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Abstract
Mining activities can significantly impact groundwater reservoirs in their vicinity. Different approaches have been employed, 
with varying success, to investigate the spatial variability of groundwater levels in mining areas. Typical problems include 
the small sample size, the non-Gaussian distribution of the data, and the clustering of sample locations near the mines. These 
conditions complicate the estimation of spatial dependence. Under sparse and irregular sampling conditions, stochastic 
methods, which can provide estimates of prediction uncertainty, are preferable to deterministic ones. This research focuses 
on the comparison of two stochastic methods, stochastic local interactions (SLI) and universal Kriging (UK), using water 
level data from 72 locations around three mines in Northern Greece. UK is a well-known, variogram-based geostatistical 
method, while SLI is a computationally efficient kernel-based method that can cope with large spatial datasets. The non-
Gaussian distribution of the data is handled by means of a flexible, data-driven Gaussian anamorphosis method that uses 
kernel functions. The spatial prediction performance of both methods is assessed based on cross-validation. UK performs 
better than SLI, due to the fact that the former incorporates a linear trend function. On the other hand, a comparison of the 
two methods using data from a single mine that contains only 28 measurement locations shows that SLI performs slightly 
better than UK. The prediction uncertainties for both methods are also estimated and compared. The results suggest that SLI 
can provide better estimates than classical geostatistical methods for small sample sizes that do not allow reliable estimation 
of the variogram model.
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Introduction

The quantity, quality, and the degree of spatiotemporal 
variability of groundwater are key factors for the wealth of 
human communities and ecosystems; therefore, they play a 
significant role in effective groundwater resources manage-
ment. Both human interventions, such as excessive pumping, 
and natural processes, such as a decline in recharge, can 
cause fluctuations in groundwater levels. Level variations 
could be long-term (on the order of years) or short-term 

(on the order of months). Global studies confirm the con-
nection between excessive groundwater pumping and vari-
ations in groundwater levels (Islam et al. 2022; Tatas et al. 
2022). Dewatering efforts for underground mining opera-
tions significantly reduce groundwater levels for a long time 
and in many cases may dry up nearby springs. Near-mine 
ecosystems typically depend on groundwater for survival. 
Water pumping for mining activities can lead to groundwater 
level drops which can be harmful to local communities and 
ecosystems (Schrader and Winde 2015; Davies et al. 2020). 
Therefore, monitoring the spatial distribution of ground-
water levels around mining areas is an important goal for 
management purposes.

Various geostatistical methods have been used to inves-
tigate changes in the spatial distribution of groundwater 
levels. Some studies employ Kriging methods using only 
primary information (Budiman et al. 2022; Evans et al. 
2020), while others involve auxiliary variables  (Var-
ouchakis and Hristopulos 2013a, b; Zirakbash et al. 2020; 
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Calzolari and Ungaro 2012; An et al. 2015) or implement 
hybrid machine learning approaches (Parasyris et al. 2021; 
Manzione and Castrignano 2019; Theodoridou et al. 2017; 
Tapoglou et al. 2014). In mining areas, groundwater lev-
els distribution is usually investigated through the use of 
Kriging methods such as ordinary Kriging, indicator Krig-
ing and co-Kriging (Dai et al. 2011; Abiye et al. 2018; 
Keegan-Treloar et al. 2021).

Geostatistical methods typically rely on the existence of 
data that sufficiently sample the spatial variability in the 
area of interest. In mining areas, the monitoring stations are 
often clustered around small areas of interest (pits, mines 
or mine sectors). This practice prevails because such areas 
require careful monitoring due to increased environmental 
risks. The clustered pattern of the measurement locations 
hinders the reliable estimation of the variogram model, 
especially if the number of data points inside each cluster 
is small (Goovaerts 1997; Kovitz and Christakos 2004). 
Another problem commonly faced by geostatistical meth-
ods is the skewness of the data distribution. This is usually 
handled by means of nonlinear transforms (e.g., lognormal, 
Box-Cox) which aim to normalize the marginal data distri-
bution (this procedure is known as Gaussian anamorphosis; 
Wackernagel 2003; Chilès and Delfiner 2012).

This work has two goals: First, it presents an alternative 
approach for spatial groundwater levels analysis that can 
overcome the difficulties related to estimating spatial depend-
ence. This approach is based on the stochastic local interac-
tion (SLI) model. This model imposes spatial correlations by 
means of local couplings (interactions); the SLI model can 
increase the computational efficiency of spatial prediction for 
correlated data (Hristopulos 2015; Hristopulos et al. 2021). 
Secondly, a recently proposed data-driven (nonparametric), 
kernel-based approach is used to conduct Gaussian anamor-
phosis (Pavlides et al. 2022; Agou et al. 2022). This method 
is more flexible than nonlinear transforms based on explicit 
functions and does not suffer from the problems that Hermite 
polynomials face in the tails of the distribution.

Groundwater level data (meters below surface) from three 
mines operating in the same region (northern Greece), are 
studied. Groundwater is used to support mining activity in 
the study area. Groundwater levels are investigated by means 
of universal Kriging (UK) and SLI. Uncertainty estimates 
for both SLI and UK are provided. Prediction intervals (at 
5 and 95% probability levels) are estimated. Leave-one-out 
cross-validation (LOOCV) measures indicate that the per-
formance of UK and SLI is adequate considering the small 
sample size—although both methods slightly overestimate a 
few low values. UK performs slightly better than SLI if the 
entire dataset of the three mines is taken into account; how-
ever, SLI performs better than UK even for smaller sample 
sizes (individual mines). MATLAB code for SLI is freely 
available at Hristopulos (2020b).

The rest of this paper is structured as follows: sec-
tion “Theory and methods” reviews the theory for the spatial 
prediction methods employed (UK and SLI) and for Gauss-
ian anamorphosis; section “Data description and preproc-
essing” includes the data description, exploratory analysis 
and data normalization; section “Results: universal Kriging” 
presents the application of UK to the groundwater level data 
including cross-validation analysis; section “Results: SLI” 
focuses on the application of SLI over the entire area and 
separately to one of the three mines, along with the respec-
tive cross-validation measures. Lastly, section “Discussion” 
comments on the results, and the final section presents con-
clusions and open questions for further study.

Theory and methods

The spatial distribution of variables is used using the math-
ematical framework of random fields (Adler 1981; Christa-
kos 1992; Chilès and Delfiner 2012; Hristopulos 2020a). A 
random field is a collection of dependent random variables 
distributed over the spatial domain of interest. Herein, the 
random field concept is used to model groundwater levels.

A scalar random field X(s) where s ∈ ℝ
d is the position 

vector, represents a random function D ⊂ ℝ
d
→ ℝ , where D 

is the spatial domain; in this study d = 2 and s = (s1, s2)
⊤ , 

where ⊤ denotes the transpose of a vector. A random field 
is fully determined by means of the n-point joint probability 
density functions, where n = 1, 2,… denotes a positive integer 
(the set of all positive integers is denoted by ℕ ). The Gaussian 
assumption is often used for the joint density functions.

