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Abstract
Groundwater-flow and contaminant-transport modeling rely on methods of converting a set of field observations into geologic 
models that represent the subsurface structure. These geologic models also must replicate important geologic features such 
as connectivity. Recently, researchers have begun to use machine learning methods such as generative adversarial networks 
(GANs). This study focuses on a progressive growing GAN (PGGAN) to condition on measured data. Given a latent variable 
and an array that provides field observations, the generators of the conditioned PGGAN are tasked to produce geologically 
realistic images of channel aquifers that match field observations. Although largely successful, the conditioning behavior of 
these networks still has some issues, and how the model performs the conditioning task across its layers is not yet fully under-
stood. To better understand this conditioning mechanism, the behavior of these networks was measured using the condition-
ing ratio, which is a novel metric that determines the magnitude of the influence of the conditioning data. The conditioning 
ratio was measured across multiple layers within the generator during training, as well as with various modifications to the 
network architecture. The results revealed two distinct conditioning behaviors that are based on the number of condition-
ing arrays injected into the generator. Results also showed that decreasing the starting resolution for the generator can slow 
down the learning process. Overall, the numerical experiments prove the value of measuring the conditioning ratio of layers 
within the generator. These approaches can be used as diagnostic tools to assist in the design of future PGGAN architectures.
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Introduction

Generating realistic geological facies models from limited, 
sparse data is an important task in hydrogeology. Given a 
set of core data, aquifer properties such as hydraulic con-
ductivities from well-pumping tests, and hydrogeologic 
conceptual models, hydrogeologists often are tasked to 
estimate the underlying geologic facies models that match 
field observations and known geologic features. The geologi-
cal facies models then can be used for many applications 

such as well-field pumping optimization and contaminant-
transport predictions. Because the quality of the conclusions 
using the numerical groundwater-flow and contaminant-
transport models is directly dependent on the quality of the 
geological facies models, simulating reliable and realistic 
geological facies becomes an important area of research in 
hydrogeology.

The field of geostatistics has many methods of geostatisti-
cal simulations that can convert a small array of data points 
(i.e., measurements) into a complete geologic facies model 
that can imitate real geologic features (Deutsch and Journel 
1992). This task is similar to spatial interpolation, but note 
that such methods must be able to generate multiple solu-
tions that all respect field observations. A popular approach 
called multi-point statistics (MPS) can use an initial training 
image and a set of measurements to generate multiple images 
that have the same geologic features and that honor the con-
ditioning data (e.g., Lochbühler et al. 2014; Honarkhah and 
Caers 2012; Mariethoz and Renard 2010). MPS generally 
works by copying the patterns provided within the training 
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image and placing them on the basis of where the hard data 
points are located. By iteratively repeating this process, 
entire geologic facies models can be generated to exhibit 
geological structures similar to those in the training image, 
along with conditioning on the measurements; furthermore, 
MPS is also capable of generating images that exhibit non-
stationarity (Mariethoz et al. 2015).

Another technique is object-based methods (OBM). By 
controlling the shapes and distribution of geometric objects, 
realistic geological features can be generated (Michael et al. 
2010; Hauge et al. 2007; Deutsch and Wang 1996). The use 
of parameterized geometric shapes allows OBM to have a 
much lower risk of accidentally generating nonrealistic geo-
logic features. The problem with OBM is that it is limited to 
geologic features that can be geometrically parameterized. 
The OBM method is not very general—for every type of 
geologic feature, a separate object model must be designed 
and tested. Conditioning with OBM also can be challenging 
because it is difficult to back-calculate which object param-
eters produce results that honor observed data (Holden et al. 
1998).

Because of the recent, rapid success of deep machine 
learning, many of the deep learning methods are starting to 
be applied to the field of hydrogeology (Shen et al. 2018). 
Particularly, generative adversarial networks (GAN) intro-
duced by Goodfellow et al. (2014) has increasingly gained 
popularity. GAN is composed of two neural network agents 
called the generator and the discriminator. The generator 
is tasked with transforming a randomly generated latent 
vector into a realistic image. The job of the discriminator 
is to decide whether a given image is real (an image from 
the training set) or fake (an image produced by the genera-
tor). During training, both agents get progressively better at 
their tasks. As the discriminator gets better at distinguishing 
between real and fake images, the generator is forced to learn 
how to make more realistic images to fool the discriminator. 
After training, the result is a generator that is exception-
ally good at generating realistic images such as photographs 
of human faces (Karras et al. 2019). Such a generator can 
instead be used to generate realistic geological facies. Given 
a random latent vector, a generator can transform that vec-
tor into a realistic geological model. If the latent vector is 
adjusted, then the generated images also change, but they 
continue to resemble a realistic geologic model. GAN can be 
used essentially as a dimensionality reduction method that 
can be coupled with data assimilation for parameter inver-
sion (e.g., Laloy et al. 2018; Bao et al. 2020, 2022).

Researchers have applied a variety of GAN architectures 
to a range of geological modeling scenarios. Specifically, 
experimenting with both unconditioned and conditioned 
models, Dupont et al. (2018) used GAN to generate river 
channel facies. For conditioning the model, they used a 
blurred version of the measurement array to facilitate the 

use of gradient descent. Nesvold and Mukerji (2019) used 
a Wasserstein GAN trained on 20,000 multispectral satel-
lite images of 40 modern river deltas. Markov Chain Monte 
Carlo method of conditioning with hard and soft data was 
performed with the trained model. Mosser et al. (2020) 
employed GAN to, a priori, generate a geological model 
for a stochastic seismic waveform inversion. Bayesian inver-
sion was performed using the Metropolis-adjusted Langevin 
algorithm to find generated earth models that honor seismic 
observations. The differential nature of deep neural net-
works was used to calculate the gradient for the discrepan-
cies within seismic observations. Laloy et al. (2018) applied 
spatial GAN to produce two-dimensional (2D) and three-
dimensional (3D) geological facies models. The spatial 
GAN is composed entirely of convolution neural networks 
(CNN). The use of CNN allows for more flexibility for the 
size of the generated images.

To generate conditioned geological models, a common 
technique is to iteratively adjust the latent vector until the 
generator produces a geologic model that matches with 
observed geological facies (Mosser et al. 2020; Nesvold 
and Mukerji 2019; Dupont et al. 2018; Laloy et al. 2018). 
Methods such as Markov Chain Monte Carlo and gradient 
descent often are used to calibrate the latent vector. The 
conditioning process generally involves iteratively generat-
ing many hypothetical geological models and recording their 
mismatch with observed data. After numerous iterations, 
enough simulation data are collected to allow determination 
of the appropriate latent vectors. Instead of directly manipu-
lating the latent vectors, researchers also have explored alter-
nate methods for incorporating conditioning data into their 
GAN architecture—for example, Chan and Elsheikh (2018) 
produced conditioned results by extending the original GAN 
with an extra network that learns to perform the conditioning 
operation. During training, the extra network learns to map 
an initial set of randomly generated unconditioned latent 
vectors into a new set of conditioned latent vectors that pro-
duce geologic models to honor conditioning data. Song et al. 
(2021a) applied progressive growing GANs for geomodel-
ling and quickly generating realistic channelized facies mod-
els. Based on that, Song et al. (2021b) proposed a framework 
called GANSim, which is a geomodelling workflow that can 
directly take sparse well facies data and global features (e.g., 
channel width) as inputs of the generator for conditioning, 
together with the original latent vector. In GANSim, input 
pipelines for different conditioning data (i.e., well data and 
global features) are designed within the architecture of the 
generator, and an extra type of condition-based loss func-
tion is introduced to enforce the consistency between the 
input conditioning data and generated geologic models. 
Song et al. (2022a) proposed to include facies probability 
maps as another input conditioning data for GANSim. Song 
et al. (2022b) recently improved GANSim in various aspects 
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and extended the method to generate 3D geologic models of 
karst cave reservoirs with good results.

