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Abstract
The equivalent porous medium (EPM) method is an efficient approximate processing method for calculating groundwater 
yield taking into account the equivalent permeability coefficient of a fractured geological medium. The EPM method finds 
wide application in addressing various hydrogeological problems ranging from local to regional scales; however, the adequacy 
of the EPM model for evaluating water head and velocity distributions has not been comprehensively assessed. This study 
quantitatively investigated the influence of fracture and matrix permeability on the EPM model’s suitability, defined by a 15% 
threshold for hydraulic-head prediction error, via numerical simulations. A fractured porous media system (fracture-matrix 
system) was considered as the prototype, and the EPM model simulation results were compared with those obtained using 
the discrete fracture-matrix (DFM) model. Results indicate a decrease in EPM suitability with larger fracture apertures. With 
a constant fracture aperture, the suitability of the EPM model increases as the matrix permeability increases. The size of the 
fracture aperture significantly affects the suitability of the EPM model, and it determines the point at which its suitability 
begins to increase and eventually stabilize. The fitted curve depicting the influence of matrix permeability on the suitability 
of the EPM model conforms to the Boltzmann formula, and the fracture aperture is linearly related to the parameter x0 in the 
formula. The derived empirical formula enables quantitative assessment of the impact of fracture and matrix permeabilities 
on the suitability of the EPM model in fractured porous media.
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Introduction

Rock mass in the earth’s crust is broken on scales from mil-
limeters to kilometers, and fluid flow and mass transfer often 
occur in both the porous rock matrix and interconnected 
fracture networks for fractured porous rock. The matrix pre-
dominantly stores mass (e.g., hydrocarbons, water) and heat, 
governing long timescale processes. Fractures, in contrast to 
the rock matrix, exhibit significantly higher permeabilities 

and are widely recognized as the primary conduits for fluid 
and solute migration (Hu et al. 2022; Sweeney et al. 2020). 
Understanding the interaction between these physical sys-
tems is of utmost importance for numerous natural and engi-
neering applications such as groundwater resource extraction 
(Luo et al. 2020), hydrocarbon extraction from unconven-
tional reservoirs (Kim et al. 2021), CO2 sequestration (Chen 
et al. 2022), geothermal energy extraction (Salimzadeh et al. 
2019), and high-level radioactive nuclear waste disposal 
(Zhang et al. 2022).

Our ability to comprehend subsurface systems relies, 
in part, on the development of accurate numerical models 
capable of capturing the diverse mechanisms of physics 
occurring within fractures and the surrounding matrix, and 
their interactions. However, it is important to note that no 
single model currently exists as a universal solution. Mod-
els employed for simulating flow and transport processes in 
fractured porous media can be categorized into three types—
equivalent porous medium (EPM) model, discrete fracture 
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network (DFN) model, and discrete fracture-matrix (DFM) 
model (Applegate and Appleyard 2022; Khafagy et  al. 
2022a, b; Wei et al. 2020). Each model utilizes a distinct set 
of underlying methods, which come with their own inherent 
advantages and disadvantages.

The accurate simulation of flow in fractured porous 
media hinges on effectively characterizing complex frac-
ture network geometries and accurately representing the 
coupled flow dynamics within fractures and the surround-
ing matrix. The EPM, DFN, and DFM models address (or 
do not address) these issues in different ways. Specifically, 
the EPM model regards the fractured geologic medium as 
a continuum medium and considers that the permeability 
of the fractured geologic medium is equivalent to that of a 
continuum porous medium (Mortazavi et al. 2022; Wang 
et al. 2022a, b; Weijermars and Khanal 2019; Xue et al. 
2022). The EPM model has been successfully applied to 
solve large-scale water yield problems in fractured geologic 
media, making it widely utilized in geological engineering 
practice (Chen et al. 2020; Scanlon et al. 2003; Song et al. 
2018; Zhang et al. 2020). The EPM model provides a sim-
plified approach for representing flow within fractured rock 
mass and is renowned for its ease of implementation com-
pared to other models.

To more thoroughly consider the impact of fracture net-
works, some scholars have proposed multicontinuum meth-
ods building upon the foundation of the EPM model (Bosma 
et al. 2017; Sweeney et al. 2020). The dual-porosity model is 
a quintessential multicontinuum approach, which, to a cer-
tain extent, describes the phenomenon of preferential flow 
and accounts for the exchange of water flow between the 
fracture system and the matrix system. This method proves 
effective and suitable for reservoirs characterized by dense 
and extensive fracture distributions (Hu et al. 2021; Ma 
et al. 2023a, b; Pham and Falta 2022). However, its principal 
limitation lies in relying on empirical transfer functions for 
fluid transport between the matrix and fractures, leading to 
a homogenized fracture domain that substantially obscures 
detailed fracture information. In practice, the effectiveness 
of this method also requires assessment and validation.

