1 ( k ) Il* W(')(ki-qi/2,ki+qi/2; v) 

2lc _* 
x exp (iqi 'ri )d2qi, (10) 

where s=(si, s.)=(sx' sy, s.)=k/ I k I . The complex radi-

ance function is defined by 

k2 ( ) JJ:_ B(')(rl' s; v)= W(')(ri, r +pi; v) Is.l 
21T 

lk p )d2pi xexp(-' i' i 
(k) = I s. I JJ W(')(ki -qi, ki; v) *~" 

27c 

x exp (iqi ' ri )d2qi. (11) 
The real part of the complex radiance function coincides 
with Walther's original definition of the second GRF .23) 

Using Eqs. (7) and (9), the cross-spectral density across 
an arbitrary transverse plane is retrieved using the meas-
ured cross-spectral density across the observation plane, 

and both the first GRF and the complex radiance func-
tion across the arbitrary transverse plane can finally be 

obtained directly from the measured cross-spectral 
density : 

B(1'*}(r~' s; v) 

:= ( 2 ~ ) JJ:co Iszl k W(o)(ki -qi /2, ki +ql /2; v) 
27T 

(+) (-) ~ Ist ~ K Ist )z]d2qi , xexp[lqi'ri i(K 

and 

(k)JJ i oo _ B(z)(rl' s; v)== ISz I ~V(o)(k ql, ki, v) 
27T 

-co 
' i i(kz~Kc)z]d2qi, x exp [iqi -r 

Where 
(:!:) Klst = ~ [k2 - (ki d: qi /2)2]l/2 

and 

rcc ~ [k2 - (ki - q)2]l/2 

(12) 

(13) 

(14) 

(15) 
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Retrieved radiance functions reflect the intensity distri-
bution. Let us consider radiance functions for the quasi-
homogeneous source.24) The assumption of quasi-
homogeneity implies that the spectral density S(z.)(ri ; v) 

varies much more slowly than the effective correlation 
length which is characterized by the spectral degree of 
coherence //(")(ri; v), and the first GRF at z can then 

be written by 

k 2S(')(rl; v)~(')(k; v), (16) 
B(1's}(ri s v)-Is.1 2lc 

and the complex radiance function by 

B(')(rl' s; v) 

k2 = ) IJ S(')(ri +pl /2; v)p(')(p~; v) ( "-

Is.l 
27c 

" 
lki Pi; v)d2pi, x exp (- ' ' (17) 

where p(k; v) is the two-dimensional Fourier transform 
of the spectral degree of coherence. Equation (16) is der-
ived under the approximation [S(')(ri-Pl/2; v)S(') 
(ri +pi /2; v)]l/2 = S(')(rl ; v). In a special case where the 

source field is spatially incoherent, both radiance func-
tions across the source plane are proportional to the inten-

sity distribution as follows : 

k2 S('•)(rl;v). (18) B{zs}(ri s v) B(')(ri,s v)-Is.1 (27T)3 

Both the first GRF and the complex radiance function 
are obtained by taking the two-dimensional Fourier trans-
form of the product of the propagation kernel and the an-
gular cross-spectral density of the observation plane. In a 

practical experiment, the cross-spectral density with 
respect to all pairs of points (rl , ri ) within the observa-

tion area may be measured using a rotational-share 
interferometer or a wave-front-folded interferometer.n) 
Therefore, the four-dimensional Fourier transform of the 
measured cross-spectral density with respect to ri and 
r I must be taken. After taking the Fourier transform, suc-

cessive applications of Eq. (12) or Eq. (13) by changing z 
give sequential distributions of the first GRF or the com-
plex radiance function over the x-y-z space . It should be 
noted that the selected direction of s in Eq. (12) must not 

be (O, O, - 1) for 3-D imaging because the first GRF is in-

dependent of the propagation distance z when si = (O, O). 
This implies that the first GRF with respect to a direction 

parallel to the optical axis is completely conserved as 
propagating in free space . 

