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Abstract
The feasibility of using multilayer perceptron (MLP), an artificial neural network, was evaluated to predict lithofacies in 
complex glacial deposits within the Fraser-Whatcom Basin in southwest British Columbia, Canada, and northwest Wash-
ington State, USA. Descriptions of materials from borehole logs were standardized into lithofacies using natural language 
processing techniques to reduce subjectivity in classification and improve automation. Three data-selection alternatives were 
considered to evaluate the training and prediction capabilities of MLP. Block-model representations of the subsurface were 
created and the best geologic realization was verified against geologic cross-sections from independent studies, evidence of 
hydraulic connectivity between aquifers, and the occurrence of artesian wells. Verification results showed MLP predictions 
were typically more generalized but produced similar subsurface trends and recreated confining units contributing to local 
artesian conditions. MLP appears to be a promising algorithm to solve multi-class classification for geologic modelling 
purposes. The workflow developed has the added benefit of being stochastic with the potential to generate multiple geologic 
realizations to account for uncertainty in heterogeneity.

Keywords Complex glacial deposits · Heterogeneity · Machine learning · Hydrogeologic units · Artesian wells

Introduction

Canada and the northern United States are covered by com-
plex and heterogeneous glacial deposits. These deposits con-
tain major aquifers that are important sources of water and 
are increasingly being relied upon as water scarcity increases 
and surface-water availability decreases due to human activ-
ity and climate change (Vaccaro 1992). Advancements in 
groundwater modelling software have resulted in more 
effective use of regional groundwater flow models as tools 
to support sustainable groundwater management (Pasanen 
and Okkonen 2017); however, conceptualization of geology 
still presents the greatest uncertainty, particularly for gla-
cial deposits (Anderson et al. 2015; Refsgaard et al. 2012). 
The continuity of glacial deposits influences aquifer extents, 
where hydraulic interactions occur along the flow path (e.g. 
recharge and discharge areas), groundwater chemistry, and 

the development of hydraulic conditions (e.g. confined aqui-
fers, artesian wells; Bayless et al. 2017).

Geologic models are the backbone of every groundwa-
ter model and are critical to understanding groundwater 
flow within complex glacial aquifer systems (Pasanen and 
Okkonen 2017). The deposition of glacial deposits varies 
both temporally and spatially and results in complex rela-
tions and hierarchical structures that make them difficult to 
model (Schorpp et al. 2022). Traditional methods used to 
develop three-dimensional (3D) geologic models for ground-
water applications rely on manual interpretations that incor-
porate known geologic relationships and expert knowledge 
into a deterministic model; however, such models are typi-
cally time-consuming to create, difficult to update and do not 
adequately represent subsurface heterogeneity or account 
for uncertainty in geologic structure (Jørgensen et al. 2015; 
Kearsey et al. 2015). Geostatistical approaches have been 
applied using numerical data (e.g. geophysical surveys) to 
make spatial predictions in the subsurface but typically have 
limitations associated with the underlying assumption of sta-
tionarity (i.e., statistics used to describe data distribution 
that does not change throughout the spatial domain) and 
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the inability to reproduce subsurface complexity (Bianchi 
et al. 2015).

There are several examples in the literature that provide 
recommendations for geologic model development spe-
cific to glacial environments that differ from traditional 
approaches and embrace stochastic methods. Stochastic 
methods are more automated, allow representation of com-
plexity and evaluation of uncertainty that is well suited for 
glacial deposits (Refsgaard et al. 2012; Jørgensen et al. 2015; 
Toth et al. 2016). Kearsey et al. (2015) use indicator kriging 
(IK) and sequential indicator simulation (SIS) as stochastic 
methods to investigate lithological variations within glacial 
and post-glacial deposits. They advocate for a lithofacies-
based approach instead of stratigraphic layers for geologic 
modelling, especially in complex, heterogenous deposits 
where it can be difficult to locate stratigraphic boundaries. 
The 3D geologic model constructed by Jørgensen et al. 
(2015) uses a combination of manual and stochastic meth-
ods to represent subsurface heterogeneity. The developers of 
ArchPy (Schorpp et al. 2022) provide automated solutions 
for 3D geologic modelling of Quaternary aquifers to any 
desired hierarchical level (stratigraphic unit, stratigraphic 
subunits, lithofacies, hydraulic properties) using stochastic 
methods based on multi-point statistics, variogram-based 
categorical simulation techniques, and Gaussian random 
functions.

Artificial neural network (ANN) is a widely used machine 
learning algorithm inspired by biological neural networks 
invented in the 1950s that can be trained to identify hid-
den patterns and structures without any assumptions on data 
distribution. ANNs are suitable for geoscience applications 
because they can model complex nonlinear dependencies, 
are adaptive for managing nonstationary data, and allow 
the integration of contextual information (Kanevski et al. 
2009). Most ANN applications in geoscience have gener-
ally focused on using numerical data, including geophysical 
survey data to interpret lithofacies (Cracknell and Reading 
2014; Baykan and Yilmaz 2010; Morgan 2018), historical 
groundwater level measurements to make future predic-
tions (Rajaee et al. 2019), as well as seismic and borehole 
geophysics for reservoir modelling (Vo Thanh et al. 2019; 
Ansah et al. 2020).