The DFN model focuses solely on water flow within 
fractures and does not account for penetration into the rock 
matrix. It is a suitable method for accurately characterizing 
fracture geometry, spatial connectivity, and flow behavior 
(Feng et al. 2020; Huang et al. 2021; Khafagy et al. 2022a, 
b; Yaghoubi 2019). By excluding the matrix, the DFN 
model can utilize existing numerical methods that specifi-
cally address flow within fractures (Berrone et al. 2019; 
Geetha Manjari and Sivakumar Babu 2022); however, the 
DFN model necessitates a substantial amount of fracture 
investigation data and extensive computational effort, which 
limits its practical application in engineering. Further-
more, the absence of rock matrix representation restricts its 

applicability to specific scenarios, such as flow in imperme-
able rocks.

Unlike the DFN model, the DFM model explicitly repre-
sents both the fracture network and the surrounding porous 
matrix. Although the DFM model is newer compared to the 
DFN and EPM models, there are still implementation chal-
lenges that need to be addressed (Jia and Xian 2022; Mi 
et al. 2017; Zhao et al. 2019). The DFM model effectively 
captures the complexities of fracture network geometries 
and accurately represents the coupled flow dynamics within 
the fractures and the surrounding matrix, thus offering a 
high-fidelity representation of the fracture-matrix system. 
However, challenges related to meshing and numerical 
methods have restricted its applicability to simpler problems 
(Ţene et al. 2017; Wang et al. 2022a, b; Younes et al. 2023; 
Zhao et al. 2018). Generally, the DFM model represents the 
fracture network as (n—1)-dimensional fractures coupled 
with an (n)-dimensional mesh that represents the matrix. 
Consequently, the meshes utilized in the DFM model are 
inherently multidimensional, which introduces additional 
complexities in solving the governing equations for flow 
and transport (Hyman and Dentz 2021; Li et al. 2019, 2023; 
Liu et al. 2020).

Certain regional-scale and long-term hydrogeological 
problems necessitate more precise descriptions of water 
head or velocity distributions, particularly for applications 
such as hydrogeochemical evolution and nuclide migration 
within fractures. When using the DFN or DFM model, accu-
rately characterizing all fractures becomes impractical due 
to limitations in current investigation techniques, high inves-
tigation effort, and associated costs. One possible approach 
to overcome these challenges is to utilize the EPM method, 
which reduces model complexity and computational cost by 
not explicitly including fractures in the models (Wei et al. 
2021). To apply the EPM model, researchers introduced the 
concept of the representative elementary volume (REV) 
to describe the hydraulic characteristics of the equivalent 
continuum model in hydrogeology (Dou et al. 2019; Liang 
et al. 2019; Liu et al. 2021; Loyola et al. 2021). Researchers 
have proposed several methods to assess the occurrence of 
the REV through numerical simulations (Rong et al. 2013; 
Young et al. 2020); however, this evaluation method does not 
provide a clear criterion for assessing suitability.

Previous research indicates that the presence of frac-
tures significantly influences the head value, and neglect-
ing fractures can result in estimation errors in the ground-
water quantity and velocity (Koohbor et al. 2020; Qi-Zhen 
et al. 2012; Xing et al. 2021a, b). Furthermore, various 
studies have demonstrated that fractures have a substan-
tial impact on simulation results (Jarrahi et  al. 2019; 
Zareidarmiyan et al. 2021; Zeng et al. 2021). However, a 
convenient and efficient method for evaluating the influ-
ence of fractures on the suitability of the EPM model 
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is still lacking. The permeability of a fractured geologic 
medium is determined by many factors, among which 
the most important parameters are fracture permeabil-
ity and matrix permeability (Baghbanan and Jing 2008; 
Bou Jaoude et al. 2022). Further, fracture permeability is 
mainly controlled by the fracture aperture. Some scholars 
have carried out a series of research projects on the seep-
age of fractured rock mass based on these factors (Bisdom 
et al. 2016; Dou et al. 2018; Mi et al. 2014); however, the 
influence of fracture aperture and matrix permeability of 
fractured rock mass on the suitability of the EPM model 
remains unclear.

The objective of this study, conducted within a two-
dimensional (2D) framework, was to assess the impact 
of fracture aperture and rock matrix permeability on 
the suitability of the EPM model. To accomplish this, a 
2D DFM prototype model was generated using statisti-
cal parameters of fractures from the Three Gorges Dam 
Project area in China. Subsequently, multiple sets of 
DFM models were created, varying the fracture aperture 
and matrix permeability of the fractured rock mass. The 
influence of these parameters on the suitability of the 
EPM model was analyzed. This study provides valuable 
insights into the impact of fracture aperture and matrix 
permeability on the suitability of the EPM method for 
fractured rock masses. The findings offer a scientific 
basis for determining the applicability of this method to 
address water-head-related hydrogeological issues in frac-
tured geological media at specific sites.

