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Abstract
Groundwater exploitation for different sectors in Cambodia is expanding. Groundwater levels have already begun to decline in 
some parts of the country. Monitoring and assessing groundwater storage (GWS) change, aquifer stress and aquifer resilience 
will support the proper planning and management of the country’s groundwater resources; however, information regarding 
groundwater in Cambodia is currently scarce. Thus, GWS change in Cambodia over the 15 years from April 2002 to March 
2017 was assessed using remote-sensing-based Gravity Recovery and Climate Experiment (GRACE) and Global Land 
Data Assimilation System (GLDAS) datasets, with a comprehensive validation of the GRACE-derived groundwater storage 
anomaly (GWSA) with respect to in-situ field-based observations. The current study also investigated the impact of surface 
water storage (SWS) change in Tonle Sap Lake, South-East Asia’s largest freshwater lake, on deriving the GWS change in 
Cambodia. The groundwater aquifer stresses (GAS), and aquifer resilience (AR) were also evaluated. The validation results 
were promising, with the correlation coefficient between satellite-based estimations and ground-based measurements rang-
ing from 0.82 to 0.88 over four subbasins. The overall decreasing rate of GWS was found to be –0.63 mm/month, with two 
basins having the highest declining rate of more than 1.4 mm/month. Meanwhile, the aquifer experiencing stress during the 
dry season had a very low ability to quickly recover from these stresses. These findings emphasise that appropriate manage-
ment is urgently needed to ensure the sustainability of the groundwater resource system in this country.
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Introduction

Aquifer systems play an important role in the global hydro-
logical and biogeochemical cycles, as well as in the sustain-
ability of ecosystems. (Zektser and Loaiciga 1993; Jack-
son et al. 2001; Sophocleous 2002; Griebler and Avramov 
2015). Groundwater is a vital resource that supplies water to 

billions of humans, serving domestic, farming, and industrial 
activities (Giordano 2009; Siebert et al. 2010). With contin-
ued growth in population and economic activities, as well 
as changes in water consumption patterns, water demand is 
expected to increase significantly in the future. Meanwhile, 
changes in temperature and precipitation, driven by climate 
change, will further affect water availability, resulting in 
water shortages around the world, especially in developing 
countries. Such demand will likely affect not only surface 
water use but also groundwater use. If not properly man-
aged, these water resources will be depleted quickly. The 
evolution of groundwater utilization has induced declined 
groundwater levels in numerous parts of the world (Konikow 
and Kendy 2005; Gleeson et al. 2012; Wada et al. 2012). 
Konikow (2011) estimated that there was a global depletion 
in groundwater of 41.4 km3/year from 1900 to 2008, posing 
a potential threat to water security and potentially leading 
to a global reduction in agricultural productivity and energy 
production, and also increasing the risk of conflicts around 
the world (Famiglietti 2014). Approximately 1.7 billion 
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people live in locations where groundwater resources are 
under stress (Gleeson et al. 2012).

Groundwater resources, despite their significance, are fre-
quently undermonitored, and precise assessment of ground-
water-storage change has been challenging due to a lack of 
in-situ groundwater level data (Famiglietti et al. 2011). Inad-
equate geographical and temporal coverage by monitoring 
networks is a general problem, but stringent data-sharing 
rules (for political reasons) with other regions of the world 
may further hinder investigations on groundwater-storage 
change using in-situ well data (Chen et al. 2016). In terms of 
modelling techniques, the lack of in-situ groundwater level 
monitoring reduces the accuracy of simulated GWS change, 
especially over long timescales. Additionally, parameter val-
ues are frequently unknown or difficult to quantify across a 
large area, making reliable modelling of long-term GWS 
change challenging (Chen et al. 2016).