Next, we derive PSF of the retrieved first GRF and the 
complex radiance function across the source plane. Let 
us assume a primary point source at r* = (rs i ' zs) = (xs' ys' 

zs)' The cross-spectral density across the primary source 
plane is then represented by 

( l_ 2 Q(~~)(rl,ri;v)=Q06 ri+r rsi 6 (ri rl), (19) 
2 

where 62(ri ) is the Dirac delta function and Qo is a posi-

tive constant. The angular cross-spectral density across 
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the source plane is obtained by taking the four-dimen-
sional Fourier transform of Q(")(rl, ri; v): 

Qo 
~~('•)(kl,ki; v)=(27c)2 exp [ l(kl kl) rsi] (20) 

Hence, the angular cross-spectral density of the source 
field is represented asl8) 

W(z~)(kl , ki; v)~(2lc)2 ~~f(')(kl , ki; v) 

~ k.k~ 

Qo 
=k.k~ exp [ -i(ki -kl ) ' rsi l' (21) 

The angular cross-spectral density across the observa-

tion plane can be written as a product of W('•)(kl , kl ; v) 
and the propagation kernel based on Eq. (9) as 

W(o)(kl, ki; v)=exp [i(k.-k~)zs]W(z~)(kl, ki; v) 

Qo 
~k.k~ exp[1(k.zs kl rsi) 

- i(k~ zs ~ kl ' rs i )]' (22) 

Taking the four-dimensional inverse Fourier transform 
of W(o)(kl,ki; v) yields the cross-spectral density 
across the observation plane: 

• = 2 JJJJ: 1 
W(o)(ri, ri, v) (27c) W(o)(kl, ki; v) 

* 
x exp [i(kl 'rl ~kl ' rl )]d2kid2kl 

=Qo f * (rl - rsi ) f (ri - (23) rs i )' 

where 
1 JJ: 

f(ri)= _ 27Tlk.1 exp [1(k.zs+k ri)]d k (24) 

Let us now use a paraxial approximation with respect to 
k. and k~ derived by the Tailor series: 

k2 
kz~: -k+2k ' 

then f(ri ) is written as 

f(ri)~:~ exp (-ikzs) exp -2zs ) ik ( ~ r 
On substituting Eq. (26) into Eq. 

(25) 

(26) 

(23), the cross-spectral 

density across the observation plane is rewritten as 

W(o)(rl, rl; v) 

2- i- } Q { ik . (27) rs i ) (r rs i )2] = 2 exp [(rl-s 2 zs z 

In a practical measurement of the cross-spectral density, 
the range of ri and rl is limited by the linear dimension 
of a photodetector array. Therefore, the measured cross-
spectral density is represented by a product of W(o)(rl, 

rl; v) and the transmission function A(rl ) as 

W~)(rl , ri; v)=A(rl )W(o)(rl , ri; v)A(ri ). (28) 

Note that A(ri ) is a real function and takes I in the mea-
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surement area and O outside. The four-dimensional 
Fourier transform of the measured cross-spectral density 
is then represented by 

W~)(kl, ki; v) 

= 2 JJJJ: Qo 
(27czs) A(ri )A(rl ) 

* 
} { ik 

[(rl - rsi )2 ~ (rl - rs i )2] x exp 2zs 

x exp [ - i(kl ' ri -kl ' rl )]d2ri d2rl . (29) 

Making the paraxial approximation shown in Eq. (25), 
the first GRF and the complex radiance function are 
represented by 

B(1zs)t(ri, s; v) 

(k) _ = I sz I JJ W(o)(ki - ql /2, ki +qi /2; v) co_co 

27T 

i ' (ri -siz)]d2qi, x exp [iq (30) 
and 

B(z)(rl' s; v) 

(k) = Is.1 JJ ~(o)(ki -qi, ki; v) 27c co_* 

xexp[iqi' i-(r slz)] 
~ ql )2]} d2qi . ~ z 

xexp ~k[q +(s (31) 
As a simple example, Iet us assume that the source is lo-
cated at (xs' O,zs) and that the cross-spectral density 
along only the x axis is measured within a baseline length 

of D. The transmission function is then represented by 

( ) x 
A(ri)=rect D (32) 6(y) 

To derive PSFS of the first GRF and the complex radi-
ance function, we set z=zs in Eqs. (30) and (31). 
Moreover, we consider the first GRF and the complex 
radiance function with respect to the fixed direction 
s = (O, O, - 1) for simplicity. Under these circumstances, 

we obtain the PSF of the first GRF over the source plane 
by substituting Eqs. (29) and (32) into Eq. (30) as follows: 

' 2 ~7Tzs/2 ) B(1zst)m(x O)=QoD( k ~ rect ( x 

D 
k 

sin -(D-2lxl)[x-xs] 
zs 

[x-xs] 
zs 

and the PSF of the complex radiance function is similarly 
derived by substituting Eqs. (29) and (32) into Eq. (31) as 