Methodology

Two‑dimensional (2D) discrete fracture‑matrix 
model

The DFM model combines the advantages of the DFN 
model and the EPM model. The equations of water flow 
are established with the equivalent continuous medium 
model and discrete medium model, respectively, and then 
the coupling calculation is carried out according to the 
basic principle for establishing the DFM model, that is, 
the hydraulic heads at the contact of the two media are 
the same and the flow at the nodes is balanced. The finite 
element method can be used to solve the equation of the 
DFM model of seepage in fractured rock mass (Hu et al. 
2022; Sweeney et al. 2020; Zheng et al. 2021)—for a more 
detailed introduction to the DFM model, refer to (Binda 
et al. 2021; Dodangeh et al. 2023; Ma et al. 2023a, b). This 
model can obviously consider the influence of fracture and 
matrix permeability on seepage at the same time.

Mathematical model of water flow in 2D discrete fractures

The DFN model considers that the rock mass itself is imper-
meable, and the fracture is regarded as a discrete independ-
ent model. The mathematical model representing the anisot-
ropy of the medium is established with fracture parameters, 
to determine the real flow state of the fluid in the fracture 
network (Fu et al. 2013; Lopes et al. 2022; Su et al. 2022). 
The nomenclature is summarized in the Appendix.

In the fracture network, line elements and their two end 
nodes form the basic units. If node i is an endpoint of line 
element j, then element j is said to be connected to node i. 
The degree of node i is the number of line elements con-
nected to it. Assuming the selection of a 2D fracture study 
domain ABCD, which includes fracture intersection point 
i, a closed curve passing through the midpoints of all con-
nected line elements is constructed centered on point i, 
forming a representative domain. According to the assump-
tion of single-phase incompressible fluid flow and the prin-
ciple of mass conservation for steady seepage, the seepage 
equation within the representative domain can be written as:

where qj represents the flow rate into or out of node i through 
line element j; N′ is the degree of node i; Qi is the source-
sink term at node i.

If there are N nodes and M line elements in the fracture 
study area, then N equations of the form of Eq. (1) can be 
formed, which can be written in matrix form as follows:

where A is an aggregation matrix reflecting the aggrega-
tion relationship between the line elements and nodes in the 
fracture network. The matrix A has the number of rows equal 
to the number of nodes and the number of columns equal to 
the number of fracture line elements; � =

(
q1, q2,⋯ , qN

)T ; 
� =

(
Q1,Q2,⋯ ,QN

)T.
The specific discharge formula of incompressible fluid flow 

in a laminar regime within a fracture consisting of two parallel 
and smooth surfaces is given by the cubic law (He et al. 2021; 
Wang et al. 2020a, b; Xing et al. 2021a, b), as follows:

The average velocity of water flowing through this frac-
ture is:

(1)

(
N�∑
j=1

qj

)

i

+ Qi = 0

(2)�� +� = 0

(3)q =
�

4�
Jf∫

b∕2

0

(
b2 − 4y2

)
dy =

�b3

12�
Jf

(4)V =
�b2

12�
Jf = KfJf
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where q is the specific discharge; μ is the dynamic viscosity 
coefficient of the fluid; γ is the specific gravity of ground-
water; Jf is the hydraulic gradient of fracture water flow; Kf 
is the permeability coefficient of the fracture.

From single-fracture seepage Eqs. (3) and (4), it can be 
known that the flow rate of the jth line element is:

where Kf is the permeability coefficient of the fracture; bj 
and lj represent the width and length of the line element, 
respectively; ΔHj denotes the head difference between the 
two ends of the j-line element.

The hydraulic conductivity of the j-line element is:

written in matrix form:

where ∆H = ATH, ΔH is the column vector representing the 
head difference between the two ends of the line element, 
∆H = (∆H1,∆H2),…,∆HM)T, A is the aggregation matrix 
reflecting the relationship between line elements and nodes 
in the fracture network, and H is the vector nodal heads; 
q = (q1,q2,…,qM)T; R = diag(R1,R2,…,RM).

By combining Eqs. (2) and (7), the final seepage solution 
formula for the DFN model can be obtained:

Mathematical model of water flow in a 2D continuous 
medium

The EPM model depicts fractured rock mass as a continuum 
seepage medium, and equally distributes fracture fluid in the 

(5)qj =

(
Kf

)
j
bjΔHj

lj
= RjΔHj

(6)Rj =
�b2

j

12�
∙
bj

lj

(7)� = � ∙ Δ�

(8)
(
���T

)
� = �

whole rock mass; it considers fractured rock mass as a seep-
age medium with a symmetric permeability tensor (Chen et al. 
2021a, b; Zhang et al. 2017). The 2D steady seepage in a satu-
rated medium, based on Darcy’s law, can be expressed as:

where Tx and Ty are the transmissivities in the x and y direc-
tions; h = h(x, y) is the head function; W represents the 
source-sink term per element area.

For the Neumann boundary Γ2 , the inflow or outflow 
per unit length on this boundary is known, and there are 
flow boundary conditions:

where n is the external normal direction of Γ2 ; q(x, y) is the 
known flow rate. If the boundary is impermeable, then q = 0.