ANN, however, can also be used to solve classification 
problems using categorical information—for example, Rizzo 
and Dougherty (1994) use ANN to characterize the 2D dis-
tribution of hydraulic conductivity based on three classes 
(low, medium, and high). ANN also proved to be a useful 
methodology for a basin-wide study characterizing com-
plex and heterogeneous lithology with a multilayered aqui-
fer system at the borehole level (Sahoo and Jha 2017). The 
ANNs used in these aforementioned studies include self-
organizing maps (SOMs) and multilayer perceptron (MLP). 
SOMs are a single-layer feedforward neural network used 

to produce a low-dimensional representation of a dataset 
with a high-dimensional space or multiple features. SOMs 
have been combined with MLP to enhance pattern recogni-
tion in hydrogeologic applications (Rizzo and Dougherty 
1994; Sahoo and Jha 2017). MLP is a feedforward neural 
network that uses supervised learning to make predictions. 
The architecture of a MLP consists of an input layer, an out-
put layer, and one or more hidden layers. The layers contain 
neurons that are connected by weights and act as computa-
tional units to convert incoming signals into outputs using 
activation functions. The stochastic nature of MLP training 
and probability outputs from predictive modelling are key 
features that allow for multiple geologic realizations as well 
as exploration of geologic uncertainty.

Borehole logs from public well records are typically the 
most abundant type of subsurface data for hydrogeologic 
applications and contain large amounts of textual data that 
can be leveraged to classify similar materials and provide 
qualitative information about the subsurface (Russell et al. 
1998; Allen et al. 2008; Bayless et al. 2017). Natural Lan-
guage Processing (NLP) techniques provide a statistical 
approach to understanding language and have recently been 
applied in geoscience applications to explore the geologic 
lexicon so that material classification is more automated and 
less subjective (Padarian and Fuentes 2019; Fuentes et al. 
2020). Fuentes et al. (2020) provide one of the first geosci-
ence applications where a numerical representation of tex-
tual data (word embedding) from borehole logs is used to 
spatially predict lithology using MLP and a 2.5D interpola-
tion approach. However, an example of using categorical 
data to predict complex subsurface conditions directly in 3D 
using ANNs was not found in literature.

The main goal of this research is to leverage textual data 
from borehole logs and apply machine learning to solve the 
3D multi-class classification problem of predicting lithofa-
cies in the subsurface. Different data selection alternatives 
are considered and the impact on the training and predic-
tion capabilities of MLP are evaluated. This study aims to 
effectively reproduce the geologic complexity associated 
with glacial environments that can be used in groundwater 
models to support water resource management. The study 
addresses the major source of uncertainty in groundwater 
modelling (e.g. heterogeneity) and provides an innovative 
technique and workflow for predicting lithofacies in complex 
glacial deposits.

Materials and methods

Study area

The regional basin containing the Fraser Lowland in south-
west British Columbia, Canada, and the northwest portion of 
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Whatcom County, Washington, United States, was selected 
as the study area (Fig. 1). It has gently rolling and flat-topped 
uplands separated by wide, flat-bottomed lowlands bounded 
by mountainous terrain and the sea. Drainage is directed 
towards the Fraser and Nooksack rivers as well as smaller 
local rivers that all discharge to the Salish Sea.

Geologic setting

The geologic setting of the study area has been influenced 
by tectonic and glacial events. The study area lies largely 
within a sedimentary basin surrounded by three different 
geological basements—Coast Mountains, Cascade Moun-
tains, and Vancouver Island Ranges (Jones 1999; Mustard 
and Rouse 1994). Bedrock outcrops are generally limited 
to the northwestern portion of the study area along Burrard 
Inlet and Sumas Mountain in the central valley. Bedrock 
surfaces have been prepared separately for the Canadian 
and American portions of the study area (Hamilton and 
Ricketts 1994; Eungard 2014). They provide a generalized 
representation of the bedrock surface given the limited num-
ber of deep wells with significant discrepancies particularly 
along the international boundary where the surfaces can be 
compared. The bedrock surface can be over 300 m deep 

and generally becomes shallower along the margins of the 
mountains. Fault structures near Sumas Mountain are also 
inferred to locally deepen the bedrock surface (Mustard and 
Rouse 1994).

Multiple glaciations, fluctuations in sea level, and iso-
static adjustments have contributed to a complex distribution 
of Quaternary deposits in the study area. The stratigraphic 
framework is primarily based on Pleistocene deposits asso-
ciated with the Fraser Glaciation and post-glacial deposits 
from the Holocene (Figs. 2 and 3).

During the beginning of the Fraser Glaciation, advanc-
ing outlet glaciers from the Cordilleran Ice Sheet led to the 
deposition of thick, proglacial outwash called Quadra Sand 
(Easterbrook 1986; Clague 1991; Vaccaro et al. 1998). The 
Coquitlam Stade and Port Moody Interstade occurred early 
in the Fraser Glaciation (Ward and Thomson 2004). Quadra 
Sand is generally not exposed at the surface and deposits 
from the Coquitlam Stade and Port Moody Interstade are 
limited in extent based on surficial mapping.

The Vashon Stade was the most extensive advancement 
of the Cordilleran Ice Sheet. At the Vashon stadial maxi-
mum, the study area was completely covered by ice more 
than 1.5 km thick (Clague et al. 1991). Isostatic depression 
of the land mass occurred from the weight of the ice sheet. 

Fig. 1  Fraser-Whatcom Basin location, topographical areas, and 
major drainage features. Processed point data for borehole logs are 
also visualized based on data sources (BCBH – British Columbia 
Ministry of Environment and Climate Change borehole log lithology, 

BCOG – British Columbia Oil & Gas Commission eLibrary, BCWR 
– BC GWELLS application, WSSD – Washington Geological Sur-
vey subsurface database, WSWR – Washington State Department of 
Ecology Well Log Viewer)
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During deglaciation of the Cordilleran Ice Sheet, marine 
waters inundated the area and resulted in a calving embay-
ment that induced rapid ablation of the glacier (Armstrong 
1957). Capilano sediments were deposited along the west-
ern portion of the study area during this period. These 
sediments include glaciomarine silt and clay containing 
drop-stones from melting icebergs and fossil shells.