~(cz'm) (x, O) 

k 5/2 1lc ) = ( s) 4 [F(a(+))_F(a(~))] 
Q exp 27cz 
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where 

and 

2~ [ s J ik I kD xexp -2zs 2z (x x) (x x )J Sinc -

1 a iITT2 - J -F(ce) 1-i 2 dT ex p 
co 

a(+) ~~~:s D ~ ( ~s + 2X 

(34) 

(35) 

(36) 

Based on Eqs. (33) and (34), profiles of PSFS of the first 

GRF, the real part, and the magnitude of the complex 
radiance function are plotted in Fig. 2(a), (b), and (c), re-

spectively, for source locations of x* = O mm, 0.3 mm, and 

0.6 mm. Other parameters used are k=9,929 rad/mm, 
D=2.4 mm, and z*= 110 mm. Each power is normalized 
by the peak of the first PSF for x*= O, namely, in the case 

that the point source is located on the optical axis. As 
seen from Fig. 2(a), the peak of the PSF of the first GRF 

10wers and the width broadens as the source location 
moves away from the optical axis. When the point source 
is located apart from the optical axis, the period of oscilla-

tion is asymmetric to the peak of the PSF, and oscillation 
of the left side of the peak is faster than that of the right 

side. In contrast, widths of PSFS of the real part and the 

magnitude of the complex radiance function are almost 
unchanged when the source moves. Height differences of 
PSFS shown in Figs. 2(b) and (c) are caused by the Fres-
nel integral term F(a(+)) _F(a(~)). 

Next, Iet us confine ourselves to the resolution power 
along the x axis . The full width at half maxima of PSFS of 

the first GRF, the real part, and the magnitude of the 
complex radiance function for x* = O mm are, respec-
tively, 0.0175 mm, 0.035 mm, and 0.035 mm under the 
same conditions as Fig. 2. This means that the resolution 
power of the first GRF along the x axis is the highest in 
those of three radiance functions for an obj ect on the opti-

cal axis. However, PSF of the first GRF broadens as the 
source location shifts away from the optical axis as stated 

above, whereas the width of PSF of the magnitude of the 
complex radiance function is invariant within the para-
xial area. The width in the PSF of the real part of the 
complex radiance function changes somewhat owing to 
the quadratic phase term. 

3. Numerical Calculation 

Based on the mathematical formulation stated in Sect. 
2 , we will show the numerical examples of the retrieved 
radiance functions for a particular case. Assumed coor-
dinate system and geometry are the same as those shown 
in Fig. 1. We assume quasi-monochromatic, spatially in-
coherent planar sources in a source plane located at 
z =z*=100,000 mm (100 m). The intensity distribution 
across the source plane is binary as shown in Fig. 3(a). A 
region 2.4 mm square within the source plane is consi-
dered, and radiance distributions are calculated over the 

same area. The wavelength of light is assumed to be 
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Fig. 2. PSFS of (a) the first GRF, (b) the real part of the complex 

radiance function for the source location s.=0 mm, 0.3 mm, and 
O .6 mm, and (c) the magnitude of the complex radiance function for 
the same s.'s as (b). 

632.8 nm. 
As a beginning, the first GRF and the real part of the 

complex radiance function for fixed s 's across the obser-

vation plane are calculated under these circumstances, 
and the results are shown in Figs. 3(b) and (c). Since 
gray-1evels are normalized by each maximum and mini-
mum of the calculated radiance functions, the zer0-1evels 
differ. The direction s, which specifies the direction of 
the considered plane wave, for the first GRF is set to (1/ 
2, O, - f~/2), namely, the angle between s and the opti-

cal axis is 30' on the x-z plane. Remember that the first 
GRF for s = (O, O, - 1) is independent of the propagation 
distance, and the same image as the original source inten-
sity will be obtained across any transverse planes . The 
direction of s for the complex radiance function is set to 

(O, O, - 1). It is seen from Fig. 3(b) that the image 
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Fig. 3. (a) Intensity distribution of primary sources assumed for 
the computer simulation. (b) Spatial distribution of Walther's first 
definition of GRF 100,000 mm from the source plane and (c) the real 
part of the complex radiance function at the same distance as (b). (d) 

The first GRF 100 mm from the source plane, (e) the real part, and 
(f ) the magnitude of the complex radiance function at the same 
distance as (d). 

retrieved as the first GRF exlribits shapes of three 
starred source with periodic oscillation that appears in 
the direction of s i . In contrast, the complex radiance 
function expands to the entire image. 