The data are assumed to represent a partial sample of the 
random field; they are denoted by the set of sampling sites 
{s1,… , sN} and the respective water level measurements 
{x1,… , xN} (lowercase letters denote specific realizations 
of the random field). The field is reconstructed on a rectan-
gular map grid � which comprises the set of points (nodes) 
{z1,… , zP} . Estimation points will be denoted in general by 
u ∈ ℝ

d , where u refers either to a point in � or one of the 
sampling points (e.g., for cross-validation analysis).

For practical purposes, random fields are often decom-
posed into a deterministic part (trend) and a stochastic part 
(fluctuation) as follows:

The function m
X
(s) is assumed to represent the mathematical 

expectation of the random field, i.e., m
X
(s) = �[X(s)] . The 

expectation �[X(s)] of a random field at the point s repre-
sents a stochastic average over all probable configurations 
of the field (as defined by means of the joint probability 
distribution; Hristopulos 2020a). Hence, m

X
(s) is a determin-

istic function and typically it reflects slow spatial variations 

(1)X(�) = mX(�) + X�(�)
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(trend) of the random field X(s) ; usually, m
X
(s) is modeled 

as a polynomial. Herein, only first-degree polynomial trends 
are considered, i.e.,

where A = (a0, a1, a2)
⊤ is the vector of trend coefficients, 

and s = (s1, s2) are the coordinates of the two-dimensional 
(2D) position vector s.

The fluctuation X�(�) is a random field that represents 
the finer-scale, stochastic component of X(s) . It is obtained 
by removing the trend from X(s) and is thus equal to the 
field’s residuals (Pavlides et al. 2015). Since it is assumed 
that m

X
(s) = �[X(s)] , it follows that �[X�(s)] = 0.

A random field is considered stationary if the joint 
n-point probability distributions (for all n ∈ ℕ) do not 
depend on the spatial location but only the relative configu-
ration of the points. Since this condition is not easily test-
able, the condition of weak stationarity is used in practice. 
Weak stationarity means that the expectation of the random 
field is constant and the covariance is a function purely of 
the time lag (not the particular instant in time). A station-
ary Gaussian random field is thus fully determined from the 
mean function m

X
(s) and the covariance function c

X
(r) , where 

r ∈ ℝ
d is the space lag between two points s and s� = s + r 

and c
X
(⋅) is a positive-definite function.

It is assumed that the data sites comprise the set of points 
{si}

n
i=1

 while the groundwater level measurements at these 
sites will be denoted by the data vector x = (x1,… xn)

⊤.

Variogram modeling

The models attempting to represent spatial processes rely on 
the spatial correlations between the data. These correlations are 
reflected in the covariance function that characterizes the ran-
dom field; however, for practical reasons, it is more convenient to 
estimate the variogram function instead of the covariance func-
tion (Chilès and Delfiner 2012; Kitanidis and Vomvoris 1983).

The variogram function �
X
(r) for stationary random fields is 

connected to the covariance function c
X
(�) as shown in Eq. (3).

where r is the distance vector between two points. Thus, 
the variogram function can be used interchangeably with 
the covariance function if the field of the fluctuations X′ is 
considered a stationary field.

The variogram function is defined as follows

where  Var  i s  t he  va r i ance  ope ra to r ,  i . e . , 
Var(X) = �[X2(s)] − �

2[X(s)] Olea (2006).

(2)m
X
(s) = a0 + a1s1 + a2s2

(3)�
X
(�) = c

X
(0) − c

X
(�)

(4)�
X
(�) =

1

2
Var[X(�) − X(� + �)]

The empirical (experimental) variogram is obtained 
from the data using Matheron’s moment estima-
tor (Matheron 1962) or Cressie’s robust variogram estima-
tor (Cressie 1993). The empirical variogram is then fitted 
to a theoretical model in order to account for all possible 
pair distances. Various admissible variogram models can 
be found in Goovaerts (1997); Chilès and Delfiner (2012); 
Hristopulos (2020a). The tested variogram models are fit-
ted to the empirical variogram, using the weighted least 
squares method  (Olea 2006). The spherical variogram 
model which is used herein satisfies the equation

where �2 is the variance of the random field, |r| is the spatial 
lag, and � is the correlation length under the assumption 
of statistical isotropy (i.e., lack of directional preference; 
Hristopulos 2020a).

Kriging

Kriging refers to a group of stochastic spatial interpola-
tion methods. They are by construction linear, unbiased, 
and minimum variance estimators. Kriging methods have a 
large range of applications in the mining and environmental 
sectors (Cressie 1990; Varouchakis et al. 2018; Varouchakis 
and Hristopulos 2013b). Kriging provides significant bene-
fits compared to deterministic interpolation methods (Gong 
et al. 2014; Varouchakis and Hristopulos 2013a; Pavlides 
et al. 2015).

The value of the random field X(u) at an unmeasured loca-
tion u ∈ � is estimated by means of a linear combination of 
the measurements at n(u) nearby points s1(u),… , sn(u) , where 
si(u) ∈ {s1,… , sN} is a neighbor of u for all i = 1,… , n(u) . 
A map of the spatial distribution of the field is obtained by 
repeating the estimation process at every node of a suitably 
selected grid. Such maps can be accompanied by estimates 
of the prediction variance at each point. The variance can 
adequately represent the prediction uncertainty if the data 
probability distribution is Gaussian. If the data follow a 
skewed probability distribution, the Kriging-based uncer-
tainty estimates are not reliable (Agou 2016).

Simple Kriging (SK) assumes that the random field is station-
ary and its mean, m

X
 , is known. The SK estimator is obtained by 

means of the following equation (Krige 1951; Cressie 1990):

(5)�
X
(r) =

{
�2
[
1.5(|r|∕�) − 0.5(|r|∕�)3], |r| ≤ �

�2, |r| ≥ �

(6)x̂(u) = m
X
+

n(u)∑
i=1

𝜆i(u)
(
xi − m

X

)
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In Eq. (6), �i(u) are the Kriging weights at the target point u . 
The Kriging weights are calculated by solving the following 
linear system

where �
�
 is the covariance (or variogram) matrix of 

the fluctuation random field X�(⋅) at the data loca-
t ions ,  i .e . ,  [C

X
]i,j = c

X
(si − sj) for  i, j = 1,… , n(u) , 

� = (𝜆1(u),… , 𝜆n(u))
⊤ is the vector of the Kriging weights, 

and C
�
=
(
c
X
(u − s1),… , c

X
(u − sn(u))

)⊤ is the covariance 
(or variogram) vector between the unknown point u and 
each of the n(�) neighbor points that contribute to the esti-
mate (Chilès and Delfiner 2012). The Kriging estimate x̂(u) 
at u is obtained by replacing in Eq. (6) the xi with the respec-
tive data values, m

X
 with the estimate of the mean, and the 

Kriging weights with the solution of Eq. (7) for �.