Glacier retreat slowed and the ice margin stabilized in 
the central portion of the study area. Thick interbedded 
glaciomarine and glacial sediments deposited within the 
area of the fluctuating ice margin are included in the Fort 
Langley Formation. The glacier that persisted became 
land-based as isostatic rebound of the terrain and sea 
level rise started to occur. This led to initial development 
of drainage networks on the emerged terrain while the 
sea occupied the lower reaches of many of the paleoval-
leys (Kovanen 2002). A minor-readvancement during the 
Sumas Stade extended the glacier to the southwest where 
Sumas till and glaciofluvial deposits were deposited on top 
of the Fort Langley Formation.

Following the final retreat of the glacier, nonglacial Salish 
sediments were deposited by marine, fluvial, mass move-
ment and aeolian processes. Peat accumulated in poorly 
drained areas in surface depressions or valley bottoms. Mod-
ern alluvial deposition from aggradation of the floodplains 
and major deltas of the Fraser and Nooksack occurred and 
continues today.

While the Quaternary history of the area has been well-
studied and surficial geology is well mapped, the subsurface 

geology is less understood at the basin scale with cross-
sections from existing geological maps providing only local 
context.

Hydrogeologic framework

The hydrogeologic framework varies across the study area 
because of partial glacier advances and the timing of gla-
cial retreat. Aquifers exist in the study area within a com-
plex sequence of glaciated materials (Halstead 1986; Vac-
caro et al. 1998). The aquifer units generally consist of 
coarse-grained outwash deposited during glacial advances 
and retreats, proglacial deposits, and fluvial sediments 
deposited during glacial interstades. The semiconfining 
and confining units generally consist of till, glacioma-
rine, lacustrine and organic deposits. Alluvial sediments 
in the major broad alluvial valleys overlie eroded drift 
sequences. Bedrock that underlies these sediments forms 
the lateral and basal boundaries of the aquifer system.

Over 100 unconsolidated aquifers have been locally 
mapped within the Canadian portion of the study area 
(BCMECC 2023). A hydrogeologic framework and 
numerous fence diagrams within the central portion of 
the study area in Canada are detailed in Halstead (1986). 
Three regional aquifers including an alluvium aquifer 
within the Nooksack River valley, glaciofluvial sediments 
of the Sumas Drift (Fraser Aquifer), and a deeper con-
fined aquifer in the Quadra Sands (Puget Aquifer) have 
been conceptualized within Washington State (Vaccaro 

Fig. 2  Hydrostratigraphic 
chart for the Fraser-What-
com Basin modified from 
Fig.  6A in Jones (1999) 
and Fig.  2 in Ward and 
Thomson (2004). Equiva-
lent naming convention 
used in the United States 
is indicated in brackets
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et al. 1998). A regional framework for aquifers in qua-
ternary sediments in the glaciated portions of the United 
States has also been developed (Haj et al. 2018; Yager 
et al. 2019).

General modeling approach

The general approach includes development of a geologic 
database, standardization of lithofacies based on descrip-
tions from borehole logs, and creation of a 3D mesh to facili-
tate data selection for MLP training. MLP was then used 
to generate a geologic realization for three data selection 
alternatives with the best outcome verified against subsur-
face interpretations from independent studies and hydrau-
lic indicators for the region. The study was executed using 
Python programming language with final visualization of 
results using ParaView (Ayachit 2015) (v5.10.1).

Geologic database

The geologic database includes information from pub-
lic borehole logs and point data from surficial geology 

mapping. Approximately 13,900 borehole logs from various 
data collections managed by government agencies in both 
British Columbia and Washington State were included in 
the database (Fig. 1; Table 1). For the United States, water 
well records from WSWR required manual processing since 
multiple well reports from multiple wells can exist at a given 
location (Eungard 2014). The WSWR well report having the 
deepest depth within a 1-km grid spacing was selected for 
manual entry of lithology data. As such, the density of sub-
surface information in the United States is much lower com-
pared to what was used in Canada (Fig. 1). Boreholes from 
environmental and geotechnical investigations are relatively 
shallow (<20 m deep), while water wells are deeper but gen-
erally less than 100 m below ground surface. Boreholes from 
oil and gas wells were generally the deepest but are sparsely 
distributed within the study area.

Borehole data were augmented with ~40,000 data points 
based on geomorphic mapping by Kovanen and Slaymaker 
(2015). This mapping provides a single representation of 
surficial deposits for the study area recreated using surficial 
mapping (Dunn and Ricketts 1994; Washington Division 
of Geology and Earth Resources 2016). Lithofacies were 

Fig. 3  Stratigraphic units within the Fraser-Whatcom Basin modified from surficial mapping (Armstrong 1976, 1977; Armstrong and Hicock 
1979, 1980; Washington Division of Geology and Earth Resources 2016)
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assigned predominantly based on geomorphic units with 
consideration of material descriptions from surficial map-
ping (Table 2). Point data were generated using a grid spac-
ing of 1 km as well as vertical points every 5 m to a depth of 
100 m to provide additional vertical coverage where bedrock 
outcrops were mapped.