Next, we inversely propagate the first GRF and the 
complex radiance Lunction across the reference plane 
that is separated from the observation plane by 99,900 
mm (99.9 m), that is 100 mm from the source plane. The 
retrieved images are shown in Figs. 3(d), (e), and (f). 
Figures 3(e) and (f) are, respectively, the real part and 
the magnitude of the complex radiance function. As seen 
from Fig. 3(d), the image retrieved as the first GRF 
almost coincides with the original source intensity 
though the contrast is lower than that of Fig. 3(a) be-
cause of minute oscillation around the edge of the 
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Fig. 4. Experimental setup for measuring 
density. 

the cross-spectral 

sources. The complex radiance functions shown in Figs. 
3(e) and (f) barely exilibit the three starred sources, but 

images are much blurred compared with the first GRF. 
The calculated results of radiance functions across the 
source plane are omitted because they are simply propor-
tional to the source intensity as obvious from Eq. (18), 
although they were verified by simulation . 

Differences between the first GRF and the complex 
radiance function imply the conservation characteristics 
of the radiance functions . As obvious from simulation 
results shown in this section, the conservation of the com-

plex radiance function along s is much worse than that of 
the first GRF. In other words, the retrieved image as the 
complex radiance function is considerably blurred when 
z ~z.. The large angle between s and the optical axis 
makes the hrst GRF more blurred, but it may be imprac-
ticable to measure the cross-spectral density to retrieve 
the first GRF with an extremely large angle . For this rea-

son, the complex radiance function is more useful than 
the first GRF for 3-D imaging. 

4. Experimental Delnonstration 

In this section, we report the results of an experimen-
tal demonstration for retrieving the spatial distribution 
of the first GRF and the complex radiance function. The 
schematic of the optical setup is shown in Fig. 4. A1-
though the x-y-z space is assumed in the general theory 
stated in Sect. 2, we measured the cross-spectral den-
sity along the x axis, and the GRF distributions on the x-z 

plane were retrieved for simplicity. Two optical fibers 
with core diameters of 8 pm each simulate two point 
sources. Tips of fibers are separated by 0.8 mm along the 
x axis and by 20 mm along the z axis. Since beams emit-
ted from individual He-Ne lasers (wavelength 632.8 nm) 
are incident on each optical fiber, there is no correlation 

between the fields of the two point sources. A Michelson-
type wave-front-folded interferometer consists of a beam-
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Fig. 5. (a) Real and (b) imaginary parts of the measured cross-
spectral density. 

splitter, a right-angle prism, a mirror, an image forming 

lens, and a CCD camera. The right-angle prism on one 
path folds the wave front and the superposed beam is fo-
cused on the CCD camera by the image forming lens with 
a magnification factor of I . In this experiment system, 
the observation plane in Fig. I corresponds to the mirror 
surface. The mirror is slightly tilted in order to introduce 

a carrier frequency into an interference fringe. The 
cross-spectral density along the y axis is regarded as 
uniform because the tips of optical fibers are located on 
the x-z plane and are sufiiciently small. The cross-spec-

tral density as a function of a two-point separation 
A x=x-x' for a specific average coordinate ~=(x+x)/2 
is obtained by the Fourier analysis of the interference 
fringe. To measure the cross-spectral density with 
respect to all pairs of points within the observation base-

line, the entire interferometer should be moved along the 
x axis. In the present experiment, the ends of the optical 

fibers that were fixed on a micropositioner were moved 
instead of the entire interferometer. Five hundred and 
twelve frames were recorded by the CCD camera and a 
computer while fibers moved 2.4 mm. 

Real and imaginary parts of the measured cross-spec-
tral density are shown in Figs. 5(a) and (b) as gray-1evel 

images. White represents a higher value. Horizontal and 
vertical axes represent the x- and x' axes, respectively, 
and a cross section along a diagonal line from top-right to 
bottom-1eft of the real part designates the intensity distri-

bution over the observation axis. Taking the two-dimen-
sional Fourier transform of the cross-spectral density 
with respect to x and x' gives the angular cross-spectral 
density as a function of k. and k~ . Using this angular 
cross-spectral density, we retrieve Walther's first GRF 
and the complex radiance function with respect to the 
fixed direction s = (O, O, - 1). The retrieved first GRF is 
plotted in Fig. 6 as a function of x. As pointed out in Sect. 