The solution to the initial-boundary value problem of 
seepage partial differential equations can be transformed 
into finding the extremal function of a certain functional. 
Therefore, solving Eq. (9) is equivalent to finding the min-
imal function of the following functional:

The seepage area Ω is discretized and divided into m 
disjoint units e, each unit contains M nodes, and the inter-
polation function is Ni, thus the head expression of the unit 
from any point is:

The seepage area Ω is decomposed into the sum of indi-
vidual elements, and the boundary Γ1 is decomposed into 
the sum of line elements, resulting in:

(9)
�

�x
=
(
Tx

�h

�x

)
+

�

�y

(
Ty

�h

�y

)
+W = 0

(10)Kn

�h

�n
|Γ2

= q(x, y)

(11)
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Ω
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1

2

[
Kx

(
�h

�x

)2

+ Ky

(
�h

�y

)2
]}
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qhdΓ

(12)h =
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Nihi

(13)
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Ie(h) =

m∑
e=1
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By substituting Eq. (12) into Eq. (13), I(h) becomes a 
function of the hydraulic heads at each node. The sought 
function h should be the minimal function of the func-
tional I(h); therefore, it must satisfy:

(14)
�I

�hi
=

m∑
e=1

�Ie

�hi
= 0

If the functional I is a quadratic function of h and its deriva-
tives, then the functional Ie for any element e is also quadratic. 
Consequently, the solution equations are transformed into:

where F is a known constant term; The expression for an 
individual element in matrix K is as follows:

(15)�� = �
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The corresponding relationship between elements in the 
whole conductivity matrix and elements in the unit conduc-
tivity matrix is as follows:

where mi is the number of units with common nodes i, j. 
Because there are few related nodes in each node, the overall 
conductivity matrix is a highly sparse symmetrical matrix.

In Eq. (15), the vector at the right end of the medium 
number is also obtained by superimposing the vector at the 
right end of the unit. The calculation formula of each ele-
ment in the vector at the right end of the unit is:

where w is the amount of infiltration or evaporation water; 
q is the inflow per unit area of the boundary.

Solution of the 2D discrete fracture‑matrix model

In order to solve the problem of 2D steady flow in areas 
where continuous media and fractured media are adjacent 
to each other, this study uses the discrete fracture-matrix 
coupling flow method (Fig. 1). The key of the method is, 
firstly, the corresponding integral seepage matrices of frac-
tured media and continuous media in the whole seepage area 
are established respectively, and then based on the principle 

(16)Ke
ij
= ∬

e

(
Kx

�Ni

�x

�Nj

�x
+ Ky

�Ni

�y

�Nj

�y

)
dxdy

(17)Kij =

mi∑
k=1

K
ek
ij

(18)Fe
i
= ∬

e

wNidΩ + ∫
Γ1

qNidΓ

of equal water head and flow balance of the common nodes 
of the two types of media, the integral seepage matrix of 
the whole seepage area is formed for further finite element 
analysis, which is actually an integral solution method (Guo 
et al. 2023; Hyman et al. 2022; Mi et al. 2017).

According to the seepage theory of fracture network in 
section ‘Mathematical model of water flow in 2D discrete 
fractures’, the steady flow equation of a 2D fracture network 
can be written as follows:

where A is the aggregation matrix; R is the coefficient 
matrix of hydraulic conductivity of fracture; h is the node 
head; Q is the source-sink term.

Based on the Ritz finite element method, the process of 
fracture seepage is the same as that of continuous medium 
seepage theory, described in section ‘Mathematical model 
of water flow in a 2D continuous medium’. Each fracture 
segment is regarded as a line element to discretize the frac-
ture seepage area. If the two ends of line element j are node 
i and node i + 1, respectively, there is an elemental seepage 
matrix as follows:

For line element j, there is an equation as follows:

where Qi and Qi+1 are the known flow rates of node i and 
node i + 1, respectively.

The overall permeability matrix (K) is obtained by super-
imposing all element permeability matrices, and finally, the 
finite element equation is:

And there is:

when coupling the fractured system and the continuous 
medium system, the fractured medium can be discretized 
by the line element, and the continuous medium can be 
discretized by the triangular element (Fig. 2). All nodes 
are numbered uniformly to obtain a permeability matrix 
of every triangular element. These matrices are assembled 
together according to node connection relationships to form 

(19)���T� = �

(20)�j =
Kj
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[
1 −1

−1 1

]

(21)Kj =
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hi+1
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=
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�
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Fig. 1   Schematic diagram of a discrete fracture-matrix model
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Fig. 2   Schematic diagram of the fracture and matrix spatial discretization
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the overall permeability matrix, after which the boundary 
conditions are added to solve the seepage flow.

Suitability evaluation of the EPM model

For a study area with known fracture geometry parameters 
and rock matrix permeability, the DFM model can be used 
to solve the hydraulic head of each node in the study area, 
and the DFM simulation results are taken as the reference 
value of the hydraulic head in the study area. Accordingly, 
the EPM model is used to calculate the hydraulic head of 
each node of the same study area. Finally, comparing the 
simulation results of the EPM model with those of the DFM 
model, the hydraulic head error of each node from the EPM 
model simulation can be solved, and the error is used to 
evaluate the suitability of the EPM model.