Universal Kriging

For many datasets the constant mean assumption is not 
suitable; even if the assumption is reasonable, it is not 
always possible to accurately determine the value of the 
mean (e.g., if the sample is small). Several variations of 
Kriging have been suggested to address this issue, such 
as ordinary, regression, and universal Kriging (Goovaerts 
1997; Schabenberger and Gotway 2004; Cressie 1990).

In this study, universal Kriging (UK) is employed, which is 
also known as Kriging with a drift. This method assumes that 
the trend m

X
(s) depends on the coordinates s in terms of simple 

basis functions (Mesić Kiš 2016; Kitanidis 1997). Assuming 
a simple linear polynomial trend, m

X
(s) = a0 + a1s1 + a2s2 , 

where the a0, a1, a2 are real-valued, unknown coefficients, the 
UK estimator at location u = (ui, uj) is

In Eq. (8), the polynomial coefficients of the trend m
X
 are 

considered unknown and should be estimated along with 
the covariance coefficients from the data, thus increasing the 
uncertainty of the prediction. The linear weights are calcu-
lated as the solution of Eq. (9)

where the vector B contains both the n(u) weights and three 
Lagrange multipliers (one for each trend coefficient) used to 
enforce the no-bias condition. The covariance matrices �

�
 

and �
�
 are expressed as follows

(7)�
�
� = �

�

(8)x̂
UK
(u) =

n(u)∑
k=1

𝜆k(u)x(sk)

(9)�
�
� = �

�

 where sk;1 and sk;2 are the coordinates of the point sk , 
k = 1,… , n(u) . For convenience, the u dependence of �k(u) , 
k = 1,… , n(u) , �1(u) , �2(u) and n(u) is suppressed.

The covariance (or variogram) used in Eq. (10) should 
be based on the residuals which are obtained by subtracting 
the trend from the data). However, the trend is considered 
unknown, and this creates a cyclical problem. Methods to 
address this issue are suggested in Kitanidis (1997); Goo-
vaerts (1997). If the trend is first estimated based on the data 
and then removed to obtain the residuals, a more appropriate 
methodology is regression Kriging.

In this study, the variogram model parameters are 
estimated by means of maximum likelihood estimation 
(MLE) Fletcher (2000); Hristopulos (2020a). The spherical 
variogram model, given by Eq. (5), is used. The maximiza-
tion of the likelihood is equivalent to the minimization of the 
negative logarithmic likelihood (NLL). The latter is given by

where x = (x1,… xN)
⊤ is the data vector, m̂ is the vec-

tor of the trend estimates at the sampling locations, i.e., 
mi = a0 + a1si + a2sj , and det�

�
 is the determinant of the 

covariance matrix �
�
 . The trend parameters (a0, a1, a2) are 

estimated along with the parameters (�2, �) of the covariance 
model by minimizing the NLL.

The minimum error variance of the UK prediction, 
�2
UK

(u) , is obtained from the following equation (Kitanidis 
1997, p. 127):

Kernel functions

Kernel functions are routinely used in nonparametric esti-
mation methods (Ghosh 2018). Herein, kernel functions are 
used for two purposes: (1) To define the SLI weights (see sec-
tion “Stochastic local interaction model”), and (2) to estimate 
the cumulative distribution function (CDF) of the data. The 
SLI model is discussed in section “Stochastic local interaction 
model”. The CDF estimation is described in the following.

(10)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�2

X
… c

X
(s1, sn) 1 s1;1 s1;2

c
X
(s2, s1) … c

X
(s2, sn) 1 s2;1 s2;2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

c
X
(sn, s1) … �2

X
1 sn;1 sn;2

1 … 1 0 0 0

s1;1 … sn;1 0 0 0

s1;2 … sn;2 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

�1
�2
⋮

�n
�0

�1

�2

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

c
X
(s1, u)

c
X
(s2, u)

⋮

c
X
(sn, u)

1

u1
u2

⎤
⎥⎥⎥⎥⎥⎥⎦

(11)
NLL =

1

2
(x −m)⊤C−1

x
(x −m) +

1

2
log(det�

�
) +

N

2
log(2𝜋)

(12)

�2
UK

(u) = c
X
(0) −

n(u)∑
k=1

�i(u) cX (u − sk) − �0(u) − �1(u)u1 − �2(u)u2
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A kernel function K(⋅) ∶ ℝ → ℝ satisfies the following 
requirements (Ghosh 2018):

• K(x) is nonnegative, i.e, K(x) ≥ 0 and symmetric func-
tion, i.e., K(−x) = K(x) for all x ∈ ℝ.

• K(x) is normalized so that ∫ +∞

−∞
K(x) dx = 1.

• If K(x) is a kernel function, the function K�(x) = �K(�x) 
is also a kernel ∀𝜆 > 0.

The parameter � adjusts the kernel’s range via the bandwidth 
parameter b = 1∕� . Larger values of b imply a longer kernel 
range. Table 1 summarizes some kernel functions that are 
used in this study. At this point, a comment on notation is 
necessary: the symbol h is typically used to denote the band-
width. Since in the current study kernel functions are used for 
CDF estimation and in SLI models, to distinguish between the 
two kernel bandwidths b is used for CDF estimation (b has 
units of [X]) and h in SLI modeling (h has units of distance).

Next, the nonparametric CDF estimation procedure is 
described. Let {x[i]}Ni=1 represent the ordered sample of 
the water level values x : this is defined so that for any 
i ∈ {1,… ,N} there is j ∈ {1,… ,N} such that x[i] = xj and 
x[1] ≤ x[2] ≤ … ≤ x[N] . Then, the nonparametric, kernel-
based estimate of the CDF (KCDE), F̂K(⋅) , can be obtained 
from the following weighted sum (Pavlides et al. 2022)

where K̃(⋅) is the CDF kernel step defined by means of the 
integral (Ghosh 2018; Hristopulos 2020a)

(13)F̂K(x) =

N∑
i=1

1

N
K̃
(x − x[i]

b

)

(14)K̃
(x − x[i]

b

)
=

1

b ∫

x

−∞

K

(
x� − x[i]

b

)
dx�

The KCDE-based F̂K(x) has several advantages compared 
to the empirical staircase CDF estimate F̂(x) . For example, 
while F̂(x) is discontinuous, F̂K(x) provides smoothed kernel 
steps by adapting the bandwidth b to the data. A continu-
ous estimate of the CDF is especially useful for numerical 
simulations (Pavlides et al. 2022). For the KCDE, Eq. (13), 
a plug-in bandwidth b is used, based on the algorithm 
developed by Botev et al. (2010). This bandwidth selection 
method was successfully tested for non-Gaussian data (Pav-
lides et al. 2022).