Lithofacies standardization

Material descriptions of lithology from borehole logs were 
first compiled and processed using various text-cleaning 
methods (e.g. correcting spelling mistakes, standardizing 
short-forms and abbreviations). After text cleaning, fewer 
than five words were typically used with two or three words 
being the most common to describe lithology. The processed 
lithology was classified into lithofacies using a semiauto-
mated approach that included NLP techniques. The multistep 
process is described in the electronic supplementary mate-
rial (ESM). Classification was primarily based on size and 
composition of grains using a modification of the Unified 

Soil Classification System (USCS). Hydraulic characteristics 
(e.g. hydraulic conductivity, yield estimates) were also con-
sidered to assign material grouping codes (see Table S3 in 
the ESM). The original 20,000 unique material descriptions 
were consolidated into the top 45 descriptor combinations, 
grouped into 10 material grouping codes, and classified into 
five lithofacies (coarse, fines, clay, till, bedrock) as shown in 
Table 2. This captured 92% of the total thickness from the 
processed lithology dataset.

Mesh generation

A mesh was created using the Pyvista (Sullivan and Kaszyn-
ski 2019) Python package to generate a 3D representation of 
the study area and to facilitate processing lithofacies. The 
lateral boundaries of the mesh were based on the extent of 
Quaternary mapping, excluding the land north of Burrard 
Inlet and intermountain valleys. A cell size of 200 m wide 
by 200 m long and 5 m high was used to capture the major 
variability in lithofacies for regional modelling purposes. A 

Table 1  Summary of borehole data organized based on country and government agency

Location Type Data source Well location 
file format

Lithology file format No. of wells No. of 
artesian 
wells

British Columbia, Canada Environmental boreholes BCBH Shapefile Shapefile 780 0
Oil and gas wells BCOG Shapefile PDF or image 12 0
Water wells BCWR Tabulated Tabulated 12,323 600

Washington State, USA Geotechnical boreholes WSSD Shapefile Tabulated 24 0
Water wells WSWR Shapefile PDF or image 780 1

Table 2  Lithofacies classification overview. Material grouping codes modified from the Unified Soil Classification System with consideration of 
hydraulic data

Geomorphic unit Descriptor combinations Material 
grouping 
code

Lithofacies Hydraulic 
conductiv-
ity

Fluvial, glaciofluvial Boulders, boulder gravel, boulder gravel sand, cobble gravel, cobble 
gravel sand

GC Coarse High

Boulder clay, clay gravel, clay gravel sand, gravel sand silt, gravel sand 
silty, gravel silt

GF Fines Medium

Gravel, gravel sand GS Coarse High
Sand S Coarse High

Fluvial, lacustrine Clay sand, clay sand silt, clay sand silty, clay sandy, sand silt, sand silty SF Fines Medium
Clay silt, clay silty, silt M Fines Medium

Glaciomarine, glaciolacustrine Clay C Clay Low
Glacial modified Boulder till, clay gravel till, clay till, cobble till, gravel sand till, gravel 

till, gravel till, sand till, till
T Till Low

Bedrock Bedrock, bedrock granite, bedrock sandstone, bedrock shale, granite, 
sandstone, sandstone shale, shale

B Bedrock Low

Other Unassigned (includes topsoil, peat, and fill) N Unknown Unknown
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uniform vertical cell height of 5 m was established based on 
a statistical review of lithofacies thickness and depth. The 
greatest generalization using this approach occurs near the 
surface where lithofacies tend to be less than 5 m thick.

The top of the mesh was generated based on a digital ele-
vation model (DEM) that combined topographic and bathy-
metric data (Canadian Hydrographic Service 2019; DMTI 
Spatial Inc. 2002; US Geological Survey 2019; Finlayson 
et al. 2000). All datasets were reprojected to NAD 1983 
UTM zone 10 with elevation units in metres above sea level 
(masl) and then combined. A cell spacing of 30 m and auto-
matic filling of elevation voids was initially completed fol-
lowed by resampling of the surface to generate a DEM with 
200-m cell spacing. The bottom of the mesh was established 
at an elevation of –150 masl given the vertical extent of 
lithofacies that could act as aquifers, which also corresponds 
to the deepest extent considered in groundwater modelling 
studies within the region (Golder 2005). The resultant mesh 
has over 3.3 million cells with a surface area of ~670  km2.

Data selection alternatives

Three data selection alternatives were considered to evaluate 
the training and prediction capabilities of MLP. Alternative 
1 consists of lithofacies spatially represented using coordi-
nates and interval depths from the geologic database. Alter-
native 2 considers a 3D mesh and uses the cell centroid coor-
dinates and the lithofacies mode within each cell to provide 
a more regularly spaced dataset. To determine the lithofacies 
mode, a point cloud was generated spacing data vertically 
every metre for each interval. The most frequently occurring 
lithofacies within each cell was then used as the target for 
training. Like alternative 2, alternative 3 uses the lithofacies 
mode within each cell but takes the coordinates of the cell 
centroid and maps them on a 2D grid using SOM before being 
used in the MLP algorithm. Table 3 provides an overview 
of each data selection alternative, including the approach for 
input features and targets as well as the number of samples.

A representative distribution of samples for each alter-
native is shown in Fig. 4 to highlight spatial differences. 
Alternative 2 has fewer lateral locations compared to Alter-
native 1 because cell centroids are used instead of well loca-
tions. However, there are more samples for alternative 2 in 
the vertical direction since intermediate points are added to 

intervals greater than 5 m thick. For alternative 3, the spatial 
distribution of lithofacies is now assigned using coordinates 
from 2D mapping. Data are grouped as clusters with mul-
tiple lithofacies assigned to the same 2D coordinates. All 
three alternatives have imbalanced lithofacies distributions, 
meaning that the lithofacies are not represented equally, but 
the distribution is not considered extreme (e.g. ratios below 
1:5).