Although GAN has been applied extensively in the field 
of hydrogeology and has gained a degree of success, it also 
has some issues to be resolved, in particular, for the condi-
tioning of measurements and stability of training—for exam-
ple, Song et al. (2021b) have shown that their networks can 
still produce images where the GAN ignores some of the 
conditioning points. To mitigate this, they proposed enlarg-
ing the conditioning points with the intent of increasing the 
mismatch error, a problem that is not unique to Song et al. 
(2021b). Chan and Elsheikh (2018) also mentioned a similar 
issue, and they noted that they cannot fully guarantee that 
conditioning is strictly honored, but only that it is honored 
with high probability. Aside from issues with the condition-
ing behavior of the GAN, another common problem with 
these networks is their instability. GAN is known to lose 
variety in its generated output, a behavior known as mode 
collapse. Because GAN involves two agents competing 
against each other, any flaws in the agents or the competi-
tion process can cause GAN to fail. To deal with this prob-
lem, researchers have introduced a variety of methods to 
reduce instability (Arjovsky et al. 2017; Karras et al. 2017; 
Heusel et al. 2017). Nesvold and Mukerji (2019) used a 
Wasserstein GAN because its earth mover’s distance loss 
function can yield a more stable GAN training session. Song 
et al. (2021b) used progressive growing GAN for their work 
because training GAN in successive layers, instead of all at 
once, was shown to be a more stable method (Karras et al. 
2017).

To mitigate the aforementioned issues using GAN, 
researchers have performed experiments to better understand 
how the parameters used by these networks affect their per-
formance. Song et al. (2021b) conducted an array of experi-
ments with various weights for global features and well 
facies loss terms in their loss function. Lopez-Alvis et al. 
(2020) performed experiments on variational autoencoders 
and studied how changes in the regularization weight and the 
noise distribution affect how the generator maps from one 
latent space into another. Lucic (2018) used a large array of 
numerical experiments with a variety of GAN architectures 
and found that, overall, parameters optimization is neces-
sary. They explained that because of GAN’s sensitivity to 
its parameters, researchers cannot simply assume that the 
parameters they found for their work can be applied to all 
scenarios. Even given the same machine learning model, a 
different application of the model requires researchers to 
develop their own set of optimal parameters.

To resolve issues with applying this conditioning behavior 
to these generative machine learning models, it is important 
to establish a better understanding of how these networks 
learn this conditioning behavior. When this mechanism is 
better understood, researchers can make improved decisions 

about which architecture hyperparameters must be changed 
to yield better results.

In this work, a novel metric for measuring various aspects 
of conditioned progressive growing GANs is proposed. 
Specifically, a newly defined metric called the condition-
ing ratio was calculated across the layers of a conditioned 
progressive growing GAN during training. The condition-
ing ratio determines the magnitude of the influence of the 
conditioning input. This metric is used by the discriminator 
during training as a method to reduce model collapse. How-
ever, the conditioning ratio becomes a more valuable metric 
when applied to the layers of a generator within PGGAN’s 
architecture. What makes the PGGAN architecture special 
is that it trains a generator in stages, with each stage learn-
ing to produce a higher resolution image using the output 
of the previous stage. By measuring the conditioning ratio 
at each of these stages, the growth and development of the 
conditioning behavior can be observed. Within the context 
of GANs, the conditioning ratio metric fills the gap for a 
metric that focuses on the variance of generated images and 
measures how they are influenced by conditioning input. 
This process also was repeated for various network archi-
tecture hyperparameter values to observe how these changes 
affect the networks’ learning of the conditioning behavior. 
The results of these experiments can help researchers when 
designing new conditioned GAN architectures. This is pos-
sible by using the proposed metric to measure which layers 
first learn the conditioning behavior and observe how each 
layer contributes to the overall performance of the genera-
tor. The proposed metric could also help guide the design of 
the training process by predicting the final performance of 
the generator without needing to wait for the entire training 
process to complete.

Methodology

Training images

In this work, a GAN was trained to generate realistic 
images of channelized aquifers. To train the GAN model, 
the training images were generated by cutting out sections 
of a source image. For this study, the source image was 
a 2500 × 2500-pixel image containing channelized aqui-
fers trending along the east–west direction (Fig. 1; Zahner 
et al. 2016). The source image contained two facies: one 
facies with high hydraulic conductivity in the channels, and 
another with low conductivity outside the channels. The 
training images were generated by randomly clipping out 
128 × 128-pixel images out of the source image. To produce 
a validation set of images, the randomly clipped images were 
flipped horizontally to ensure the new images had never been 
seen by the trained model. Horizontal flipping is sufficient 



1568 Hydrogeology Journal (2023) 31:1565–1580

1 3

to generate the validation set of images because convolu-
tional neural networks are known to produce results that are 
not invariant to various spatial transformations such as flips 
and rotation (Azulay and Weiss 2018). Data augmentation 
techniques take advantage of this property by spatially trans-
forming training images to increase the size of the training 
set (Hernández-García and König 2018). The goal of the 
GAN was to generate 128 × 128 images of the same chan-
nelized aquifers in a way that imitates the channel connectiv-
ity of the source image. After training, the models were first 
verified by visual inspection that the channel connectivity of 
the generated images were properly imitated before starting 
experiments with the conditioning ratio.

Progressive growing GAN

A progressive growing GAN architecture was used for this 
study. PGGAN is a GAN architecture first introduced by 
Karras et al. (2017) as a method to improve stability dur-
ing training of GAN. PGGAN works by first training the 
generator and discriminator in creating and discriminating 
images that are of a very low resolution, such as a 4 × 4 
image. The training images for this first training session are 
just the original training images downsampled until they are 
at the matching training resolution. After the networks have 
learned to generate realistic 4 × 4 pixel images, an additional 
layer is added to both networks. The networks then begin 

to learn how to produce realistic 8 × 8 images. To ease the 
training process, the output of the first layer is resampled 
to the new resolution before being sent to the newly added 
layer. Thus, for the generator, the 4 × 4 images generated by 
the first layer then are upsampled into 8 × 8 images before 
being sent into the new layer. To further ease the training 
process, the generator first outputs just the upsampled output 
of the first layer, without using the newly appended layer. 
As training progresses, the influence of the new layer is lin-
early increased until, by the end of the training stage, the 
generator’s output is the upsampled image of the first layer 
that has been modified by the new second layer. When the 
networks have mastered the second stage with 8 × 8 images, 
the training moves to the next stage with a greater resolution. 
For this work, each successive stage doubled the number of 
pixels along the edges of the images (4 then 8 then 16, and 
so on). This process continued until the networks could gen-
erate realistic images of the same resolution as the original 
training images. the final resolution was a 128 × 128 image 
for this study. As the networks are grown during training, 
the networks first learn to replicate broad features that can 
be seen in low-resolution versions of the training images. 
As the training resolution increases, the networks learn to 
replicate finer and finer details until the original resolution 
is achieved. Experiments by Karras et al. (2017) showed 
that this progressive architecture not only produces more 
stable results but also yields realistic images of much greater 
resolution than previously achieved.