Stochastic local interaction model

The SLI model employs a local representation that 
improves the computational efficiency of spatial predic-
tion for large datasets (Hristopulos 2015, 2020a; Hristopu-
los et al. 2021). SLI is based on a conditional probability 
density function (PDF) defined by means of an energy 
functional that involves local interactions between neigh-
boring sites. The energy functional represents the “prob-
ability cost” for specific spatial configurations (patterns) 
of field values. The local interactions are implemented by 
means of kernel functions with locally adaptive kernel 
bandwidths h.

The SLI model is expressed mathematically by means 
of a precision matrix J . The term “precision matrix” refers 
to the inverse of the covariance matrix. In classical geo-
statistical analysis, the precision matrix is obtained by 
inverting the covariance. In contrast, in SLI the precision 
matrix is constructed first. This representation leads to 
semianalytical expression for the prediction (conditional 
mean) of the random field, while the conditional variance 
is easily expressed in terms of precision matrix elements. 
Assuming a Gaussian distribution, the conditional mean 
and variance fully determine the conditional probability 
distribution at the prediction point. Hence, SLI prediction 
avoids the computationally costly inversion of the covari-
ance matrix required by Kriging methods.

The PDF of an SLI model is given by means of the 
following Boltzmann-Gibbs exponential expression (Hris-
topulos 2003, 2020a), where v is a set of model parameters

The constant Z(v) is a normalization factor of the PDF which 
is obtained by integrating exp[−H(x;v)] over all possible val-
ues of the data vector x . However, the value of Z(v) is not 
needed in spatial prediction.

(15)fX(x;v) =
e−H(x;v)

Z(v)

Table 1  Common kernel functions

�(|x| ≤ 1) is an indicator function used to define the range 
of compactly supported kernels: �(|x| ≤ 1) = 1 when |x| ≤ 1 
and �(|x| ≤ 1) = 0, if x > 0 

Kernel K(x)

Uniform x

2
�(|x| ≤ 1)

Triangular (1 − |x|) �(|x| ≤ 1)

Epanechnikov 3

4
(1 − x

2) �(|x| ≤ 1)

Biweight 15

16
(1 − x

2)2 �(|x| ≤ 1)

Spherical
(
1 − 1.5|x| + 0.5|x|3) �(|x| ≤ 1)

Triweight (1 − x
2)3 �(|x| ≤ 1)

Tricubic 70

81
(1 − |x|3)3 �(|x| ≤ 1)
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Precision matrix formulation

The SLI energy functional H(x;v) , where v is the vector 
of SLI parameters (to be defined in the following), can be 
expressed in terms of the precision matrix as follows:

In Eq. (16), v� = (c1, 𝜆,𝜇, k)
⊤ is a reduced parameter vector 

and J(v�) is a symmetric precision matrix given by the fol-
lowing equation

where 𝜆, c1 > 0 are SLI parameters, I is the identity matrix, 
h is the vector of kernel bandwidths, and J1 is the interaction 
network matrix (gradient precision submatrix); the latter is 
determined by the sampling pattern, the kernel function, and 
the kernel bandwidth as explained in Hristopulos (2015); 
Hristopulos et al. (2021).

The SLI vector v = (mX , c1, 𝜆,𝜇, k)
⊤ contains the fol-

lowing parameters: mX is the mean value (assumed con-
stant), c1 controls the amplitude of the term which “mim-
ics” the sum of square gradients, and � controls the 
overall amplitude of the fluctuations. Finally, 𝜇 > 1 and 
k ∈ {2, 3, 4,…} are parameters that control the bandwidth 
vector h = (h1,… , hN)

⊤ . The integer parameter k determines 
the order of the near-neighbor used to define the local band-
width, while � is a global multiplication factor. The band-
width hq for a data point sq depends on the distance of sq 
from its k-nearest neighbor sk(q) as follows

In SLI estimation, k is preselected, while mX , � , c1 , � are 
inferred from the data by means of MLE. If a superposition 
of basis functions is used to model the trend instead of a 
constant mX , the coefficients of the superposition can also 
be estimated by means of MLE. Such a trend analysis is not 
used in the current application of SLI.

SLI prediction

In order to predict the water level at an unmeasured point 
sp (in this section sp is used instead of u for notational con-
venience), it is inserted in the energy functional H so that 
it interacts with the neighboring sampling points via preci-
sion matrix elements Jp,n , for n = 1,… ,N  . The “updated” 
energy function H(x, xp;v) now defines, in terms of the 
Boltzmann-Gibbs PDF, the marginal conditional distribu-
tion at sp . Due to the local nature of the interactions, most 
of the Jp,n values are zero. The mode of the conditional 

(16)H(x;v) =
1

2
(x −m)⊤J(v�)(x −m)

(17)J(v�) =
1

�

[
I

N
+ c1J1(h)

]

(18)hq = � ‖sq − sk(q)‖ , q = 1,… ,N

distribution at sp is then given by the following predictive 
equation (Hristopulos 2015; Hristopulos et al. 2021)

where x̂SLI(sp) is the prediction, xq − mX is the fluctuation at 
location sq and Jq,p , Jp,p represent elements of the precision 
matrix. Note that the SLI prediction of Eq. (19) is independ-
ent of the scale coefficient �.

The precision matrix uses kernel-based weights wp,q to 
embody interactions between nearby points. More specifi-
cally, there are two weights for each pair of points sn and 
sm as follows

where dn,m = ‖sn − sm‖ is the Euclidean distance between 
the points. The bandwidths hn, hm are determined from the 
sampling density in the neighborhoods of sn and sm respec-
tively. Since the sampling patterns in the neighborhoods 
of sn and sm can be quite different, in general it holds that 
wm,n(h) ≠ wn,m(h).

The entries of the gradient precision submatrix are 
determined from the weights as follows (Hristopulos 2015; 
Hristopulos et al. 2021)

where �n,m = 1 if n = m and �n,m = 0 if n ≠ m is the Kro-
necker delta.

The SLI conditional variance at sp is given approxi-
mately by Hristopulos et al. (2021)

As evidenced in Eq. (23), higher values of c1 tend to reduce 
the variance. This happens due to increasing energy cost for 
large increments in the energy functional H(x;v) . In addi-
tion, prediction points with more neighbors (points sq such 
that wq,p > 0 or wp,q > 0 ) have lower conditional variance 
than prediction points in sparsely sampled regions. Similar 
to the Kriging variance, the SLI conditional variance does 
not explicitly depend on the data values. The dependence is 

(19)x̂SLI(sp) = mX −

∑N

q=1
Jq,p(v)(xq − mX)

Jp,p

(20)

wn,m(h) =
K
�
dn,m∕hn

�
∑N

l=1

∑N

q=1
K
�
dl,q∕hl

� , for n,m = 1 … ,N

(21)

wm,n(h) =
K
�
dn,m∕hm

�
∑N

l=1

∑N

q=1
K
�
dl,q∕hl

� , for n,m = 1 … ,N

(22)

[J1(h)]n,m = −wn,m(h) − wm,n(h) + �n,m

N∑
l=1

[
wn,l(h) + wl,n(h)

]

(23)�2
p
≈

�

c1

[
N∑
q=1

(
wq,p + wp,q

)]−1
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indirect, to the extent that the data influence the estimation 
of the model parameters.