2, the first GRF with si = (O. O) is independent of the 
propagating distance z. Thus, two sharp peaks appear in 
the figure though the sources are located different dis-
tances from the observation plane. In other words, the 
first GRF with s i = (O , O) is conserved completely as it is 

propagating. It should be noted that the intensity distri-
bution retrieved based on the van Cittert-Zernike the-
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1 

orem is given as a function of an angle seen from the ob-
servation point unless the source distance is known in 
advance, however, the two-point separation (0.8 mm, in 
this case) is obtained by the first GRF without the source 
distance. 

Next, we show the retrieved complex radiance func-
tion. Unlike the first GRF, the complex radiance function 

depends on the propagating distance z. A sequence of 
spatial distributions of the complex radiance function 
along the x axis from z = O mm to z = 200 mm is calcu-
lated based on Eq. (13). The real part and the maguitude of 

the complex radiance function are shown in Figs. 7(a) 
and (b). Locations of two tips of optical fibers are 
retrieved almost exactly as higher values (white regions) 
in both figures. The cross sections of Figs. 7(a) and (b) at 

z = 110 mm and 130 mm, in which two point sources are 
10cated, are shown in Figs. 8(a), (b), (c), and (d). Sharp 
peaks in each graph represent focused sources. The oscil-
lation appearing in Fig. 7(a) is reduced in Fig. 7(b), and it 

is also seen from Figs. 8(a), (b), (c), and (d). Although we 

suggested that 3-D imaging is possible by using the first 
GRF with respect to the direction si ~ (O, O), the first 
GRF and the complex radiance function with sl = (O. O) 
were shown as experimental results. As seen from Eqs. 
(12) and (14), the first GRF is well conserved in the direc-

tion of s. However, retrieving the first GRF with large 
I s I I requires measuring the cross-spectral density with an 

extremely high spatial resolution to obtain a wide range 
of kl . 

In our latest paper,17) we proposed an interferometric 

3-D imaging technique based on retrieving sequential 
cross-spectral densities within the considered slab geo-
metry. This method can retrieve the intensity distribu-
tion on the 3-D space since the cross-spectral density 
with respect to the same point represents the spectral 
density, and this is proportional to the intensity as long 

as the source spectrum is quasi-monochromatic. We com-
pared the processing time required for calculating the dis-

tribution of the complex radiance function and the inten-
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magnitude at z= 110 mm and (d) z= 130 mm. 
(a) The real part at z= 110 mm and (b) z= 130 mm, and (c) the 

sity distribution over the x-z plane . The distributions of 
the complex radiance function shown in Figs . 7(a) and (b) 

were calculated from the measured cross-spectral den-

sity shown in Fig. 5 in 8 seconds, while it took 3483 sec-
onds to calculate the intensity distribution over the same 

slab geometry using a personal computer (CPU: Intel 
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Pentiumll 450 MHz, OS: FreeBSD 2.2.8RELEASE). To 
retrieve sequential cross-spectral densities over the x-z 

space, the two-dimensional FFT and the two-dimen-
sional inverse FFT must be performed at every z coor-
dinate. In case of the present method, however, the two-
dimensional FFT is required only once, and a radiance 
distribution at a particular z-coordinate is given by the 

one-dimensional FFT. Hence the processing time for 
these two methods differ greatly. 

5. Conclusions 

A new three-dimensional imaging technique based on 
retrieving Walther's first and second definitions of the 
generalized radiance function was proposed. The spatial 
distributions of these two types of generalized radiances 
can be calculated from the cross-spectral density propa-
gated from primary sources in free space using the propa-
gation law of the cross-spectral density described in the 

Fourier domain. An experimental demonstration of this 
imaging method was conducted by incorporating two un-
correlated point sources. The 3-D Iocations of sources 
were retrieved almost exactly as a spatial distribution of 
Walther's second definition of the generalized radiance. 
Walther's first definition of the generalized radiance 
showed the two point separation along the direction per-
pendicular to the optical axis. However, the longitudinal 
resolution is much worse than that of the second general-
ized radiance under the same conditions. Mathematical 
formulations of the proposed method were given and the 
point spread functions were also derived . 
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