Original GAN architectures were known to have problems 
with the lack of variety of the generated images (Lala et al. 
2018). The generator would produce realistic images, but 
only a few types of images, instead of the full variety avail-
able in the training set. To remedy this, Karras et al. (2017) 
incorporated a technique called minibatch discrimination 
into the PGGAN architecture (Salimans et al. 2016). Mini-
batch discrimination begins with calculating the standard 
deviation for each spatial location across all the images in 
the batch sent to the discriminator. The average of the stand-
ard deviations is calculated, yielding a single value. This 
value then is broadcasted into an array of the same dimen-
sions as one of the images. Finally, this array of the mean 
of standard deviations is appended to each of the images 
in the batch as a new feature. This mean of standard devia-
tions is used as a metric for mode collapse. If the mean is 
small, then the variety of the generated images has dropped 
and mode collapse has occurred. If the mean is large, then 
the generated images have a great variety and the generator 
has trained properly. Appending this feature to the images 
allows the discriminator to quickly learn and identify when 
mode collapse is taking place. To trick the discriminator, 
the generator is forced to learn a new mapping that does not 
have any mode collapse.

Fig. 1  Shows the source image used to generate the training data. The 
source image has a resolution of 2500 × 2500 and contains chan-
nelized facies that are oriented along the east–west direction (Zahner 
et al. 2016). Training images are made by randomly clipping out 
128 × 128 sections of the source image
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Conditioned PGGAN

To have the PGGAN generate realistic images that are condi-
tioned to well data, this work uses the GANSim architecture 
introduced by Song et al. (2021b). A minor difference in the 
architecture used by this study is how the conditioning data 
is introduced into the generator. In the original GANSim 
architecture introduced by Song et al. (2021b), the condi-
tioning data was introduced into the network as a two-layer 
array. For this work, conditioning data is instead introduced 
as a single-layer array. The conditioning data are formatted 
as a 2D array that contains the location of the wells and 
the facies type known at those points. For this study, the 
elements of the array could take one of three possible val-
ues: ‘1’ represents the high conductivity facies, ‘–1’ repre-
sents the low conductivity facies, and ‘0’ represents areas 
where the facies type is unknown. The conditioning array is 
injected into the generator of the PGGAN by downsampling 
the conditioning array, convolving the result with a small 
convolutional layer, and appending the resulting block to 
the blocks within the generator’s architecture. Because the 
generator contains a set of blocks responsible for convolving 
images at each resolution stage, a downsampled and con-
volved conditioning array is appended to the blocks of each 
resolution stage. The downsampling method used for the 
conditioning layers is the average pooling method. With the 
conditioning data introduced at various resolutions, the gen-
erator is given the opportunity to learn how to incorporate 
the data, from broad structures down to the fine structures 
of the images. Figure 2 shows the structure of the generator 
within the PGGAN architecture and shows how information 
from the conditioning array is incorporated into the gener-
ated image.

To generate the conditioning arrays used for training 
and validation, conditioning masks are used. Conditioning 
masks are sparse, 2D arrays filled mostly with zeros except 
for locations where a conditioning point is located. To cre-
ate these conditioning masks, the process starts by creating 
a 128 × 128 array filled with a random, uniform distribu-
tion of ones and zeros. This array is multiplied element-wise 
with another random array created in the same way. After 
several iterations of multiplying with another random array, 
the result is a conditioning mask array that contains a sparse 
distribution of ones in an array filled with zeroes. This con-
ditioning mask then can be multiplied element-wise with a 
training image of a channelized aquifer to create a condi-
tioning array that can be used by the generator. To change 
the overall density of the conditioning points, increasing the 
number of multiplication iterations increases the sparsity 
of the points. For this study, 10 iterations were used. This 
method for generating the conditioning masks allows the 
spatial distribution and the number of conditioning points to 

be randomized. This was done to ensure the generator does 
not learn to rely on these attributes of the conditioning array.

Loss functions and training procedure

The discriminator is tasked with converting an image chan-
nelized aquifer into a numerical score that reflects how 
realistic the image is, with more realistic images yielding 
larger values. The goal of the optimizer is to adjust the dis-
criminator until it yields high scores for images from the 
training set and low scores for images made by the generator. 
The optimizer does this by adjusting the parameters of the 
discriminator in a way that minimizes the value of the loss 
function. The loss function used to train the discriminator in 
the PGGAN is similar to the loss function used for WGAN-
GP architecture (Gulrajani et al. 2017).

The loss function shown in Eq. (1) uses the outputs of the 
discriminator D and the generator G evaluated using images 
x̂ and latent vectors z . For this study, the latent vectors have 
a length of 128. The discriminator loss function is composed 
of three main terms. The first two terms are responsible for 
adjusting the discriminator so that it outputs a small score for 
images made by the generator and a large score for images 
taken from the training set. The last term is the gradient pen-
alty term. It is responsible for ensuring that the discriminator 
does not change too much to the point of causing instabil-
ity in the GAN training process. In the last term, � sets the 
weight for the gradient penalty term; it was set to � = 10 
for this study. x̂ is a random linear interpolation between an 
image made by the generator ( �� ) and an image sampled 
from the training set ( x ). x̂ is defined as x̂ = 𝜀x + (1 − 𝜀)�� 
where � is a weight with its value randomly sampled from a 
uniform distribution between zero and 1 [ � ∼uniform(0, 1)].

The loss function used by this study is the same as what 
was presented by Song et al. (2021b). Because the PGGAN 
training process operates in stages of different resolutions, 
the loss function must be modified such that it can be evalu-
ated in different resolutions.

The discriminator loss function is composed of two main 
terms. The first term in the loss function is responsible for 
adjusting the generator such that it produces images that 
maximize the corresponding score given by the discrimina-
tor. This term essentially encourages the generator to pro-
duce images that fool the discriminator into thinking the 
images are real and are from the training set. The second 
term in the loss function is responsible for ensuring the 

(1)
�(�) = ��∼��

{�[G(�)]} − ��∼��
[�(�)] + 𝜆��̂∼��̂

[(‖∇�̂�(�̂)‖2 − 1)2]

(2)
�(�) = −��∼��

{�[�(�)]} + ln(‖{�[�(�)] − ����}⊙ �‖�)
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generator learns to produce images that respect the condi-
tioning data. The images made by the generator are first 
upsampled so that the resulting image is the same 128 × 128 
resolution as the training images [ �(�(z))]. The upsampling 
method used for this is the nearest neighbor. The generated 
and upsampled images are compared to the reference images 
( �

ref
 ) used to generate the conditioning arrays. The differ-

ence between the two arrays then is multiplied element-
wise ( ⊙ ) with the conditioning mask I . This makes sure the 
sum of errors only considers differences at sites where the 
conditioning data are given. After calculating the L2 norm, 
a natural logarithm was applied to the result to ensure the 
value of this term does not grow too large to the point of 
causing trouble with the training process. Including the natu-
ral logarithm to the original loss function presented by Song 
et al. (2021b) is a minor modification intended to improve 
stability during the training process.