When utilizing the EPM model to solve for the hydraulic 
head of each node in the fractured rock mass, the fractured 
rock mass is characterized as a continuum seepage medium, 
equally distributing the water in the whole rock mass. The 
aquifer is assumed to be homogeneous, thus the hydraulic 
head at any position in the study area can be obtained by:

where Hp is the hydraulic head at any position p in the study 
area, lpAB is the distance from position p in the study area to 
boundary AB, lAD is the AD boundary length, and Hb1 and 
Hb2 are the hydraulic heads at the left and right boundaries, 
respectively, of the study area.

After obtaining the simulation results of the EPM model and 
the DFM model in the study area, this study mainly uses three 
calculation methods to quantitatively evaluate the influence of 
fracture aperture and rock matrix permeability on the suitability 
of the EPM model, including the commonly used mean abso-
lute error (MAE) and root mean square error (RMSE) values 
and the suitable rate of the EPM model proposed to express the 
suitability of the EPM model more intuitively.

In statistics, the MAE is the average value of the abso-
lute errors. It is a measure of the errors between pairs of 
observations expressing the same phenomenon, which can 
suitably reflect the actual situation of the prediction errors. 
The calculation formula is as follows:

The RMSE is a statistical metric commonly used to 
quantify the deviation between observed values and true 
values. It is calculated as the square root of the mean of 
the squared differences between observed and true values, 

(25)Hp = Hb1 +
lpAB

lAD

(
Hb2 − Hb1

)

(26)
MAE =

m∑
i=1

��predictedi − actuali
��

m

divided by the number of observations m. The formula for 
calculating RMSE is as follows:

The MAE is conceptually simpler and easier to explain 
than the RMSE. It is just the average absolute vertical or 
horizontal distance between each point in the scatter plot 
and the y = x line. In addition, the contribution of each 
error to MAE is proportional to the absolute value of the 
error. This is in contrast to RMSE which involves squar-
ing the error; thus, some larger errors will make RMSE 
increase more than MAE.

To provide a more intuitive and straightforward evalu-
ation of the EPM model’s suitability, the suitable rate was 
utilized to assess its performance. The relative error is 
calculated as follows:

where �i represents the relative error at node i, while Hi
′ and 

Hi correspond to the hydraulic head values at node i obtained 
from the DFM and EPM models, respectively. Additionally, 
Hmax denotes the maximum hydraulic head value in the study 
area, and Hmin represents the minimum water head value. 
Based on the relative error, a criterion was established to 
determine the suitability of the EPM model at each node. 
If the relative error at node i is less than or equal to 0.15, 
the EPM model simulation results are considered satisfac-
tory. Conversely, if the relative error exceeds 0.15, the EPM 
model’s performance is deemed inadequate at that particular 
node. This can be expressed as:

where ei represents the suitability of the EPM model at node 
i. A value of 1 indicates that the EPM model is suitable for 
that node, while a value of 0 suggests that the EPM model 
is unsuitable. To assess the overall suitability of the EPM 
model, the suitable rate is computed by dividing the number 
of suitable nodes by the total number of nodes:

where η denotes the suitability of the EPM model, ranging 
from 0 to 1. The η closer to 0 indicates poor suitability, while 
the η closer to 1 implies better suitability. Nt represents the 
total number of nodes in the study area.

(27)RMSE =

√√√√ 1

m

m∑
i=1

(
predictedi − actuali

)2

(28)�i =
H

�

i
− Hi

Hmax − Hmin

(29)ei =

{
1, 𝛿i ≤ 0.15

0, 𝛿i > 0.15

(30)
� =

Nt∑
i=1

ei

Nt
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By systematically varying the fracture aperture and 
matrix permeability in the study area, different fracture net-
works are generated, allowing for the suitability of the EPM 
model for each network to be calculated, thus enabling an 
exploration of the impact of fracture aperture and matrix 
permeability on the EPM model’s suitability.

Numerical model setup

This study employed a numerical simulation method to 
obtain simulated heads, enabling the evaluation of the EPM 
model’s suitability. The parameters in the numerical model 
were primarily determined based on the investigation results 
from the Three Gorges Dam Project in China (Wang et al. 
2020a, b). The statistical characteristics of four fracture 
groups in the area are presented in Table 1. To model the 
fracture trace length and aperture, a lognormal distribution 
was assumed following the work of Tonon and Chen (2007). 
Additionally, the fracture orientation probability distribution 
was considered to follow a normal distribution based on the 
studies by Chen et al. (2008) and Ni et al. (2017). Fracture 
density was treated as constant, defined as the total number 
of fractures divided by a given area.

In this study, a 2D fracture network model with dimensions 
of 20 × 20 m was generated using the Monte Carlo method 
based on fracture geometric parameters. It is worth noting 
that boundary conditions play a crucial role in investigating 
the seepage behavior of fractured rock masses. This study 
defined the left and right boundaries as constant-head bounda-
ries, with hydraulic heads set to 2 and 0 m, respectively. The 
upper and lower boundaries were considered impermeable, 
allowing water to enter from the left boundary and exit from 
the right boundary. The fluid flow was assumed to be steady.