Gaussian anamorphosis

In many cases, spatial data follow a skewed PDF that 
deviates significantly from the normal distribution. In 
the present study, the water level distribution is clearly 
asymmetric (see section “Data description and preproc-
essing”). Nonlinear, monotonic transformations such as 
the logarithm, Box-Cox, normal-score, modified Box-Cox 
versions, and deformed logarithmic transforms are used to 
restore normality (Box and Cox 1964; Varouchakis et al. 
2012; Goovaerts 1997; Hristopulos 2020a; Hristopulos 
and Baxevani 2022). The application of normalizing trans-
forms is often referred to as “Gaussian anamorphosis”. 
The spatial analysis is then carried out using the trans-
formed data. Finally, predictions in the original domain are 
derived by applying the inverse transformation.

In this study, Gaussian anamorphosis is performed 
using KCDE (see section “Kernel functions”) coupled 
with the normal scores transform. KCDE derives F̂K(x) 
from the water level data {x1,… , xN} , using kernel smooth-
ing to avoid the discontinuities of the staircase CDF 
function. Normalized estimates, {x∗

1
,… , x∗

N
} , are then 

calculated based on the normal scores transform. These 
conform with the standard normal distribution N(0, 1) . 
Spatial interpolation of the normal scores leads to predic-
tions {x∗

1
,… , x∗

P
} . Finally, an inverse transform is used to 

map the normalized predictions {x̂∗
1
,… , x̂∗

P
} back to water 

level values {x̂1,… , x̂P}.
The inverse transform in Gaussian anamorphosis is 

implemented via a lookup table that maps the predictions 
of the normalized values back to water level values. The 
inverse transform is denoted by x = F̂−1

K
(Φ(x∗)) , where Φ(⋅) 

is the CDF of the standard normal distribution. Hence, the 
lookup table implements the mapping x∗ → x.

To create the lookup table, the expression Eq. (13) for 
F̂K(x) is used to calculate the CDF for a large set of discre-
tization points {zl}Ll=1 (herein, L = 10, 000 ). The table thus 
generated comprises L rows and three columns that cor-
respond to the discretization points {zl}Ll=1 , the respective 
normal scores, and the corresponding CDF values {F̂K(zl)} . 
The discretization points are linearly distributed between the 
minimum and maximum possible values, i.e., zmin = xmin − h 
and zmax = xmax + h where xmin = min{x1,… , xN} and 
xmax = max{x1,… , xN} as shown in Pavlides et al. (2022). 
The inverse transform of any prediction x̂∗ is calculated as 
follows: first, the respective Φ(x̂∗) is determined; next, the 
closest probability level to Φ(x̂∗) in the lookup table is deter-
mined; if this corresponds to F̂K(zo) , where zo ∈ {z1,… , zL} , 
the inverse transform of x̂∗ is given by x̂ = zo.

Assessment of predictions

Validation measures are used to assess the quality of the 
spatial prediction achieved by the models. Furthermore, sto-
chastic methods provide estimates of the prediction uncer-
tainty for each location.

The predictive accuracy of both UK and SLI was assessed 
using LOOCV (Chilès and Delfiner 2012). In LOOCV the 
sampling sites sn , n = 1,… ,N = 72 and the corresponding 
measurements are cyclically removed from the data one 
at a time, and the water level, x̂n at the point removed is 
estimated from the remaining 71 drillholes. The estimation 
error 𝜖n = xn − x̂(sn) , for n = 1,… , 72 is then calculated.

Ninety percent prediction intervals (i.e., based on a 90% 
confidence level) are used to characterize the uncertainty of 
the predictions. These intervals are calculated in two steps. 
First, prediction intervals for each point are generated for 
the transformed (normalized) data based on the prediction 
variance; the latter is given by Eq. (12) for UK and Eq. (23) 
for SLI. The 90% prediction interval at location u for either 
method is given by

where x̂∗
0.05

(u) = x̂∗(u) − 1.645𝜎(u) is the 5% quantile, and 
x̂∗
0.95

(u) = x̂∗(u) + 1.645𝜎(u) is the 95% quantile of the 
Gaussian predictive distribution at u . The water level pre-
diction intervals at u are obtained by applying the inverse of 
the normalizing transformation to the 5% and 95% quantiles, 
x̂∗
0.05

(u) and x̂∗
0.95

(u) respectively. The inversion employs the 
principle of quantile invariance under monotonic transfor-
mations (Hristopulos 2020a) and is implemented by means 
of the lookup table defined in section “Gaussian anamor-
phosis”. Thus, the respective water level quantiles x̂0.05(u) 
and x̂0.95(u) are obtained. To better visualize the uncer-
tainty of the prediction, the 90% prediction interval range 
R = x̂0.95(u) − x̂0.05(u) is displayed.

Data description and preprocessing

The study area comprises three mines operating in the 
same region in northern Greece. The area is geologically 
composed of various metamorphic and igneous rocks; 
biotite gneisses with intercalations of marble horizons are 
located in the area; granodiorites and acid to intermediate 
subvolcanic rocks intrusions into the gneisses cover small 
areas. The study area is characterized hydrogeologically 
as semipermeable, and its vertical profile comprises three 
hydrostratigraphic units. Secondary porosity (fractures) is 
responsible for hydrological connectivity. In certain areas, 
the rocks exhibit strong fragmentation which increases with 

(24)
[
x̂∗(u) − 1.645𝜎(u), x̂∗(u) + 1.645𝜎(u)

]
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depth thus creating pathways for slow groundwater flow 
(ENVECO 2010). The data used in this study comprise the 
10-year average (2011–2020) of biannual water level meas-
urements (below surface, BSL), from 72 drillholes. All the 
values are negative since water level is measured in terms 
of meters below surface. The measurement boreholes are 
located around the three mines operating in the area of inter-
est (see Fig. 1b):

• Mine A (28 drillholes)
• Mine B (28 drillholes)
• Mine C (16 drillholes)

Preliminary data analysis

This section presents a statistical summary of the temporally 
averaged water levels from the entire area. The frequency 
histogram and the data locations are shown in Fig. 1. The 
median distance of a borehole to its second-nearest neighbor 
( k = 2 ) is 488.15 m. Table 2 shows the summary statistics 
of the data.

Based on the skewness value in Table 2 and the shape 
of the histogram, the data deviate strongly from the normal 
(Gaussian) distribution. As discussed in section “Kriging”, 
the Kriging variance does not adequately represent the pre-
diction uncertainty for non-Gaussian data. To address this 
issue, Gaussian anamorphosis is employed in order to nor-
malize the data (see section “Gaussian anamorphosis”).