On March 17, 2002, the American National Aeronautics 
and Space Administration (NASA) and the German Aero-
space Center (Deutsches Zentrum für Luft- und Raumfahrt-
DLR) launched the Gravity Recovery and Climate Experi-
ment (GRACE), the first committed satellite time-variable 
gravity mission that provides an unprecedented technique 
for tracking large-scale mass variations in the Earth system 
(Tapley et al. 2004). GRACE provides a monthly spatiotem-
poral terrestrial water storage anomaly (TWSA) that includes 
snow water, surface water, soil water, and groundwater stor-
age (Voss et al. 2013). Because GRACE is unable to separate 
individual components of TWS change, changes in these 
components must be assessed using other data sources, such 
as land surface models (LSMs), in order to apply GRACE 
datasets to estimate changes in GWS (Rodell and Famigli-
etti 2002; Chen et al. 2016). Using advanced land surface 
models, the NASA Global Land Data Assimilation System 
(GLDAS) integrates satellite-based and in-situ observation 
data to offer optimal fields of land surface states and fluxes 
such as soil moisture, snow depth and other variables (Rodell 
et al. 2004). Many studies have successfully used GLDAS in 
combination with GRACE datasets to estimate GWS change 
over regions around the world (Rodell et al. 2009; Tiwari 
et al. 2009; Castellazzi et al. 2018; Singh et al. 2019; Gao 
et al. 2020; Wang et al. 2020). GRACE datasets have also 
been used in SE Asia to assess the variation of TWS in the 
Lancang-Mekong River Basin (Jing et al. 2020), to evalu-
ate TWS and identify flood events in the Tonle Sap Basin 
(Tangdamrongsub et al. 2016), and to estimate the variation 
of subsurface water storage (soil moisture + groundwater) 
in the Lower Mekong River Basin (Pham-Duc et al. 2019).

Groundwater is a significant resource in Cambodia, and it 
has constantly been used for farming and domestic purposes 
alongside surface water (Phalla and Paradis 2011). Access to 
groundwater is crucial to increase the adoption of double crop-
ping (Chan et al. 2004; Johnston et al. 2013). Furthermore, 

during the dry season, groundwater accounts for more than 
half of overall drinking water consumption (Sandqvist et al. 
2008). Apart from domestic and agricultural uses, it is pro-
gressively being used in the industrial sector (ODC 2016b). 
Due to the extensive use of groundwater for agricultural and 
industrial purposes, its sustainability may be compromised 
by excessive withdrawal (Johnston et al. 2013). Between 
1996 and 2008, an average groundwater level reduction of 14 
cm/year was reported in the country’s southeastern regions 
(Prey Veng and Svay Rieng provinces), indicating that over-
pumping may already be a concern in this region (IDE 2009). 
Erban and Gorelick (2016) discovered that the groundwater-
irrigated area in the Cambodian Delta is expanding at a rate 
of more than 10% per year, and that if this rate continues, the 
groundwater level will fall below the lift limit of suction pump 
wells used for household purposes by more than 1.5 million 
people throughout much of the area within 15 years. Thus, 
assessing and understanding the GWS changes, stresses and 
resilience of the groundwater system is crucial for effective 
groundwater resource planning and management in the coun-
try. However, information about groundwater in the country 
is currently scarce; two major research projects have been 
completed in the last 20 years, but there has been no national 
plan or cooperative research (ODC 2016b). According to the 
Mekong River Commission (MRC) Strategic Plan 2016–2020 
report, MRC had plans to execute a range of activities to estab-
lish practical knowledge on surface water and groundwater 
capacity and to assess the potential for agricultural water use 
in the Lower Mekong River Basin. Activity 1.7.2: “Conduct 
a survey of current groundwater use and the potential of new 
developments” and the Activity 1.7.3: “Conduct a study on 
groundwater sustainable yield management for crop produc-
tion” are two major groundwater activities. However, due to 
the COVID-19 pandemic, the groundwater component of the 
irrigation study was not finished and, up to now, the study has 
only shown evidence of raising awareness and has promoted 
shared understanding among the member countries (MRC 
2022). Meanwhile, remote sensing-based GRACE datasets 
can complement existing monitoring networks and modelling 
studies, as well as helping to compensate for gaps in spatial and 
temporal GWS-change coverage. However, these datasets have 
not yet been used to quantify GWS change, aquifer stress, and 
groundwater system resiliency in Cambodia. Due to a scarcity 
of surface-water datasets, the effect of surface-water storage 
(SWS) change signals from GRACE-based TWS signals is 
rarely addressed. The present study also investigates the impact 
of changes in SWS in Tonle Sap Lake, South-East Asia’s larg-
est freshwater lake, on deriving changes in GWS in Cambodia, 
which will provide a good understanding of lake-water dynam-
ics over GWS change in Cambodia.