To solve for the head values at each node of the fracture 
network, MATLAB software was used, taking into account 
the generated computational domain, boundary conditions, 
fracture distribution, and parameters. As the fracture network 
generated through the Monte Carlo simulation method exhib-
its certain randomness, the operations were repeated for all 
models 200 times (realizations). This approach was adopted to 
reduce random errors while considering the trade-off between 
computational burden and accuracy requirements.

The influence of the fracture aperture on the permeabil-
ity of fractured rock mass was quantitatively studied. Nine 

fracture apertures were set in this study (Table 2), which 
was modified by the classification standard of the fracture 
aperture in ISRM 1978 (Mechanics 1978). Other geometric 
parameters of fractures were controlled, and the permeabil-
ity of the rock matrix was set to 0 m/s, which means that 
the matrix is impermeable. These DFN models were used 
to quantitatively analyze the influence of fracture aperture 
on the permeability of fractured rock mass when the rock 
matrix permeability is neglected.

In previous studies, the matrix permeability of frac-
tured rock mass is often neglected, which often leads to 
a larger error in judgment on the suitability of the EPM 
model. The permeability of the rock matrix and fracture 
aperture control the overall permeability of fractured 
rock mass at the same time; thus, the influence of both 
of them on the suitability of the EPM model was stud-
ied (Chen et al. 2021a, b). According to Table 2, nine 
different fracture apertures were selected to build frac-
ture network models (Fig. 3), while the other geometric 
parameters of fractures are kept constant. As shown in 
Fig. 4, the matrix permeability of the fractured rock mass 
gradually increases from 0 to 0.01 m/s, and 12 different 
matrix permeability values of fractured rock mass were 
used for the numerical simulation. Totally, 108 fracture 
network models with different parameters were generated, 
and 21,600 numerical calculations were performed. The 
DFM model was used to quantitatively study the influ-
ence of fracture aperture and rock matrix permeability on 
the suitability of the EPM model.

Table 1   Geometric parameters 
of fracture for generating the 
initial DFM model

Fracture 
group

Dip angle (°) Length (m) Aperture (mm) Density (per m2)

Mean Variance Mean Variance Mean Variance

1 332.5 7.5 5.63 0.45 0.27 0.13 0.35
2 17.5 6.5 4.35 0.35 0.27 0.13 0.17
3 57.5 13.0 3.82 0.28 0.27 0.13 0.11
4 285.5 13.5 4.54 0.22 0.27 0.13 0.08

Table 2   Classification standard of fracture aperture (modified by 
ISRM,1978)

Description Aperture (mm)

Very tight 0.10
Tight 1 0.17
Tight 2 0.25
Partly open 1 0.37
Partly open 2 0.50
Open 1 1.50
Open 2 2.50
Moderately wide 6.25
Wide 10.00
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Results and discussion

Simulation results of the DFN model

The DFN model was used to explore the influence of frac-
ture aperture on the permeability of fractured rock mass when 
the matrix permeability is ignored. The hydraulic conduc-
tivity K is the smallest when the fracture aperture is 0.1 mm 
(K = 9.086 × 10–7 m/s), and the largest K is 0.9086 m/s when the 
fracture aperture is 10 mm. The overall K of fractured rock mass 
increases exponentially with the increase of fracture aperture, 
and K is proportional to the third power of the fracture aperture.

If the matrix permeability of fractured rock mass was to 
be ignored, the DFN model was used to solve the head of 
each node in the study area, and the simulation results were 
taken as the reference value of the head in the study area. The 
EPM model was used to obtain the hydraulic head results of 
each node in the study area. Finally, by comparing the EPM 
model simulation results with the DFN simulation results, the 
hydraulic head error of each node in the study area was calcu-
lated to evaluate the suitability of the EPM model. The three 
calculation methods were mainly used to quantitatively evalu-
ate the influence of fracture aperture on the suitability of the 
EPM model, including the commonly used MAE and RMSE 
values and the suitability of the ECM model. These models 
were all run 200 times to reduce the error caused by random-
ness. The results show that, when the rock matrix permeabil-
ity was neglected, with the increase of fracture aperture, the 

MAE value was 0.1252 m, the RMSE value was 0.1673 m, 
and the suitability of the EPM model was 0.8783. Under the 
condition of ignoring the permeability of rock matrix and 
keeping other fracture geometric parameters unchanged, the 
change of fracture aperture has no effect on the water head 
distribution in fractured rock mass, and thus does not affect 
the suitability of the EPM model.