The optimization method called Adam (Kingma and Ba 
2014) was used to train both the generator and discriminator. 
The Adam optimizer was used with �

1
= 0 , �

2
= 0.99 , and 

�
1
= 10

−8 , which are standard values used by Karras et al. 
(2017) and Song et al. (2021b). Unlike previous PGGAN, 
the generator and discriminator used two different learning 
rate values, instead of using the default value of lr = 0.001 

for each. The learning rate for the generator was lr
G
= 0.001 , 

but the learning rate for the discriminator was reduced to 
lr
G
= 0.00002 . The concept of having the generator and dis-

criminator use two different learning rates was first inves-
tigated by Heusel et al. (2017). They found that having two 
separate learning rates allows the GAN system to approach 
a Nash equilibrium and therefore improve the stability of the 
GAN training process. Because this study involves perform-
ing a set of experiments that changes the architecture of the 
networks, the training method must be set up such that it 
can train a wide variety of architectures without needing to 
change the training hyperparameters.

The PGGAN training procedure involves multiple stages, 
one for each training resolution. Given training resolutions 
of 4 × 4 up to a resolution of 128 × 128, there are up to 
6 training stages. In each stage, the GAN transitions from 
performing its tasks from the current resolution to the next 
higher output resolution. For this study, the entire GAN 
training process goes through 200,000 iterations, so about 
33,000 iterations are distributed evenly to each of the train-
ing stages. In each iteration, the networks train through a 
batch of 32 images. Within each training stage, the generator 
only outputs an upscaled version of the image produced by 
the previous layer. But as training progresses, the weight 

Fig. 2  Expanded view of the generator side of the conditioned 
PGGAN architecture. The architecture is the same as the GANSim 
architecture introduced by Song et al. (2021b). The generator begins 
with a randomly generated latent variable. The latent variable is 
sent through a fully connected neural network (FCN) with its result 
reshaped into the n × n × 128 dimensions. This generator begins with 
a starting resolution of 2 × 2 (this parameter is varied in the experi-
ments). Concatenated with this 128-block is a n × n × 4 block that 
contains information from the initial conditioning array. This gen-
erator uses four conditioning layers for its conditioning blocks (this 
parameter is varied in the experiments). This 4-block is made by first 
downsampling (DS) the initial array many times until it produces an 
image that matches the n × n dimensions of the blocks. The down-
sampling method used for the conditioning arrays is the average pool-
ing method. This downsampled image then is sent through two con-

secutive convolutional neural networks using a 3  ×  3 kernel (“Two 
CNN 3 × 3”). After the 128-block and the conditioning 4-block are 
concatenated together to form a n × n × 132 block, the result then is 
upsampled (US) using the nearest-neighbor method to double the res-
olution to form a 2n × 2n × 132 block, the final block produced from 
this resolution stage. For the next resolution stage, the final 132-block 
output from the previous stage is sent through another set of convolu-
tion neural networks to produce a new 128-block for the resolution 
stage. The process repeats for many more stages until the final 132-
block has the same side dimensions of the final image ( 128 × 128 for 
this example). The final 132-block is sent through a single convolu-
tion neural network layer to produce the final generated images. For 
this work, a minor change was made where the conditioning input 
was introduced using only one layer instead of using two layers as 
outlined by Song et al. (2021b) on the original GANSim architecture
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for the new convolution layer linearly increases such that by 
the end of the training stage, the generator outputs an image 
produced by the new layer. A summary of the entire training 
procedure for PGGAN is shown in Algorithm 1.

Measurement of the conditioning ratio

The generator of the conditioned PGGAN architecture has 
two main inputs: the latent vector, and the conditioning 
array. Previous works have studied the influence the latent 
vector has on the output (Mosser et al. 2020; Nesvold and 
Mukerji 2019; Dupont et al. 2018). This means to pro-
duce a range of images that respects observations, only 
the latent vector can be manipulated to achieve this. But 
the conditioned PGGAN architecture has two inputs, the 
latent vector and the conditioning input. The latent vector 
can be used to generate variability in the images, while the 
conditioning input ensures the generated images respect 
observation data. This study focuses more on the influence 
the conditioning array has on the output image. The gen-
erator is designed to use the conditioning array to produce 
conditioned images, but this performance must be meas-
ured. This measurement is done by using a process similar 
to minibatch discrimination. To evaluate the conditioning 
behavior of a trained generator, the generator transforms 
a batch of 50 latent vectors and conditioning arrays into 
a batch of realistic images. In this batch, all the latent 

vectors are randomly generated. But for the conditioning 
arrays, the first 25 arrays are all the same, while the last 25 
arrays are all different. The last 25 conditioning arrays are 
randomly generated and a new set of conditioning arrays 
are generated every time the conditioning ratio is recal-
culated. This is done to reduce the artifacts that may be 
introduced by any single batch of conditioning inputs. For 
each set of 25 images, the mean of the pixel-wise vari-
ance is calculated using the same process as minibatch 
discrimination. If the generator has been trained correctly, 
then the mean variance for the images that used the same 
conditioning array should be lower than the mean vari-
ance for the images that used different conditioning arrays. 
Dividing the mean variance for images that used the same 
conditioning array by the mean variance for images that 
used different conditioning arrays yields a useful metric 
defined as the “conditioning ratio”. A summary of the con-
ditioning ratio metric is presented in Algorithm 2. Figure 3 
shows example batches of generated images with a high 
and low value for the conditioning ratio. A condition-
ing ratio less than one means that the generator has the 
expected behavior of reducing the variance of generated 
images due to the introduction of conditioning data. To 
get a stable value for the conditioning ratio, the genera-
tor evaluates 1,000 batches and then reports the average 
value across all the batches as the final conditioning ratio 
for a given generator. Since the conditioning ratio uses the 

Algorithm 1  Training procedure for a progressive growing GAN
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mean of the pixel-wise variance of the generated images, 
the standard errors of the means could be computed by 
using the standard deviation of the pixel-wise variance. 
However, this standard error was found to quickly vanish 
because of the large number of pixels used. For example, 
8 × 8 images generate 50 times already yields a sample 
size of 3,200. Variations from simply retraining the GAN 
model produce a larger variance on the metric than from 
the inherent variances from calculating the metric. Note 
that the conditioning ratio measures the influence condi-
tioning data has on the variance of the generated images. 
It does not measure the proportion of correctly produced 
point data among all input point data.