Based on the foregoing discussion, the present study aims 
to assess the GWS variation, stresses and resilience of the 
groundwater system in Cambodia using GRACE datasets. The 
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specific objectives of this study include (1) assessing GWS 
change from GRACE and GLDAS datasets, (2) assessing 
the effect of Tonle Sap Lake water-storage dynamics on the 
GWS change in Cambodia, (3) evaluating the performance of 
GRACE-derived estimates with respect to observation well 
data, and (4) evaluating groundwater/aquifer stress (GAS) and 
aquifer resilience (AR) in Cambodia.

Study area and data

Site description

Cambodia is located in South-East Asia, and its climatic con-
dition is tropical and dominated by monsoon air masses. The 
months of May–October are associated with the southwest 
monsoon, with the highest precipitation occurring between 
September and October, and the remaining months are associ-
ated with the northeast monsoon, which comes with dry and 
cooler air. The average annual rainfall in the country ranges 
between 1,000 and 1,500 mm, and the heaviest amounts fall in 
the southeast (GlobalSecurity 2019). The topographical con-
dition can be divided into three main terrains: mountains and 
plateaux of the border areas (mountains in the west, north, 
north-east, and south, as well as the Eastern Plateau); central 
plains that occupy almost three-quarters of the land area; and 
the southwestern coastal plain, as shown in Fig. 1a. Cambodia 
has an area of 181,035 km2 with a population about 16 million 
(WorldAltas 2020) and it consists of six river basins based on 
HydroBASINS Level 5 (Lehner and Grill 2013) with the Tonle 
Sap Lake basin being the largest at 83,657 km2; the areas of 
other major basins are 26,095 km2 (basin 1), 26,059 km2 (basin 
2), 6,698 km2 (basin 3), 15,238 km2 (basin 4), and 19,449 km2 
(basin 5) (Fig. 1a). Tonle Sap Lake and Mekong River are 
major surface water bodies in the country (Fig. 1a). The Tonle 
Sap Lake is the largest freshwater lake in South-East Asia, and 
its volume varies significantly annually in response to rainfall 
and flooding from the Mekong River. The permanent size of 
the lake is approximately 2,400 km2 (Kummu and Sarkkula 
2008). The catchment area of the Tonle Sap Lake, including 
the permanent lake area, is the area of the lake–floodplain sys-
tem. The volume of the system varies from 1.8 to 58.3 km3 in 
the driest month and 31.1 to 73.9 km3 in the peak water level 
month (Kummu and Sarkkula 2008).

Data

GRACE data

The unique GRACE mission has two identical satellites 
orbiting around the Earth at about 500 km altitude with an 
inclination of 89.5°, apart from each other by approximately 