Simulation results of the DFM model

The DFM model was used to quantitatively study the influ-
ence of fracture aperture and rock matrix permeability on 
the suitability of the EPM model. The results were shown in 
Fig. 5. With the fracture aperture increasing gradually, the 
MAE tends to increase gradually. When the fracture aperture 
increases to a certain limit, the MAE value begins to increase, 
and finally reaches the maximum value of 0.1252. When the 
fracture aperture increases beyond this limit, the MAE value 
will not change. RMSE value keeps the same trend as the MAE 
value; it gradually increases with the fracture aperture. When 
the fracture aperture increases to a certain limit, the RMSE 
value begins to increase and finally reaches the maximum 
value of 0.1673, and then increases the fracture aperture, and 
the RMSE value does not change. The matrix permeability 
of fractured rock mass mainly affects the starting point and 
endpoint of increases of MAE and RMSE. The influence 
of fracture aperture on the suitability of the EPM model is 
emphatically analyzed considering the permeability of rock 

Fig. 3   2D DFM models with nine different apertures; ‘Original’ refers to the original fracture aperture, set at a value of 0.27 mm
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Fig. 4   Twelve 2D DFM models with different rock matrix permeability of fractured rock mass

Fig. 5   Influence of fracture aperture on the suitability of the EPM model: a suitability value, b MAE value, c RMSE value
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matrix. Generally, when the permeability coefficient of rock 
matrix is small, the fracture aperture has little influence on the 
suitability of the EPM model. When the matrix permeability 
coefficient is relatively larger, the suitability of the EPM model 
shows a decreasing trend with the increase of fracture aperture, 
gradually decreasing from the maximum of 0.9599 to finally 
0.8793. When the fracture aperture is relatively smaller, the 
matrix permeability of fractured rock mass significantly affects 
the suitability of the EPM model. The greater the permeability, 
the greater the suitability of the EPM model. The matrix per-
meability also affects the inflection point where the suitability 
decreases, and the end point where the suitability tends to be 
stable (Fig. 5a). With the increase of matrix permeability, the 
inflection point of decrease will be delayed—in other words, 
only when the fracture aperture is larger will the fracture aper-
ture affect the suitability of the EPM model. When the perme-
ability of the rock matrix is smaller, the change of fracture 
aperture will not affect the suitability of the EPM model, which 
is consistent with the characteristics that the suitability of the 
EPM model remains unchanged with the increase of fracture 
aperture when the permeability of rock matrix is ignored 
(section ‘Simulation results of the DFN model’). The change 
trends of RMSE and MAE with aperture and matrix perme-
ability are similar (Fig. 5b,c), which are generally reversed 
compared with the suitability change trend.

This research also focuses on the influence of the perme-
ability of the rock matrix on the suitability of the EPM model, 
which is widely ignored by many scholars. The research results 
are plotted in Fig. 6. With the gradual increase of the permeabil-
ity of rock matrix, the suitability of the EPM model gradually 
increases. No matter what the fracture aperture values are, the 
suitability of the EPM model gradually increases with matrix 
permeability, starting from the minimum of 0.8783 and finally 
reaching 0.9599, then tends to be stable. Different fracture aper-
tures have different starting points and end points of the change 
curve. With the increase of fracture aperture, the starting point 
and end point will be delayed correspondingly. The trends of 
MAE and RMSE are consistent. With the increase of matrix 
permeability, the values of MAE and RMSE gradually decrease, 

and different fracture apertures have different starting points and 
end points of curve decline. Using suitability rates, MAE, and 
RMSE methods to study the influence of permeability of rock 
matrix on the suitability of the EPM model, the results are very 
similar, but the suitability rate of the EPM model will reach the 
stable point faster than the MAE and RMSE.

Suitability evaluation of the EPM model

Curve fitting is carried out based on the influence of the 
permeability of rock matrix on the suitability of the EPM 
model. The results are shown in Fig. 7. It can be found that 
the fitting results of the suitability vs. different fracture aper-
tures have the same form, and the fitting curve perfectly con-
forms to the Boltzmann formula (Hashemireza et al. 2023):

The significance of each parameter in the fitted formula 
was further explored. Among them, A1 is the lowest value 
of the curve. Regardless of the variations in fracture aper-
tures, A1 consistently remains at 0.8783, a value that is also 
indicative of the suitability rate of the EPM model when the 
permeability of the rock matrix is ignored. As mentioned in 
section ‘Simulation results of the DFM model’, this value is 
not affected by the fracture aperture. A2 is the highest value 
of the curve, remaining constant at 0.9599 across different 
fracture apertures, indicating that once the matrix permeabil-
ity increases to a certain limit, the influence of the existence 
of fractures on the permeability of fractured rock mass is 
minimal and can be approximately ignored. The permeability 
of the fractured rock mass can be approximately considered 
equal everywhere, and then the EPM model can be perfectly 
used for fractured rock mass. In the case of different fracture 
apertures, w in the fitting formula fluctuates little and can be 
approximately regarded as a constant, which represents the 
changing intensity of the curve when the suitability increases 
the most. With different fracture apertures, the absolute value 

(31)y =
A1 − A2

1 + e(x−x0)∕w
+ A2

Fig. 6   Influence of matrix permeability on the suitability of the EPM model: a suitability value, b MAE value, c RMSE value
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of parameter x0 changes to become larger, and it reduces with 
fracture aperture increase. This study focused on the influenc-
ing factors of changing x0. The results show that x0 is related 
to the rock permeability when the matrix permeability of the 
fractured rock mass is ignored. As shown in Fig. 8, the fitting 
parameter x0 is proportional to log10K. Here, K represents the 
overall permeability K of the fractured rock mass obtained 
when not considering matrix permeability. In this way, when 
evaluating the suitability of the EPM model for a site, one 
can consider the influence of fracture matrix permeability 
on the EPM model, or consider fracture matrix permeabil-
ity to modify the suitability of the EPM model according to 
the existing site conditions. Firstly, without considering the 

permeability of rock matrix, the suitability of the EPM model 
for this site is A1, and the rock permeability K can be obtained 
at the same time; A2 and w are fixed values, which are roughly 
1 and 0.478 respectively. Then, x0 is calculated according to 
the formula with the rock permeability K, and the influence 
curve of matrix permeability of fractured rock mass on the 
suitability of the EPM model is combined to quantitatively 
evaluate the influence of matrix permeability of fractured 
rock mass on the suitability of the EPM model.