One of the advantages of using the conditioning ratio 
is that it can be evaluated regardless of the resolution at 
which the generator operates. When using pixel-wise vari-
ance maps, comparisons become difficult to interpret when 
comparing between variance maps of different dimensions. 
The conditioning ratio resolves this issue by summarizing 
the variance of generated images with a single normalized 
value, thereby allowing comparison of variance maps with 
different resolutions. This allows the conditioning ratio to 
be evaluated not only for a completely trained generator, but 
also for the generators throughout the entire training process, 
giving insight into how the conditioning behavior of the gen-
erator changes throughout the training process. Because the 
generator of the PGGAN process is composed of layers that 
generate images at different resolutions, the conditioning 
ratio also can be evaluated for different layers within a sin-
gle generator. The conditioning behavior can be monitored 
as information propagates through the generator’s network. 
Note that the conditioning ratio still has its utility, even when 
evaluated during later stages of training where early low 
resolution CNN layers are no longer required to produce 
realistic and conditioned images. Studying the changes of 

the conditioning ratio of these early layers can yield insight 
into how the PGGAN learns its conditioning task and how 
the performance of early layers influences the performance 
of later layers.

Network architecture experiments

When investigating the conditioning behavior of the genera-
tor from a PGGAN process, the conditioning layers within 
the generator become an important network component to 
study. Song et al. (2021b) used 16 conditioning layers for 
each stage with the generator. This study explores a range of 
values for the number of conditioning layers. A range from 
4 to 128 layers was explored. The number of layers can be 
important because it can change the conditioning behavior 
of the generator. If the number of conditioning layers is too 
small, then the generator might not be able to learn how to 
use the conditioning array to generate conditioned outputs. 
If the number of conditioning layers is too large, then the 
generator might rely too much on the conditioning array and 
lose the variety introduced by the latent vector.

Another important architectural component of the gen-
erator network is the starting resolution for the PGGAN 
process. Song et al. (2021b) used 4 × 4 as their starting 
resolution but did not explore other starting resolutions. This 
study investigates the effects of changing the starting reso-
lution and how it competes with other network architecture 
parameters. Intuitively, having a larger starting resolution 
would make the generator have a harder time learning to 
replicate broad-scale structures. These experiments were 
designed to test whether this intuition remains true in prac-
tice. This study will experiment with starting resolutions 
of 4 × 4 and 8 × 8. This study will also investigate how 
changing the starting resolution will affect the number of 

Algorithm 2  Calculating the conditioning ratio metric
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conditioning layers necessary to produce a properly trained 
conditioned GAN.

Results

Trends across the number of conditioning layers

Several PGGAN models were trained with a range of values 
for the number of conditioning layers. Values ranging from 4 
to 128 conditioning layers were explored. A starting resolu-
tion of 4 × 4 and 8 × 8 also was explored. Figure 4 shows 

the result of plotting the conditioning ratio against a varying 
number of conditioning layers, including the conditioning 
ratio plot for a 4 × 4 and an 8 × 8 starting resolution. For 
both starting resolutions, the generators sharply transitioned 
from a high conditioning ratio to a low ratio as the number of 
conditioning layers increased. However, the transition for the 
8 × 8 series occurs sooner than the transition for the 4 × 4 
series transitions at. The 4 × 4 series begins to transition 
at 48 conditioning layers, while the 8 × 8 series begins to 
transition at only 12 conditioning layers. After the transition, 
the conditioning ratio for the 8 × 8 series begins to increase 
as the number of conditioning layers increases.

Figure 5 shows batches of images generated by various 
generators trained within the 4 × 4 series in Fig. 4. Focus 
is placed on the transition period that occurs at 48, 56, and 
64 conditioning layers. As the conditioning ratio drops, the 
variance of the generated conditioned images is reduced. All 
three batches were given the same number of conditioning 
points, so the conditioning array is not responsible for the 
drop in image variance.

Trends across training iterations

As the networks went through the PGGAN training pro-
cess, the conditioning ratio was calculated for each reso-
lution within the generator. For the series of generators 
with a 4 × 4 starting resolution, the conditioning ratio 
plots were made for the 8 × 8, 16 × 16, 32 × 32, 64 × 64, 
and 128 × 128 outputs of the generator. The conditioning 
ratios were calculated throughout the 200,000-iteration 
process. Figure 6 shows this set of conditioning ratio plots 
for the 4 × 4 starting resolution generators with 8, 16, 32, 
and 64 conditioning layers. Figure 6 shows trends that are 
common across all four conditioning ratio plots. During 
the start of the training session, the conditioning ratios for 
each of the resolution stages drop in sequence. Training 
begins with the 8 × 8 stage dropping to a low conditioning 
ratio before the rest of the stages follow suit. For the gen-
erators with 8 and 16 conditioning layers (Fig. 6a,b), the 
conditioning ratios for most of the resolution stages remain 
close to one, while the 4 × 4 and 8 × 8 resolution stages 
have their conditioning ratios widely vary throughout the 
training. Figure 6c shows the 32 × 32 conditioning layer 
generator with most of the stages sharing very similar con-
ditioning ratios throughout the training session. Except for 
the 8 × 8 resolution stage, the conditioning ratios of the 
remaining stages began by dropping down close to zero 
before bouncing back up and approaching the final value. 
For Fig. 6d, all resolution stages approached zero, except 
for the 4 × 4 stage, which became unstable and produced 
conditioning ratios well above 1.

For the 4 × 4 starting resolution series, Fig. 6 shows that 
the conditioning ratio transitions from high to low between 

Fig. 3  Example batches of generated images with different condi-
tioning ratios. For each batch (a–b), the first 25 images (above the 
center red dividing line) were generated with different latent vectors 
but the same conditioning array. However, for the second 25 images 
(below the center red dividing line), the images were generated with 
different latent vectors and different conditioning arrays. The two 
25-image batches were placed on top of each other (with the middle 
row containing  a five images from batch 1 and b five images from 
batch 2) to highlight any visual similarities or differences between the 
two batches. Note that for large conditioning ratios, such as in sec-
tion ‘Trends across the number of conditioning layers’, this means 
the generator will produce realizations with a variance that does not 
significantly change, even when the conditioning data is held con-
stant while the latent variable is varied. Visually, this means the two 
batches will look like each other and the boundary between the two 
batches is difficult to distinguish. When the conditioning ratio is close 
to zero, such as in section ‘Trends across the number of conditioning 
layers’, the generator will produce realizations with variances lower 
than what the conditioning data allows. Visually, this means the two 
batches will be easy to distinguish since one of the batches will look 
like copies of the same image
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32 and 64 conditioning layers. To better understand this tran-
sition, additional tests were done at 48 and 56 conditioning 
layers. Figure 7 shows the additional set of conditioning ratio 
plots for this transition period. The plots of Fig. 7 show that 
as the number of conditioning layers increases, the variation 
between the conditioning ratios increases. In Fig. 7a, except 
for 8 × 8 stages, all other stages have their conditioning 
ratios closely following each other throughout the U-shaped 
trend, with differences no greater than 0.2. However, in 
Fig. 7c, the cluster of stages expands to the point of having 
a maximum difference of 0.4. The final generator produces a 
range of conditioning ratios, with higher conditioning ratios 
corresponding to higher output resolutions.