Gaussian anamorphosis of water level data

In order to address the non-Gaussian distribution of the 
data, the data-driven Gaussian anamorphosis method is 

employed. The method is described in section “Gaussian 
anamorphosis”. First, KCDE is applied with the triweight 
kernel (see Table 1) to provide a nonparametric CDF, F̂K(x) , 
as discussed in Pavlides et al. (2022). The plug-in kernel 
bandwidth was calculated at h = 9.33 m (h in KCDE refers 
to water level, not geographical distance).

Figure 2 shows the KCDE-derived F̂K(x) in comparison 
to the staircase F̂s(x) . In contrast with the latter, F̂K(x) is a 
continuous curve which was constructed using the lookup 
table. Figure 3 shows the histogram and the normal prob-
ability plot for the transformed data {x∗

1
,… , x∗

N
} which are 

obtained after normalization. As is evident in these plots, 
the transformed data {x∗

1
,… , x∗

N
} conform to the standard 

normal distribution N(0, 1) . Spatial prediction is carried 
out using the normalized data. The predictions {x̂∗

1
,… , x̂∗

P
} 

obtained at the nodes of the map grid � are transformed back 
to water level values {x̂1,… , x̂P} with the help of the lookup 
table as explained in section “Gaussian anamorphosis”.

Fig. 1  a Frequency histogram 
of the 72 water level measure-
ments (m below surface). b 
drillhole locations for the three 
mines: mine A (blue o), mine 
B (black x), mine C (red +). 
Coordinates are in meters

Table 2  Summary water level data statistics. SD standard deviation

The sample contains 72 data points that represent the average of bian-
nual measurements over the 10-year period at each sampling site. All 
statistics are measured in meters below sea level, except for skewness 
(dimensionless measure)

Minimum Maximum Mean Median SD Skewness

−208 −1 −41.82 −28 45.57 −1.75
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Results: universal Kriging

The parameters of the spherical covariance model for the 
normalized data {x∗

1
,… , x∗

N
} are obtained by maximiz-

ing the likelihood Eq. (11). The spherical covariance is 
obtained from the respective variogram model of Eq. (5) 
by means of Eq. (3). The MLE initialization values for 
the variogram parameters are �2

0
= 1.15 m, �0 = 2800 m, 

co;0 = 0.11) , where co;0 is the nugget effect. The ini-
tialization parameters for the variogram have been esti-
mated by fitting the spherical model to the experimental 
variogram. The initial values for the trend parameters 
(obtained by means of linear regression) are a0;0 = −0.93 , 
a1;0 = 7.3 10−5 , and a2;0 = 5.9 10−5 . The optimal MLE 
parameters for the variogram model (spherical and nug-
get) are �̂�2 = 0.89 , 𝜉 = 1,653 m, and co = 0.106 . The opti-
mal variogram model (based on the MLE parameters) and 

the experimental variogram are compared in Fig. 4. The 
experimental variogram is calculated for the residuals 
which are obtained by subtracting from the data the MLE 
linear trend with coefficients a0;0 = −0.63 , a1;0 = 3.98 10−5 , 
and a2;0 = 5.00 10−5.

UK is then applied (using the estimated parameters) 
to interpolate the transformed data values {x∗

1
,… , x∗

N
} 

using Eq. (8). Estimates {x̂∗
1
,… , x̂∗

P
} are generated on a 

grid with 112 × 89 cells (corresponding to a cell size of 
150 × 150 m). The range of the Kriging search neighbor-
hood was selected at 2,400 m in order to provide adequate 
coverage of the mining areas and the minimum number of 
neighbors was set at K = 2 . Estimates were generated only 
for points u with search neighborhoods containing at least 
three points in the sampling set.

The optimal prediction x̂SLI(u) , as well as the esti-
mates of the quantiles x̂0.05(u) and x̂0.95(u) are presented 
in Figs 5 and 6. The uncertainty of the predictions is 
visualized by means of the 90% prediction interval range 
RUK;90 = x̂0.95(u) − x̂0.05(u) shown in Fig  5b. High val-
ues of RUK;90(u) at location u denote higher uncertainty 
of the prediction. Note that the predictive distribution 
of X(u) is not necessarily normal due to the application 
of the inverse transform. Hence, x̂0.05(u) and x̂0.95(u) are 
not symmetrically placed around x̂UK(u) as is evident in 
Fig. 6. For example, the prediction at u = (10200, 5400) is 
x̂(u) = −18 m and RUK;90(u) = 76 m while ̂x0.05(u) = −78 m 
and x̂0.95(u) = −2 m. Thus, there is 90% probability that 
X(u) ∈ [−78m,−2m] , but the UK prediction is not 
given by the interval’s mean (i.e., −36 m) but rather by 
x̂(u) = −18 m which corresponds to the median of the pre-
dictive distribution.

Fig. 2  Empirical staircase CDF, F̂
s
(x) (blue online) and KCDE-

derived continuous CDF, F̂
K
(x) based on Eq.  (13) (red online). The 

triweight kernel with bandwidth h = 9.33 is used in KCDE

Fig. 3  a Histogram of the nor-
malized average (over 10 years 
of biannual measurements) 
water level at 72 sites. b Normal 
probability plot for the normal-
ized data
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UK cross‑validation

The UK predictive accuracy was assessed using 
LOOCV (section “Assessment of predictions”). In LOOCV 
sampling sites sn , n = 1,… ,N = 72 and the corresponding 
measurements are cyclically removed from the data, and 
the value of the water level, x̂n at the point removed is esti-
mated from the remaining 71 drillholes. The estimation error 
𝜖n = xn − x̂(sn) , for n = 1,… , 72 is calculated.

The histogram of UK estimation errors for all mines in 
the study area is shown in Fig. 7. Standard validation met-
rics are shown in Table 3. The values of the data range from 
xmax = −1 m to xmin = −208 m. Most of the validation errors 

are in [−50, 50] m, with the exception of a few locations that 
return errors greater than 50 m (in magnitude). The presence 
of few high validation errors is not surprising considering 
the small sample size and the significant spatial dispersion 
of the sampling points. These factors lead to large prediction 
intervals (as shown in the uncertainty map of Fig 5b). Tak-
ing into account the preceding factors, the UK interpolation 
performance is considered adequate.

Results: SLI

The water level in the study area is estimated using SLI 
(see section  “Stochastic local interaction model”) with 
the quadratic kernel (see Table 1). The transformed data 
values {x∗

1
,… , x∗

N
} are used for SLI interpolation and the 

predictions are subsequently back-transformed back to 
meters BSL. The SLI model parameters c1, �,� and mX are 
estimated by MLE. The initialization values for the MLE 
a r e :  v�0 = (c1 = 2.5, 𝜆 = 0.1,𝜇 = 1.25,mX = −0.015)⊤  . 
The SLI model parameters estimated by MLE are 
v� = (c1 = 0.926, 𝜆 = 0.032,𝜇 = 4.18,mX = −0.015)⊤.