Machine learning

MiniSom (v. 2.3.0, Vettigli 2018) and scikit-learn (v.0.24.2, 
Pedregosa et al. 2011) were used to implement the SOM 
and MLP algorithms respectively. For SOM, normalization 
was used to scale the coordinates of the cell centroids. For 
the first stage, the elevation of each cell centroid was set to 
zero; therefore, only the normalized eastings and northings 
were used to initially train the SOM. For the second stage, 
the normalized northing, easting, and elevation of the cell 
centroids were used to refine mapping of the samples onto 
the 2D grid. SOM hyperparameters selected for optimiza-
tion include sigma and learning rate. Hyperopt (Bergstra 
et al. 2013) was used for hyperparameter optimization to 
determine the best combination that would result in the low-
est error.

For MLP, training and testing subsets from the datasets 
were made using an 80 and 20% split, respectively. A strati-
fied splitting approach was used to ensure each set con-
tains approximately the same percentage of lithofacies as 
the original dataset. Input data were transformed using the 
standardization scaling method. Four hyperparameters (hid-
den layer size, alpha, batch size, and initial learning rate) 
were selected for optimization. These hyperparameters were 
chosen because they appeared to have the greatest impact on 
MLP performance when using the ReLU activation function 
and Adam solver. The hyperparameter default values were 
used and generally modified by an order of magnitude to 
establish upper and lower limits of the search space consid-
ered for optimization. A stratified threefold cross-validation 
grid search implemented with the GridSearchCV optimizer 
in scikit-learn was used to objectively select the combination 
of hyperparameters that achieved the best performance on 
the training dataset.

Table 3  Overview of data selection alternatives for MLP

Data selection Input features Target No. of samples

Alternative 1 Easting, northing, and elevation based on the borehole location and 
top elevation of each lithofacies interval

Lithofacies 54,225

Alternative 2 Easting, northing, and elevation based on the cell centroid Lithofacies mode 85,063
Alternative 3 X and Y coordinates of 2D mapping from SOM Lithofacies mode 85,063
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Once the hyperparameters were established, the MLP 
was trained using all the training data. The testing data were 
then used to evaluate the generalization performance of the 
model when making predictions on unseen data. The perfor-
mance metrics used to evaluate the models include log-loss 
(i.e. cross-entropy), balanced accuracy, and the confusion 
matrix. MLP tries to minimize log-loss using stochastic gra-
dient descent by adjusting weights during training; therefore, 
a lower log-loss indicates better performance. Balanced accu-
racy is the average fraction of relevant instances that were 
correctly predicted. The balance accuracy scores ranged from 
0 to 1 with values closer to 1, indicating good accuracy. A 
confusion matrix is a common technique used to summarize 
the performance of a classification algorithm. It highlights 
the errors being made by the MLP or what is making the 
MLP ‘confused’ when making predictions. Once the train-
ing model was validated and tested, all the data were used to 
train and establish the final weights of the predictive model.

The main purpose of the predictive model is to take 
lithofacies data for each alternative and make predictions 
where information is not available in the study area. Cell 
centroid coordinates from the mesh were used for alterna-
tives 1 and 2, while the coordinates from 2D SOM mapping 
were used for alternative 3. The same scaling methods were 
used to transform inputs prior to running the predictive 
models. This resulted in the prediction of lithofacies at 
~3,336,000 unique cell centroids and 7,700 unique SOM 
neurons. The output from the predictive model includes 
lithofacies and probability predictions at each cell centroid. 
The negative log of probability (between 0 and 1) for the 
predicted lithofacies in each cell was used to calculate 
entropy. A low entropy indicates less uncertainty while 
higher values suggest more uncertainty. The model out-
puts were assigned as attributes to the mesh using PyVista 
and then exported as a voxel model for 3D viewing using 
Paraview.

Fig. 4  Spatial distribution of 
subsurface data for a alternative 
1, b alternative 2, and c alterna-
tive 3. Lithofacies are shown 
for alternatives 1 and 2. Spatial 
clusters are shown for alterna-
tive 3 to show grouping of data
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Results

MLP training and testing

MLP training for each alternative was evaluated based on 
a review of log-loss, balanced accuracy scores, and confu-
sion matrix results. At the end of training, alternative 2 had 
the lowest log-loss at 0.8, followed by Alternative 3 at 1.10 
and Alternative 1 at 1.15. For a naïve classification model, 
which assumes the same probability for each lithofacies, the 
log-loss score would be 1.3, e.g. –log(0.2). The MLP models 
for all three alternatives achieve a lower log-loss compared 
to a naïve classification model.

MLP tuning (e.g. hyperparameter optimization, number 
of epochs) improved training performance compared to 
the use of default MLP values for all alternatives. Tuning 
improved balanced accuracy scores by 9–17%. Alternative 
2 had the highest training and testing scores of 65 and 60%, 
respectively. Model variance (difference between training 
and testing score) is lowest for alternative 3 and highest for 
alternative 2 with values below 5%. The balanced accuracy 
scores indicate modelling results with a high bias and low 
variance. Typically, training and testing accuracy scores 
above 80% indicate good performance for other machine 
learning applications (Brownlee 2022); however, this may 
not be achievable given the multiclass classification problem 
and variability in subsurface data for this study.