As with Fig. 6, Fig. 8 shows the conditioning plots for 
the series of generators with an 8 × 8 starting resolution. 
Figure 8 shows the plots for generators trained with 8, 16, 
32, and 64 conditioning layers. The figures show that for 
generators with 16 conditioning layers or greater, the major-
ity of the stages begin with an initial conditioning ratio of 
one, then sharply trend down toward zero before rising back 
up toward the final value. This trend of having an initial drop 
is similar to what was found for the 4 × 4 starting resolution 
generators (Fig. 7, although the drops were not as sharp as 
what was found for the 8 × 8 starting resolution generators 
in Fig. 8. The 8 × 8 series begin their initial drops sooner, at 
40,000 iterations, as compared to the 4 × 4 series with their 
initial drops that start at 60,000 iterations. During the slow 
upward trend in the conditioning ratio, there is a small but 
consistent bump at 170,000 iterations for the final resolution 
stage of 128 × 128. At the end of the training session, the 
conditioning ratio of the trained generator varies, based on 
the output resolution of the stage, with higher resolutions 
yielding higher conditioning ratios. Note that this trend is 
consistent with what was found in Fig. 7c.

For the 8 × 8 starting resolution series, Fig. 9 shows 
that the conditioning ratio transitions from high to low 
between 8 and 16 conditioning layers. To better under-
stand this transition period, additional models were trained 
with 12 and 14 conditional layers. Figure 9 shows the set 
of additional conditioning ratio plots for this transition 
period. The plots of Fig. 9 show that as the number of 
conditioning layers increases, the magnitude of the ini-
tial drop of the conditioning number increases. With eight 
conditioning layers (Fig. 9a), the 16 × 16 stage only dips 
as low as 0.5, while the rest of the higher resolution stages 
remain close to one. With 12 conditioning layers (Fig. 9b), 
the 16 × 16 stage dips down farther to 0.45, while the rest 
of the higher resolution stages continue to remain close 
to one. However, with 14 conditioning layers (Fig. 9c), 
the rest of the high-resolution stages finally perform the 
distinct drop of the conditioning ratio × iteration 60,000. 
Compared to the transition slope for the 4 × 4 starting 
resolution series, the transition slope for the 8 × 8 series is 

much steeper. Even with the additional experiments, there 
was no 8 × 8 series model that yielded a conditioning ratio 
between 0.4 and 0.6.

Discussion

Some of the trends in the results are reasonable and can 
be intuitively explained. One example is the trend where, 
during training, all conditioning ratios begin at a value of 
one before dropping down and then rising back up to their 
final value. At the start of the training sessions, the genera-
tor begins at a conditioning ratio of one because the later 
stages have not yet learned how to use the conditioning 
array or even learn how to produce realistic images yet, 
so the initial images are essentially randomly generated 
images with no influence by the conditioning array. As 
training continues, the conditioning ratio drops because 
the generator quickly learns that it can yield a lower value 
for the loss function, through the second term of Eq. (2), 
if it incorporates the conditioning array into the output of 
the generator. Afterward, the conditioning ratios begin to 
rise because the variance between the generated images 
increases as the resolution of the generated images also 
increases. This explains why the conditioning ratio of the 
fully trained generator increases with the resolution of 
the output image (see iteration 200,000 of Fig. 8d). The 
specific paths the conditioning ratio takes during training 
will vary, based on the resolution stage and other hyper-
parameters, but the general U-shaped trend holds true for 
the majority of the tested models. The U-trend indicates 

Fig. 4  The conditioning ratio plotted against the number of condi-
tioning layers. There are two data series, one for generators with a 
4 × 4 starting resolution and one for generators with an 8 × 8 starting 
resolution. Both series show the conditioning ratio decreasing as the 
number of conditioning layers increases. Note that the 8 × 8 series 
transitions at a lower number of conditioning layers than where the 
4 × 4 series transitions
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that, at least for the conditioned PGGAN architecture, the 
generator prefers to first learn to copy data from the con-
ditioning array into output; then it learns how to adjust 
the output to be more realistic and imitate the variance 

of the training images. This initial dependence on the 
conditioning array could explain why Song et al. (2021b) 
found issues with “local pixel noise” in which the genera-
tor produces images with outstanding pixels that match the 

Fig. 5  Example batches made by generators with different amounts of 
conditioning layers. As the number of conditioning layers increases, 
the conditioning ratio drops. This figure showcases how this drop of 
the conditioning ratio changes the generated images during this tran-

sition period. The batches are generated with the same method shown 
in Fig. 3. As the conditioning number drops, the variance of the con-
ditioned images drops. This is true even when all three image batches 
are given the same amount of conditioning points

Fig. 6  The conditioning ratio 
versus training iteration plots 
for PGGANs that use a start-
ing resolution of 4 × 4. Each 
subfigure shows the plot for a 
generator trained with a given 
number of conditioning layers. 
Within each plot, each series is 
a set of conditioning ratios for a 
given output resolution within 
the generator
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conditioning data but do not match the surrounding geo-
logic facies. The generator learns to ignore the influence 
of the conditioning as it seeks to produce more realistic 
images. To fix this, Song et al. (2021b) proposed enlarging 
the conditioning points with the intent of increasing the 
mismatch error. Another method to explore is training the 
discriminator to be more sensitive to these outstanding 
conditioning points.

Although the experiments reveal trends that are easily 
explainable, the results also show trends that are not intui-
tive. The most substantial example is the plot shown in 
Fig. 4. The intuition behind the experiments was that hav-
ing a lower starting resolution gives the generator a better 
opportunity to learn how to replicate these broad-scale fea-
tures in the images and to learn how to incorporate condi-
tioning data into these large-scale features. Having another 
resolution stage also provides an additional path to inject 
conditional data into the generator. Both of these reasons 
indicate that a generator with a 4 × 4 starting resolution 
should require fewer conditioning layers in order to have the 

same performance as an 8 × 8 starting resolution generator. 
Yet the results in Fig. 4 shows the opposite result, with the 
8 × 8 starting resolution generators transitioning from a high 
to low conditioning ratio at a smaller number of condition-
ing layers than the 4 × 4 transition. A possible explanation 
for why this occurs is that the early stages of the generator 
can become a burden if the resolution is too small. Note 
that many of the plots for the 4 × 4 starting resolution series 
show the first stage (8 × 8) following trends that are differ-
ent from what the rest of the higher resolution stages follow. 
Figure 9c shows the first two stages reaching a conditioning 
ratio of zero. Plots from the 8 × 8 starting resolution series 
(Fig. 9a–c) only show divergent behaviour from the first 
stage of the generator, which has an 8 × 8 resolution. Note 
that conditioning ratios above 1 have the same meaning as 
the conditioning ratio equal to 1, which means the model is 
producing outputs that are not properly constrained by con-
ditioning inputs. A conditioning ratio of more than 1 rarely 
occurs and is most likely to occur with very low resolution 
images (such as 4 × 4) where a small pixel count is most 

Fig. 7  The conditioning ratio versus training iteration plots for the 
generators that use a starting resolution of 4  ×  4. Each subfigure 
shows the plot for a generator trained with a given number of condi-
tioning layers. Within each plot, each series is a set of conditioning 

ratios for a given output resolution within the generator. These plots 
focus on when the final output of the generator transitions from a 
high to low conditioning ratio between 32 and 64 conditioning layers 
(Fig. 4)
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likely to produce a set of values that yields a conditioning 
ratio value greater than 1. This case is unlikely to occur with 
images of larger resolutions. In Fig. 9c, the first stage even 
climbs upward like the rest of the stages, unlike the first 
stage in Fig. 7a. The burden of the early stages also shows in 
the delay of the initial drop of the conditioning ratio during 
training. The 8 × 8 series begin their initial drops sooner, 
at 40,000 iterations, compared to the 4 × 4 series with their 
initial drops starting at 60,000 iterations.