Using the Eqs. (19) and (23), the optimal SLI predictions 
x̂∗
SLI

(u) and respective variances �2
SLI

(u) are estimated. The 
same map grid � is used for UK (see section “Results: uni-
versal Kriging”). In contrast with Kriging, the search neigh-
borhood in SLI is automatically adjusted by the algorithm 
through the parameter � and the bandwidth vector h instead 
of being set by the user. For comparison purposes, the SLI 
predictions are used only at the map-grid nodes where UK 
predictions are available. The normality of the transformed 
data {x∗

1
,… , x∗

N
} allows using the standard deviation of the 

SLI predictions to determine prediction intervals using the 
method presented in section “Assessment of predictions”.

The results are presented in Figs. 8 and 9.

Fig. 4  Variogram of the residuals (determined by removing the MLE-
based linear trend). The spherical model is shown with a continuous 
curve (red line), and the experimental variogram is shown by circle 
markers (blue circle)

Fig. 5  a Map of estimated water 
level (m below surface) for the 
three mines in the study area. 
b Range of the 90% water level 
prediction intervals; high values 
denote higher uncertainty. Coor-
dinates are in meters
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The SLI algorithm returns large search neighborhoods as 
implied by � = 4.18 (see section “Stochastic local interac-
tion model”): the bandwidth Eq. (18) dictates that the local 
bandwidth hu at the point u is the distance to the k-near-
est neighbor ( k = 2 ) multiplied by � . As shown in Fig. 1, 

k-nearest neighbor distances vary from small (43 m) to large 
(2,977 m).

As is evident in Figs. 5b and 8b, the SLI prediction inter-
val range has a minimum value, minu∈�{RSLI;90(u)} , of 
31.9 m. For UK, the prediction interval has a lower mini-
mum, i.e., minu∈�{RUK;90(u)} = 0.7 m. The reason is that 
UK explicitly minimizes the prediction variance, and thus it 
generates a smaller range for prediction intervals.

SLI application to mine B

Stochastic local interaction can handle large datasets due 
to the sparse structure of the model  (Hristopulos 2015; 
Hristopulos et  al. 2021). However, the locally adaptive 
nature of the SLI predictor also allows model estima-
tion and prediction even for small samples. In this sec-
tion SLI is applied to the dataset for mine B. This mine 
involves 28 sampling points, a sample size which is con-
sidered small for most stochastic methods. The MLE ini-
tialization values for mine B are the same as for the entire 
a r e a :  v0 = (c1 = 2.5, 𝜆 = 0.1,𝜇 = 1.25,mX = −0.56)⊤  . 
The optimal SLI parameters obtained by MLE are: 
v = (c1 = 2.881, 𝜆 = 0.046,𝜇 = 0.938,mX = 0.163)⊤.

The maps for x̂SLI(u) , x̂0.05(u) , x̂0.05(u) and the range RSLI;90 
are shown in Fig. 10. The prediction of the water level values 
using only data from mine B is similar to the SLI implementa-
tion using the data from the entire area. The water level in the 
northwestern area of the mine is lower than in the southeast, 
although SLI for mine B gives slightly higher predictions for 
the low water level area in the northeast than SLI for the entire 
area. The prediction uncertainty using only data from mine B 
follows a similar spatial distribution as the interval shown in 
Fig. 8b. However, the uncertainty is lower in the northwestern 
area and the eastern part of the mine than the SLI imple-
mentation using all the data, albeit it is still relatively high. 

Fig. 6  UK-based maps of the 
lower and upper limits of 90% 
prediction intervals: a lower 
quantile x̂

0.05
(u); b upper quan-

tile x̂
0.95

(u) . Coordinates are in 
meters

Fig. 7  Histogram of the UK validation errors for the three mines in 
the study area

Table 3  Validation measures (LOOCV) for assessment of UK inter-
polation performance

� Pearson’s correlation coefficient, ME mean error, MAE mean abso-
lute error, MaxAE maximum absolute error, RMSE root mean square 
error

� ME (m) MAE (m) MaxAE (m) RMSE (m)

0.697 −10.27 22.82 125.64 34.29



1436 Hydrogeology Journal (2023) 31:1425–1441

1 3

The differences for the mine B results between Figs. 8–9 and 
Fig. 10 are expected since the maps of Fig. 10 are produced 
with fewer data that determine a different SLI model.

SLI cross‑validation

Leave-one-out cross-validation is used to assess the SLI 
predictive performance, first for the SLI model based on 
the entire area and then for the SLI model obtained for 
mine B. The validation metrics for the SLI estimation 
are shown in Table 4. The histograms of the errors are 
shown in Fig. 11. The data values for the entire area range 
between xmax = −1 m to xmin = −208 m. However, the low-
est LOOCV prediction is mini={1,2,…,N} x̂(si) = −121.9 m, 
i.e., the minimum is significantly overestimated. One 
reason for this behavior is the difficulty of estimating the 
minimum value, once it is removed, in a sparsely sampled 

area; this effect is similar to the Kriging smoothing 
effect (Yamamoto 2005; Pavlides et al. 2015). Another rea-
son is that a trend function in the SLI model was not used. 
For mine B, the values of the data range from xmax = −1 m 
to xmin = −142  m. SLI again overestimated the lowest 
value yielding a minimum of −39.2 m.

For the SLI using data from the entire area, there are a 
few large errors ( 𝜖 > 50 m). For SLI predictions using only 
mine B data, there are three locations that return high vali-
dation errors. In both cases, the SLI overestimates the water 
lever in both mine B and mine C. However, considering the 
range of data values, the clustering of the data locations and 
the small number of data points (especially for mine B), and 
the LOOCV measures over the study areas (Table 4), the 
SLI performance is considered adequate overall.

Fig. 8  a SLI prediction map of 
water level (m below surface 
level) for the three mines. b 
Range of water level 90% pre-
diction intervals. Coordinates 
are in meters

Fig. 9  SLI-based maps of the 
lower and upper limits of 90% 
prediction intervals: a lower 
quantile x̂

0.05
(u); b upper quan-

tile x̂
0.95

(u) . Coordinates are in 
meters
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Discussion

This section provides a comparative discussion of the UK 
and SLI cross validation results. For ease of reference, the 
validation measures are gathered in Table 5. In the case of 
UK, the validation measures for Mine B are derived using 
the variogram model estimated from the entire area, as 28 

Fig. 10  SLI maps for mine B: a 
predicted water levels (m below 
surface); b range of the 90% 
water level prediction intervals; 
c lower quantile x̂

0.05
(u) ; (d) 

higher quantile x̂
0.95

(u) . Coordi-
nates are in meters

Fig. 11  Histograms of SLI 
leave-one-out cross-validation 
errors: a entire area, b mine B

Table 4  Validation measures for the SLI estimations

� Pearson’s correlation coefficient, ME is the mean error, MAE is 
the mean absolute error, MaxAE is the maximum absolute error and 
RMSE is the Root Mean Square Error

Area � ME (m) MAE (m) MaxAE (m) RMSE (m)

All mines 0.620 −12.06 25.47 136.28 38.17
Mine B 0.499 −12.01 22.70 105.44 34.57
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data locations are considered too few to reliably estimate the 
variogram model. The SLI parameters were inferred sepa-
rately for mine B, and thus a different set of SLI parameters 
was used (see section “SLI application to mine B”) than for 
the entire area.