The confusion matrix from the testing results showed 
that alternative 2 had the best precision for all lithofacies. 
Bedrock was most accurately predicted despite bedrock 
samples occurring less frequently in all three datasets. 
This could be attributed to the continuity of bedrock 
once it is encountered. The prediction performance for 
unconsolidated lithofacies follows the same trend for all 
alternatives where ‘coarse’ has the second highest preci-
sion with lower precision in descending order for clay, 
fines, and till. This may be attributed to the distribution 
of unconsolidated lithofacies or could be associated with 
discontinuity of unconsolidated lithofacies in the subsur-
face and the underfitting of the model to capture this level 
of complexity. Clay and till are most often confused with 
each other, while coarse seems to be confused most often 
with till and fines. Fines are commonly confused with 
till and clay.

Predictions

A cross-sectional view of predicted lithofacies for each 
alternative is shown in Fig. 5. Alternative 1 appears to be 
the most underfit (e.g. unable to model training data nor 
make predictions), which is expected given that it has the 
lowest balanced accuracy score. Alternative 2 shows more 
complexity in the subsurface compared to alternatives 1 and 
2. Alternative 3 is more comparable to alternative 2, but is 

Fig. 5  Cross-sectional view of predicted lithofacies (left) and calculated cell entropy (right) from MLP predictive models developed using a 
alternative 1, b alternative 2, and c alternative 3
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more generalized. This suggests the dimensions of the 2D 
SOM (used in alternative 3) could be inadequate to repre-
sent the subsurface complexity. Alternative 2 resulted in a 
larger coverage and higher probability for coarse, clay and 
till compared to the other alternatives. As shown in Fig. 5, 
the spatial coverage of higher entropy values is generally 
greater for alternatives 1 and 3 compared to alternative 2. 
The average entropy values of 0.72, 0.28, and 0.64 for alter-
natives 1, 2, and 3, respectively, indicate the most confidence 
in alternative 2 results. Extrapolation was required to make 
predictions given the limited distribution of deep boreholes 
available for the region.

Compared to alternatives 1 and 3, MLP predictions for 
alternative 2 had the lowest log-loss, highest balanced accu-
racy scores for both training and testing, and highest preci-
sion for all lithofacies. Based on the cross-sectional reviews, 
alternative 2 shows more complexity in the subsurface com-
pared to alternatives 1 and 3. Alternative 2 may have per-
formed better because lithofacies were averaged based on the 
cell mode which may have reduced some noise associated 
with the spatial variability of data for alternative 1. The size 
of the 2D SOM for alternative 3 may have been inadequate 
to represent the subsurface complexity. Alternative 2 was 
selected as the preferred alternative based on better perfor-
mance metrics, lower entropy, and cross-sectional reviews 
that indicated more complexity in the subsurface compared 
to the other alternatives.

Verification

Geologic modelling results from MLP predictions using 
alternative 2 data were verified by considering published 
interpretations of the subsurface from independent studies. 
Verification efforts focused on local areas (Fig. 6), including 
the Township of Langley (TOL) and the Nicomekl-Serpen-
tine Valley between Langley and Surrey because of the high 
density of wells, number of mapped aquifers, and availability 
of groundwater modelling reports.

Township of Langley

Geologic interpretations within the Township of Langley 
(TOL) published by Golder (2005) were reviewed to verify 
MLP predictions. The approximate locations of geologic 
cross-sections A–A′ and B–B′ within the Langley Uplands 
are shown in Fig. 6. Comparisons of the geologic interpreta-
tions provided by Golder (2005) and the alternative 2 MLP 
geologic model at the cross-section locations are provided 
in Fig. 7 (A–A′) and Fig. 8 (B–B′).

Cross-section A–A′ (Fig. 7) from MLP predictions shows 
aquifer (AQ) 35 separately from AQ33 and AQ1144 consist-
ent with the interpretation by Golder (2005). The distribu-
tion of coarse material lumps AQ33 and AQ1144 into one 
aquifer unit which may be reasonable given arbitrary cut-
offs used by Golder to establish aquifer extents. Provincial 

Fig. 6  Local area used to verify 
geologic modelling results from 
MLP predictions using alterna-
tive 2 data. Mapped aquifers 
of interest are shown with 
unique numbers assigned by the 
Province of British Columbia 
(e.g. AQ33 is provincially 
mapped aquifer number 33). 
Geologic cross-sections A–A′ 
(Fig. 7) and B–B′ (Fig. 8) are 
approximate locations based on 
Golder (2005). C–C′ and D–D′ 
are shown in Fig. 10. See Fig. 1 
for the local area relative to the 
study area
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mapping of AQ33 overlies AQ1144, although this is not 
shown on the Golder cross-section. There are interconnected 
areas between the three aquifers elsewhere in the TOL area 
described by Golder 2005. Coarse material from MLP pre-
dictions is interpolated at the surface where AQ1144 has 
been mapped and extends to deeper depths compared to 
interpretations by Golder. In general, the MLP geologic 
model performs well at representing the subsurface in this 
area with the potential issue of extrapolation at depth.

For geologic cross-section B–B′ (Fig. 8), three distinct 
aquifer units are represented in the MLP geologic model 
while five aquifers are interpreted by Golder (2005). The 
original cross-section B–B’ from Golder shows the aquifer 
material for AQ32 as sand and gravel but is described as ‘a 
body of fine sands, sand and locally gravel and till’ in the 
report. The MLP geologic model shows a relatively large 

fines unit approximately 20 m thick in this area. AQ33, 
AQ1193, and AQ32 are lumped in the lower coarse unit 
from MLP predictions and have a larger extent compared 
to interpretations by Golder. The description for AQ1193 
in Golder (2005) indicates it is located between +20 and 
–20 masl; therefore, it may be reasonable for the lower 
coarse unit to extend below 0 masl in this area. In general, 
the MLP cross-sections show a more generalized represen-
tation of aquifers and greater connectivity of permeable 
units compared to the Golder cross-sections.