Conclusions

In this study, the influence of fracture aperture and matrix 
permeability of fractured rock mass on the suitability of 
the EPM model was explored by the numerical simulation 
method. By keeping the geometric parameters unchanged 
and by changing the related parameters of fracture aper-
ture and matrix permeability of the fractured rock mass, the 
fracture network is generated by the Monte Carlo simulation 
method and hydraulic head is solved by the DFM model. 
A total of 108 sets of EPM models were built to analyze 
the influence of comprehensive fracture aperture and matrix 
permeability of fractured rock mass on the suitability of this 
model. To reduce the influence of randomness on the results, 
200 random simulations as well as a total of 21,600 numeri-
cal simulation experiments were carried out for each model.

The results indicate that when the matrix permeability of 
fractured rock mass is neglected, the overall hydraulic conduc-
tivity K of the fractured rock mass increases exponentially with 
the increase of fracture aperture, and K is proportional to the 
third power of fracture aperture. With the increase of fracture 
aperture, MAE, RMSE and the suitability of the EPM models 
remain unchanged, which is to say, that the change of frac-
ture aperture does not affect the suitability of the EPM model. 
Considering the combined influence of fracture aperture and 
matrix permeability of fractured rock mass on the suitability 
of the EPM model, with the increase of fracture aperture, the 
suitability of the EPM model tends to decrease, and the differ-
ence in matrix permeability of the fractured rock mass mainly 
affects the inflection point where the suitability decreases. 
With the increase of matrix permeability, the inflection point 
will be delayed. With the gradual increase of the matrix perme-
ability of fractured rock mass, the suitability of the EPM model 
gradually increases, and different fracture apertures affect the 
starting point and end point of the curve. With the increase 
of fracture aperture, the starting point and end point will be 
delayed correspondingly. According to the influence of matrix 
permeability on the suitability of the EPM model, the curve-
fitting result perfectly accords with the Boltzmann formula. 
When evaluating the suitability of the EPM model of a site, 
the influence of matrix permeability on the suitability of the 
EPM model can be quantitatively calculated.

Fig. 7   Fitting curve of influence of the matrix permeability on the 
suitability of the EPM model

Fig. 8   Relationship between the fitting parameter x0 and permeability 
of the fractured rock mass when matrix permeability of fractured rock 
mass is ignored



995Hydrogeology Journal (2024) 32:983–998	

The present study provides valuable insight into the influ-
ence of fractures and matrix on the suitability of the EPM 
method for addressing hydraulic-head-related hydrogeologi-
cal issues in fractured geological media. While the effects of 
fracture aperture and matrix permeability were examined in 
this study, it is important to note that other fracture geometric 
parameters, such as uneven distribution and fracture roughness, 
were not comprehensively considered. Additionally, the study 
focused on a 2D fracture network, whereas in three-dimensional 
(3D) space, the complexities of water flow and transmission in 
fractured rock masses are amplified due to factors like fracture 
connectivity and spatial positioning. Therefore, it is essential 
to conduct further investigations to determine the suitability 
conditions of the EPM model in 3D space, accounting for a 
broader range of fracture geometric parameters.

Appendix: Nomenclature

Symbol Description Units
q Unit width of discharge L2T−1

Q Source-sink term at fracture L2T−1

N′ Degree of node i
N Number of nodes
M Number of line elements
A An aggregation matrix reflecting the 

aggregation relationship between the line 
elements and nodes

q q = (q1,q2,…,qN)T L2T−1

Q Q = (Q1,Q2,…,QN)T L2T−1

μ Dynamic viscosity coefficient of the fluid ML−1 T−1

γ Specific gravity of groundwater
Jf Hydraulic gradient of fracture water flow
b Fracture width L
V Average velocity LT−1

K Hydraulic conductivity LT−1

l Fracture length L
ΔH Head difference L
Rj Hydraulic conductivity of the j line element LT−1

h Head L
ΔH ΔH = (ΔH1, ΔH2,…,ΔHM)T L
R R = diag(R1,R2,…,RM) LT−1

H H = (h1, h2,…, hM)T L
W Source-sink term LT−1

mi Number of units with common nodes i, j
K Permeability coefficient matrix LT−1

F Known constant term matrix L2T−1

w Infiltration or evaporation water LT−1

m Number of observations
a Aperture L
�
i

Relative error
η Suitability of the EPM model
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