UK validation measures are slightly better for the entire 
area. This result is attributed to the fact that UK employs a 
linear trend Eq. (2) to formulate predictions, while SLI is 
employed with a constant mean (see Eq. 19). This choice 
creates a disadvantage for SLI, since the spatial distribution 
of the data over the entire area does not seem to comply with 
the stationarity assumption. This shortcoming will be fixed 
in future implementations of SLI.

Both methods perform adequately given the small sample 
size, although they significantly overestimate the (few) low 
values as evidenced in the MaxAE values in Table 5 and the 
error histograms of Figs. 7 and 11. In addition, both meth-
ods give high uncertainties in areas that are distant from the 
sampling sites. However, these shortcomings point primarily 
to sampling, not methodological deficiencies.

The differences between SLI and UK are illustrated 
in Fig. 12. As expected from the results in the previous 

sections, the prediction interval (PI) range of SLI, RSLI , is 
generally higher than the PI range for UK, RUK . Kriging 
methods minimize the prediction variance �2

UK
 , which affects 

the RUK . SLI prediction is instead based on maximizing the 
conditional PDF by means of the energy functional H(x;v) 
which can lead to higher prediction variances at many pre-
diction points.

SLI gives significantly higher estimates than UK at cer-
tain points in mine B. The UK predictions drop significantly 
in the north of the study domain, i.e., for s2 > 8000 m (see 
Fig. 5), while SLI predictions remain high (see Fig. 10). The 
linear trend in the UK model improves the validation meas-
ures compared to a preliminary analysis based on ordinary 
Kriging. On the other hand, the sudden drop of the water 
level in the northern section of mine B, forces UK to model 
a significant linear slope in the trend function, leading to 

Table 5  Leave-one-out cross validation measures for SLI and UK

� Pearson’s correlation coefficient, ME mean error, MAE mean abso-
lute error, MaxAE maximum absolute error and RMSE root mean 
square error. UK validation measures for mine B use the variogram 
model inferred from the data over the entire area

Area � ME (m) MAE (m) MaxAE (m) RMSE (m)

SLI entire 
area

0.620 −12.06 25.47 136.28 38.17

UK entire 
area

0.697 −10.27 22.82 125.64 34.29

SLI mine B 0.499 −12.01 22.70 105.44 34.57
UK mine B 0.396 −10.24 22.87 106.39 35.28

Fig. 12  Differences between 
SLI and UK. a Prediction: 
x̂SLI(u) − x̂UK(u) b range: 
R
SLI

(u) − R
UK

(u) . Coordinates 
are in meters

Fig. 13  Validation absolute errors compared to the range of the 90% 
water level prediction interval (PI) for SLI (blue circle) and UK (red 
cross)
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decreasing water levels further North. Such predicted drops 
cannot be verified due to the lack of data. Similar issues are 
present in a small part of the southern segment of mine C 
and the western part of mine B. It is impossible to confirm 
whether SLI or UK predictions are better in these areas with-
out additional data. Figures 6 and 9 show that both UK and 
SLI predictions are within each other method’s prediction 
intervals.

Overall, in most cases both SLI and UK prediction 
intervals (based on LOOCV) include the data values at the 
respective point (six values outside of PI for SLI and four 
values for UK). For SLI, 33 of the predicted values x̂SLI 
are within the interquantile (IQ) range of x̂0.25 to x̂0.75 . UK 
performs slightly worse with 30 of the predicted values x̂

UK
 

inside the IQ range.
In Fig. 13, the LOOCV absolute error for each of the 

data sites is plotted against the range of the 90% prediction 
interval RSLI(s) for SLI or RUK(s) for UK. As evidenced in 
the figure, UK gives both the highest and lowest PI val-
ues. Furthermore, locations with high absolute error val-
ues ( |x(s) − x̂(s)| > 50 m) have high PI range ( R(s) > 100 
m). Thus, for both methods high absolute error values are 
concentrated in areas with high uncertainty.

In addition, both methods estimate prediction intervals 
that are wide enough to accommodate the prediction of the 
other method at most locations. In both cases, the LOOCV 
results are reasonable given the small size of the dataset. 
The SLI method allows for constructing a spatial model 
that can give reasonable predictions even with a dataset as 
small as that of mine B (28 points).

Conclusions

In this research, the estimation of groundwater levels in 
sparsely sampled areas with mining activity is investigated. 
This case study involves the aggregate water level below 
surface for three mines in northern Greece. The recently 
proposed kernel-based KCDE method (Pavlides et al. 2022) 
is used to estimate the non-Gaussian distribution of water 
level and to conduct Gaussian anamorphosis. The predictive 
performance of two stochastic interpolation approaches is 
compared, UK and the more recently developed SLI method. 
SLI is a spatial interpolation method designed to provide 
computational efficiency for large spatial and spatiotempo-
ral datasets (Hristopulos 2015; Hristopulos and Agou 2020; 
Hristopulos et al. 2021). While the primary objective of SLI 
is to efficiently extract correlations from large data, as shown 
herein, it can also be applied to small datasets that do not 
allow reliable estimation of the variogram function which is 
needed for the application of Kriging methods.

The cross-validation measures show evidence of rea-
sonable interpolation performance. However, in cer-
tain areas the 90% prediction intervals are rather wide, 
indicating high prediction uncertainty. UK takes into 
account a linear trend function and minimizes the predic-
tion variance, thus allowing for tighter prediction ranges 
than SLI. On the other hand, SLI provides an automati-
cally adaptable search radius, computational efficiency, 
and the ability to estimate the spatial model even with 
the very sparse dataset of mine B. As discussed in Sec-
tion  “Discussion”, the introduction of a linear trend 
model based on a small dataset can be misleading. While 
UK cross-validation measures are slightly better for the 
entire area, application of SLI mine B leads to slightly 
better performance than UK. Furthermore, the trend in 
areas outside the data clusters leads to rapid decrease of 
the UK predicted water levels (see Fig. 5) that can not be 
confirmed based on the available data.

The SLI predictor can be modified to include trend 
functions as in UK—for example, promising results were 
obtained by incorporating a polynomial trend in the spati-
otemporal SLI predictor (Hristopulos and Agou 2020). Man-
agement of water resources is important in areas of mining 
activity. Future studies could focus on spatiotemporal pre-
diction methodologies in order to allow monitoring seasonal 
changes of the water level due to mining activities. Further-
more, the KCDE-based estimate of the CDF can be used in 
conjunction with conditional simulation methods, such as 
Kriging polarization (Chilès and Delfiner 2012; Hristopulos 
2020a; Olea 2012), in order to better capture the spatial vari-
ability of water level.
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