Golder identified 18 major aquifers based on hydrostrat-
graphic interpretation of geologic units. For these major 
aquifers, permeable units that overlap by at least 10% 
and any aquitard between overlapping units less than 
10 m thick were considered by Golder as ‘well-connected 
hydraulically’. Coarse lithofacies with a probability above 

Fig. 7  Geologic cross-section A–A′ modified from Golder (2005) and 
from MLP predictions using alternative 2 data. Provincial aquifers are 
labelled beginning with AQ. Colour-coded circles indicate lithofacies 

for the processed lithology material descriptions from boreholes. See 
Fig. 6 for cross-section locations
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50% from MLP modelling were arbitrarily selected and 
grouped by connectivity to represent geologic areas as 
‘well-connected hydraulically’ (Fig.  9). This includes 
lithologic materials described as sand, sand and gravel, 
and gravel, but does not include fines such as ‘silty sand’ 
which may be important to this local area for aquifer char-
acterization purposes (Figs. 7 and 8). Grouping by con-
nectivity assigns a zone for each group of connected cells.

The unconfined aquifers including the Brookswood 
Aquifer (AQ41), Fort Langley Aquifer (AQ41), Hopington 

AB Aquifer (AQ35), and Abbotsford A (AQ15) are rep-
resented by the MLP geologic model; however, some of 
the linear features, interpreted as meltwater channels by 
Golder (2005), and extending from the main volume of the 
Brookswood (AQ41) and Abbotsford A (AQ15) aquifers 
are not reproduced using MLP. A finer mesh resolution and 
additional surficial data points could potentially be used to 
model this connection.

The MLP geologic model shows a large connected 
volume that consolidates several of the mapped aquifers 

Fig. 8  Geologic cross-
section B–B′ modified 
from Golder (2005) and 
from MLP predictions 
using alternative 2 data. 
Provincial aquifers are 
labelled beginning with 
AQ. Colour-coded circles 
indicate lithofacies for the 
processed lithology mate-
rial descriptions from 
boreholes. See Fig.  6 for 
cross-section locations
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interpreted in the area. This consolidated representation of 
aquifers may be plausible given the potential for intercon-
nection noted by Golder (2005); however, the use of a higher 
probability cut-off limit may be more representative of 
aquifer extents which would be more conservative for water 
exploration but less conservative for water management 
purposes. Some of the deeper aquifers in Golder (2005) are 
only partially represented or not reproduced by the MLP 
geologic model, likely due to aquifer materials with a greater 
fines content (e.g. silty sand) that are locally significant as 
an aquifer unit but are not captured by the coarse lithofa-
cies. A more detailed review of data within this area would 
be required to support conceptualization of intertill aquifers 
given the limited frequency of data points categorized as till.

Nicomekl‑Serpentine Valley

Most flowing artesian wells within the study area are within 
the Nicomekl-Serpentine valley in the Surrey-Langley 
area (Fig. 6). Flowing artesian wells can occur when the 
aquifer is confined by low permeability materials or where 
there are large upward hydraulic gradients if the aquifer is 
unconfined. Well drilling advisory currently exists for AQ58 
(Nicomekl-Serpentine; BC Ministry of Forests, Lands, Natu-
ral Resource Operations and Rural Development 2018) and 

are proposed for the western portion of AQ33 (West Alder-
grove; Johnson et al. 2022) due to the potential for flowing 
artesian conditions.

AQ58 includes two permeable units consisting of a shal-
lower unit generally occurring between –60 and –90 masl 
in the local upland area and a deeper unit up to 20 m thick 
generally occurring between –120 and –150 masl that under-
lies the upland but also extends along the northern portion 
of TOL (BCMECC 2016a). AQ33 is described as an intertill 
aquifer consisting of two permeable units including a shal-
lower unit between 5–15 m thick and a deeper unit up to 
20 m thick, both sloping westward and merging along the 
western extent of the aquifer (BCMECC 2016b).

Geologic cross-sections that intersect AQ58 and AQ33 are 
shown in Fig. 10 based on the alternative 2 MLP geologic 
model. MLP predictions show upper and lower permeable 
units consistent with the description provided for AQ58 and 
AQ33. The continuity of the lower permeable unit for AQ58 
is typically associated with fines. There are several overlap-
ping confined aquifers in the Nicomekl-Serpentine Valley 
that were difficult to distinguish based on the MLP geologic 
model. Most flowing artesian wells appear to be screened 
below confining material; however, several may be screened 
in unconfined AQ35. The northward and westward sloping 
topography around unconfined AQ35 likely contributes to 

Fig. 9  3D representation of major aquifers identified by Golder (2005) in the alternative 2 MLP geologic model for coarse lithofacies with a 
probability above 50% colour coded to represent hydraulic connnectivity
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flowing artesian conditions. The majority of flowing artesian 
conditions appear to be attributed to low permeability mate-
rial overlying aquifer material and the topographical transi-
tion from upland to lowland as discussed in the following.