On top of revealing nonintuitive learning behaviors within 
the training of conditioned PGGAN generators, the condi-
tioning ratio has proven to be a useful metric for tuning the 
parameters of these generators. Figure 5 showcases this tun-
ing process using the conditioning ratio metric. Recall that a 
generator with a large conditioning ratio will produce a vari-
ety of realistic images that do not respect the conditioning 
data. A generator with a small conditioning ratio produces 
images that respect conditioning data, but at the cost of pro-
ducing images with low variance. Therefore, the ideal gen-
erator that produces realistic conditioned images with high 

variance will have a conditioning ratio that is between these 
two extremes, whereby the lower extreme is 0 and the upper 
extreme is 1. In practice, these extremes can be verified by 
measuring the conditioning ratio of the conditioned GAN 
model when it exhibits one of two types of training failure. 
If there is almost no variance in the generated images when 
the conditioning input is held constant, even while the latent 
variable is varied, then the measured conditioning ratio will 
be close to zero. However, if the variance of the generated 
images does not reduce when the conditioning input is held 
constant versus when the conditioning input is varied, then 
the conditioning ratio will be one. For some architecture 
parameters, such as the number of conditioning layers, a 
simple binary search using the conditioning ratio metric can 
quickly find the optimal value for these parameters. When 
tuning the parameter, the target value for the conditioning 
ratio is 0.5. A conditioning ratio of 0.5 means that the gen-
erator is able to properly produce images that respect the 
conditioning input but does so in way that does not severely 
reduce the variance of the generated images beyond what 

Fig. 8  The conditioning ratio versus training iteration plots for 
PGGANs that use a starting resolution of 8 × 8. Each subfigure shows 
the plot for a generator trained with a given number of conditioning 

layers. Within each plot, each series is a set of conditioning ratios for 
a given output resolution within the generator
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the conditioning input can justify. To use the conditioning 
ratio for tuning parameters, first select the tuning parameter 
of interest. For the case of Fig. 5, the parameter of interest is 
the number of conditioning layers in the GAN architecture. 
Next, run the GAN model with various values for the tuned 
parameter and calculate the conditioning ratio of the model’s 
output for each of these runs. Some parameter values will 
yield a GAN with a conditioning ratio close to one, while 
other parameter values will make the GAN have a condi-
tioning ratio close to zero. Since the conditioning ratio is 
continuous, then there must exist a parameter value such that 
it will produce a GAN with a conditioning ratio of 0.5. This 
parameter value can be found using the binary search algo-
rithm. At the conditioning ratio of 0.5, the model produces 
images that respect the conditioning input. Also at 0.5, the 
model does not over rely on the conditioning input to the 
point where the model only produces one image when the 
conditioning input is varied, even when the latent variable 
is varied. For the example shown in Fig. 5, a binary search 
with the conditioning ratio will find 56 conditioning layers 
to be close to the optimal value.

Conclusions

This study introduces a set of experiments that focus on 
investigating the performance of conditioned progressive 
growing generative adversarial networks (PGGANs). The 
generators of these PGGANs are tasked with converting a 
latent variable and a conditioning array into images of geo-
logically realistic channelized aquifers that match with point 
data from well observations. Conditioning data are injected 
into the generator by downsampling the conditioning array 
and appending additional conditioning layers to the existing 
layers within the generator. Focus was placed on investigat-
ing the conditioning performance of these networks and how 
their performance changes in response to alterations of the 
network architecture. To measure the conditioning perfor-
mance of the network, a metric called the conditioning ratio 
was defined. The conditioning ratio is essentially the vari-
ance of images generated with the same conditioning data 
divided by the variance of images generated with different 
conditioning data. Low conditioning ratios indicate strong or 
excessive conditioning behavior and high ratios mean little 

Fig. 9  The conditioning ratio versus training iteration plots for gen-
erators that use a starting resolution of 8 × 8. Each subfigure shows 
the plot for a generator trained with a given number of conditioning 
layers. Within each plot, each series is a set of conditioning ratios for 

a given output resolution within the generator. These plots focus on 
when the final output of the generator transitions from a high to low 
conditioning ratio between 8 and 16 conditioning layers (Fig. 4)
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to no conditioning. By measuring the conditioning ratio, the 
experiments can provide information about how the condi-
tioning behavior changes across many different scenarios. 
The conditioning ratio was measured on each of the resolu-
tion stages within the generator while it was training. This 
measurement process also was done for varying numbers of 
conditioning layers and with different starting resolutions.

The experiments and measurements of the conditioning 
ratio yielded plots that provide great insight into how the 
conditioning behavior arises within these networks. The 
results revealed a common U-shaped trend where, during 
training, the conditioning ratio starts at a high ratio and 
then quickly drops before climbing back up toward the final 
value. The results also show that PGGANs with lower start-
ing resolutions can require more conditioning layers than 
generators with a higher starting resolution. Overall, the 
experiments demonstrated that measuring the conditioning 
ratios within layers of the generators provides a valuable 
method for monitoring the performance of these networks. 
Researchers can reduce the computational demands of 
exploring new GAN architectures by using the condition-
ing ratio to trim off redundant high-resolution layers of the 
progressive GAN process or by stopping the training process 
early when the conditioning ratios detect a trend that predicts 
a failure at the end of training.

Future applications for these experiments include using 
conditioning ratios across PGGAN generator layers as diag-
nostic tools useful for the design of future GAN architectures 
that produce images of higher dimensions or can receive a 
wider variety of conditioning data. The techniques intro-
duced in this work also can be extended to GAN architec-
tures designed to find mappings between state and param-
eters space, thereby helping in the design of more efficient 
surrogates for groundwater models.

Acknowledgements The authors wish to thank the guest editor 
Philippe Renard and Przemyslaw Juda as well as an anonymous 
reviewer for their comments, which substantially helped to improve 
the final version of the manuscript.

Funding This work has been supported through a grant from the 
National Science Foundation (OIA-1833069).

Declarations 

Conflicts of interest The authors have no conflicts of interest to report.

References

Arjovsky M, Chintala S, Bottou L (2017) Wasserstein GAN. arXiv 
preprint. arXiv: 1701. 07875

Azulay A, Weiss Y (2018) Why do deep convolutional networks 
generalize so poorly to small image transformations? arXiv 
preprint.https:// arxiv. org/ abs/ 1805. 12177

Bao J, Li L, Davis A (2022) Variational autoencoder or genera-
tive adversarial networks? a comparison of two deep learning 
methods for flow and transport data assimilation. Math Geosci 
54:1017–1042

Bao J, Li L, Redoloza F (2020) Coupling ensemble smoother and 
deep learning with generative adversarial networks to deal with 
non-gaussianity in flow and transport data assimilation. J Hydrol 
590:125443

Chan S, Elsheikh AH (2018) Parametric generation of conditional 
geological realizations using generative neural networks. arXiv 
preprint. http:// arxiv. org/ abs/ 1807. 05207

Deutsch CV, Journel AG (1992) Geostatistical software library and 
user’s guide. Oxford University Press, New York, p 119

Deutsch CV, Wang L (1996) Hierarchical object-based stochastic 
modeling of fluvial reservoirs. Math Geol 28:857–880

Dupont E, Zhang T, Tilke P, Liang L, Bailey W (2018) Generating 
realistic geology conditioned on physical measurements with 
generative adversarial networks. arXiv preprint. http:// arxiv. 
org/ abs/ 1802. 03065

Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, 
Ozair S, Courville A, Bengio Y (2014) Generative adversarial 
nets. In: Advances in neural information processing systems. 
pp 2672–2680

Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V, Courville AC 
(2017) Improved training of Wasserstein GANs, In: Advances in 
neural information processing systems. MIT Press, Cambridge, 
MA, pp 5767–5777

Hauge R, Holden L, Syversveen AR (2007) Well conditioning in 
object models. Math Geol 39:383–398

Hernández-García A, König P (2018) Further advantages of data 
augmentation on convolutional neural networks. International 
Conference on Artificial Neural Networks, ICANN 2018, Rho-
des, Greece, October 2018, pp 95–103

Heusel M, Ramsauer H, Unterthiner T, Nessler B, Hochreiter S 
(2017) GANs trained by a two time-scale update rule converge 
to a local Nash equilibrium. In: Advances in neural information 
processing systems. MIT Press, Cambridge, MA, pp 6626–6637

Holden L, Hauge R, Skare Ø, Skorstad A (1998) Modeling of fluvial 
reservoirs with object models. Math Geol 30:473–496

Honarkhah M, Caers J (2012) Direct pattern-based simulation of 
non-stationary geostatistical models. Math Geosci 44:651–672

Karras T, Aila T, Laine S, Lehtinen J (2017) Progressive growing 
of GANs for improved quality, stability, and variation. arXiv 
preprint. http:// arxiv. org/ abs/ 1710. 10196

Karras T, Laine S, Aila T (2019) A style-based generator architec-
ture for generative adversarial networks. In: Proceedings of the 
IEEE conference on computer vision and pattern recognition, 
pp 4401–4410

Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. 
arXiv preprint. http:// arxiv. org/ abs/ 1412. 6980

Lala S, Shady M, Belyaeva A, Liu M (2018) Evaluation of mode 
collapse in generative adversarial networks. 2018 IEEE High 
Performance Extreme Computing Conference. https:// ieee- hpec. 
org/ 2018/ 2018p rogram/ index_ htm_ files/ 124. pdf. Accessed 
August 2023

Laloy E, Hérault R, Jacques D, Linde N (2018) Training-image based 
geostatistical inversion using a spatial generative adversarial 
neural network. Water Resour Res 54:381–406

Lochbühler T, Pirot G, Straubhaar J, Linde N (2014) Conditioning 
of multiple-point statistics facies simulations to tomographic 
images. Math Geosci 46:625–645

Lopez-Alvis J, Laloy E, Nguyen F, Hermans T (2020) Deep genera-
tive models in inversion: a review and development of a new 
approach based on a variational autoencoder. arXiv preprint. 
http:// arxiv. org/ abs/ 2008. 12056

http://arxiv.org/abs/1701.07875
http://arxiv.org/abs/1805.12177
http://arxiv.org/abs/1807.05207
http://arxiv.org/abs/1802.03065
http://arxiv.org/abs/1802.03065
http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1412.6980
https://ieee-hpec.org/2018/2018program/index_htm_files/124.pdf
https://ieee-hpec.org/2018/2018program/index_htm_files/124.pdf
http://arxiv.org/abs/2008.12056


1580 Hydrogeology Journal (2023) 31:1565–1580

1 3

Lucic M, Kurach K, Michalski M, Gelly S, Bousquet O (2018) Are GANs 
created equal? a large-scale study. In: Advances in neural informa-
tion processing systems. MIT Press, Cambridge, MA, pp 700–709

Mariethoz G, Straubhaar J, Renard P, Chugunova T, Biver P (2015) 
Constraining distance-based multipoint simulations to propor-
tions and trends. Environ Modell Softw 72:184–197

Mariethoz G, Renard P (2010) Reconstruction of incomplete data 
sets or images using direct sampling. Math Geosci 42:245–268

Michael H, Li H, Boucher A, Sun T, Caers J, Gorelick S (2010) Com-
bining geologic-process models and geostatistics for conditional 
simulation of 3-D subsurface heterogeneity. Water Resour Res 46

Mosser L, Dubrule O, Blunt MJ (2020) Stochastic seismic waveform 
inversion using generative adversarial networks as a geological 
prior. Math Geosci 52:53–79

Nesvold E, Mukerji T (2019) Geomodeling using generative adver-
sarial networks and a database of satellite imagery of modern river 
deltas. In: Petroleum Geostatistics 2019, European Association 
of Geoscientists & Engineers, Utrecht, The Netherlands, pp 1–5

Salimans T, Goodfellow I, Zaremba W, Cheung V, Radford A, Chen X 
(2016) Improved techniques for training GANs. In: Advances in 
neural information processing systems (NIPS 2016), Barcelona, 
Dec 2016, pp 2234–2242

Shen C, Laloy E, Elshorbagy A, Albert A, Bales J, Chang FJ, Ganguly 
S, Hsu KL, Kifer D, Fang Z (2018) Hess opinions: incubating 
deep-learning-powered hydrologic science advances as a com-
munity. Hydrol Earth Syst Sci 22:5639–5656

Song S, Mukerji T, Hou J (2021a) Geological facies modeling based on 
progressive growing of generative adversarial networks (GANs). 
Comput Geosci 25:1251–1273

Song S, Mukerji T, Hou J (2021b) Gansim: conditional facies simula-
tion using an improved progressive growing of generative adver-
sarial networks (GANs). Math Geosci 53:1413–1444

Song S, Mukerji T, Hou J (2022a) Bridging the gap between geophys-
ics and geology with generative adversarial networks. IEEE Trans 
Geosci Remote Sensing 60:1–11

Song S, Mukerji T, Hou J, Zhang D, Lyu X (2022b) GANSim-3D 
for conditional geomodeling: theory and field application. Water 
Resour Res 58, e2021WR031865

Zahner T, Lochbühler T, Mariethoz G, Linde N (2016) Image synthesis 
with graph cuts: a fast model proposal mechanism in probabilistic 
inversion. Geophys J Int 204:1179–1190

Zhang T, Tilke P, Dupont E, Zhu L, Liang L, Bailey W (2019) Generat-
ing geologically realistic 3D reservoir facies models using deep 
learning of sedimentary architecture with generative adversarial 
networks. In: International Petroleum Technology Conference, 
OnePetro, Beijing, March 2019

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.


	Progressive growing generative adversarial networks using conditioning ratio for facies modeling in complex aquifers
	Abstract
	Introduction
	Methodology
	Training images
	Progressive growing GAN
	Conditioned PGGAN
	Loss functions and training procedure
	Measurement of the conditioning ratio
	Network architecture experiments

	Results
	Trends across the number of conditioning layers
	Trends across training iterations

	Discussion
	Conclusions
	Acknowledgements 
	References