The distribution of clay in relation to flowing artesian 
wells in the Nicomekl-Serpentine valley is shown in Fig. 11. 
Till is not shown since the interpolated spatial extent is lim-
ited. The majority of clay cells are connected throughout 
the area of interest with variability in both the vertical and 
horizontal directions. The top view in Fig. 11 shows clay 
intersecting the tops of most flowing artesian wells. The bot-
tom view shows the bottom of most flowing wells extend-
ing through the clay. This suggests the model adequately 
represents the confining unit that contributes to flowing 
artesian conditions in the Nicomekl-Serpentine Valley. 
Aquifer material confined by clay includes sand and gravel 
(e.g. standardized as coarse) and finer-grained material like 
silty sand (e.g. standardized as fines). Most flowing artesian 
wells appear to be screened in confined aquifers; however, 
several are screened in unconfined AQ35 where artesian 
conditions exist due to the topographical transition from 
upland to lowland.

Discussion

Three data selection alternatives were considered to evalu-
ate the training and prediction capabilities of MLP. The 
main differences between the datasets include the level 
of effort to process data, number of samples, frequency 
distribution of lithofacies, and spatial distribution of data. 
Alternative 1 involved the least amount of processing and 
had the lowest number of samples, typically under-repre-
senting bedrock and clay due to limited point data repre-
senting these thick intervals. Alternative 2 required more 
data processing effort but resulted in a larger dataset that 
was more regularly spaced in the vertical direction and 
had fewer lateral locations that potentially reduced noise 
in the data by using the lithofacies mode. For alternative 
3, the dataset from alternative 2 was lumped into spatial 
clusters with consideration of the entire mesh domain. 
Alternative 3 required the greatest amount of effort for 
data processing because of hyperparameter tuning and 
training with SOM prior to using MLP. Hyperparameter 
optimization and ANN training can introduce variability in 
results although effort was taken to automate evaluation of 

Fig. 10  Geologic cross-section 
C–C′ and D–D′ showing 
predicted lithofacies based on 
alternative 2 data and MLP 
interpolation algorithm, artesian 
well locations (red tubes), and 
inferred provincial mapped 
aquifers. The lines of cross sec-
tion are shown in Fig. 6
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multiple combinations of hyperparameters and to include 
cross-validation (e.g. multiple subsets) to inform training 
inline with current best practices (Pedregosa et al. 2011; 
Vettigli 2018). Testing data were also used to evaluate 
the generalization performance of the MLP models when 
making predictions on unseen data.

The MLP models for all three alternatives achieve a lower 
log-loss compared to a naive classification model which 
assumes the same probability for each lithofacies. Alterna-
tive 2 data resulted in the best MLP performance based on 
better performance metrics and cross-sectional reviews that 
indicated more complexity in the subsurface as expected for 
the study area. The combination of SOM and MLP (alterna-
tive 3) did not perform the best despite the enhanced pattern 
recognition anticipated using this approach. Heuristics used 

to size the SOM grid may have been insufficient to spatially 
cluster data in a manner to reproduce subsurface complexity.

A possible approach to improve MLP predictions may be 
to exclude bedrock as a category. Alternatively, a bedrock 
surface could be used to constrain cells within the 3D mesh 
used to predict unconsolidated lithofacies. This aligns with 
modelling objectives that focus on glacial deposits while 
representing bedrock as a surface. The uncertainty associ-
ated with lithofacies predicted at deeper depths is likely 
underestimated using entropy as a metric given the limited 
distribution of deep subsurface data. It may be beneficial to 
combine entropy with another metric based on data density 
or proximity to a cell with data to better reflect areas where 
data extrapolation occurs and uncertainty increases. In 
addition, the impact of hyperparameter selection on model 

Fig. 11  Clay lithofacies (blue) 
and flowing artesian wells (red 
tubes) for the local area shown 
in a top view and b bottom view 
of the geologic model. Lateral 
extent of the local area is shown 
in Figs. 1 and 6
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development was not evaluated and could introduce addi-
tional uncertainty in predictions.

In general, the geologic model generated using alterna-
tive 2 data and the MLP algorithm performed well at repre-
senting the subsurface in the Langley area based on cross-
sectional review with the potential issue of extrapolation at 
depth. Confining units that contribute to artesian conditions 
in the Nicomekl-Serpentine Valley were also adequately rep-
resented by MLP predictions.

This study provides an initial conceptualization of glacial 
sediments in the subsurface of the Fraser-Whatcom Basin. 
Material descriptions of lithology (e.g. borehole log) provide 
the necessary vertical coverage but are likely insufficient for 
lateral characterization of continuous subsurface features as 
discussed in other studies (Cummings et al. 2012; Frind et al. 
2014; Jørgensen et al. 2015). This study did not evaluate the 
impact of data density on the predicted results. Additional 
soft data (e.g. geophysics, fence diagrams from Halstead 
1986) that provide spatially continuous or profile sources of 
information could be incorporated into the geologic database 
to improve the representation of subsurface conditions.

Conclusions

The feasibility of using MLP to interpret glacial deposits in 
the subsurface of the Fraser-Whatcom Basin was explored 
in this study. Based on the results, MLP appears to be 
a promising algorithm to solve multiclass classification 
problems related to modelling complex glacial deposits in 
the subsurface. This has the benefit of interpreting subsur-
face conditions using categorical data instead of numerical 
information which is typically more readily available for 
hydrogeologic applications. This study showed additional 
processing effort to create a more regular dataset using the 
lithofacies mode in each cell of the mesh produced better 
results compared to directly using borehole intervals. The 
stochastic nature of training MLP also makes it possible 
to generate multiple geologic models, which has been rec-
ommended to quantify the sensitivity of groundwater flow 
to geologic architecture as part of groundwater modelling 
(Poeter and Anderson 2005; Refsgaard et al. 2012; He 
et al. 2013; Lukjan et al. 2016).
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tary material available at https:// doi. org/ 10. 1007/ s10040- 023- 02726-2.
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