137 miles (Tapley et al. 2004). Three different processing 
centers continuously release different solutions using vari-
ous methods and parameters, including the Center for Space 
Research (CSR) at the University of Texas in Austin (USA), 
GeoforschungsZentrum Potsdam (GFZ) in Germany, and 
the Jet Propulsion Laboratory (JPL) in Pasadena, California 
(USA) (Cooley and Landerer, 2019). GRACE datasets are 
comprised of three different datasets. The level 1 dataset 
is calibrated and time-tagged raw data, the level 2 gravity 
field data has a set of spherical harmonics (SH) coefficients 
which refer to the exterior potential gravity field of the 
Earth system, and the level 3 products are changes in Earth 
surface mass which are presented by an equivalent unit of 
water thickness in cm. For detailed data processing of each 
level of data, please refer to Case et al. (2010), Bettadpur 
(2018), and Cooley and Landerer (2019). The most recent 
versions of GRACE TWSA products include spherical SH 
versions produced using a standard SH approach (Landerer 
and Swenson 2012), and mascon data versions processed 
using mass concentration blocks (Scanlon et al. 2016). How-
ever, according to Cooley and Landerer (2019), the current 
gridded mascon data are encouraged to be used instead of 
SH data because they do not require destriping or smooth-
ing and suffer fewer leakage errors; furthermore, using the 
coastline resolution improvement (CRI) filter and gain fac-
tors, this approach allows for better separation of land and 
ocean signals; additionally, calculating basin averages for 
hydrology applications shows general agreement between 
both solutions for large basins. However, mascon data have 
higher spatial resolution for smaller regions; therefore, the 
monthly GRACE TWSA level 3 product by JPL for land 
release 06 version 2 using mascon solutions (Wiese et al. 
2018) with a spatial resolution of 0.5° × 0.5° from April 
2002 to March 2017 (180 months) were used in this study, 
and these anomaly values are relative to a 2004–2009 time-
mean baseline. The data were downloaded from the NASA 
GRACE Data Analysis Tool. The gain factor was retrieved 
from PODAAC (Physical Oceanography Distributed Active 
Archive Center at JPL) Drive. Due to the aging batteries on 
the GRACE satellites, active battery management began in 
2011. During specific orbit periods over several consecutive 
weeks, no range data were collected, and hence no gravity 
fields could be computed. These gaps occur approximately 
every 5–6 months and persist for about 4–5 weeks, resulting 
in approximately 12% of the data (22 months) missing over 
the study period, and these missing data were filled by aver-
aging the two consecutive months preceding and following 
the missing month in this study.

GLDAS data

Global Land Data Assimilation System datasets are pro-
duced by NASA, in collaboration with National Centers for 
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Fig. 1   a Digital elevation model (DEM) map showing six river basins and significant water bodies in the Cambodia regions, including 24 obser-
vation wells and 1 gauging station in Tonle Sap Lake; b Boundaries of the four subbasins covering the observation wells

2362 Hydrogeology Journal (2022) 30:2359–2377



1 3

Environmental Prediction (NCEP), and National Oceanic 
and Atmospheric Administration (NOAA). GLDAS used an 
advanced land surface model and data assimilation technique 
to generate optimal fields of land surface states and fluxes by 
integrating satellite-based data and observed data (Rodell et al. 
2004). GLDAS drives multiple offline (not coupled to the 
atmosphere) land surface models, integrates a massive amount 
of observation-based data, and executes globally at coarser reso-
lutions (2.5° or 250 to 1 km) enabled by the Land Information 
System (LIS), producing near real-time results (typically within 
48 h of the present; Rodell et al. 2004; Kumar et al. 2006). Previ-
ous research has shown that the NOAH model correlates better 
with the GRACE TWSA than Community Land Model (CLM), 
Mosaic, and Variable Infiltration Capacity (VIC) model (Leblanc 
et al. 2009; Grippa et al. 2011; Yang et al. 2013), and it is also 
recommended by Jet Propulsion Laboratory as well (JPL 2018). 
Therefore, this study used monthly GLDAS products processed 
using the last version 2.1 of the NOAH model (Rodell et al. 2004) 
with a spatial resolution of 0.25° × 0.25° for soil moisture storage 
(SMS) in four soil layers (0–10, 10–40, 40–100, and 100–200 
cm) with a total depth of 200 cm of soil. These datasets were 
obtained from the NASA Giovanni online achieve. Climatic 
information from the same GLDAS products, including precipi-
tation (P) and evapotranspiration (ET), were also used to evaluate 
GAS and AR in the study area from 2003 to 2016. These datasets 
were obtained from the NASA Goddard Earth Sciences Data and 
Information Services Center (GES DISC).

Observed groundwater level data and aquifer formations

Due to the limitations of observed groundwater level data 
throughout the study area, only observed groundwater 
level elevation (h) in 24 monitoring wells located in some 
parts of major basins 4 and 5 (as shown in Fig. 1a), at a 
monthly frequency from 2006 to 2008, were used to vali-
date the remote-sensing-based estimates from the GRACE 
and GLDAS datasets. These data were originally collected 
for a groundwater study in Cambodia by the Seila Task 
Force Secretariat (STFS), the National Committee for Sub-
National Democratic Development, in collaboration with the 
Ministry of Water Resources and Meteorology (MoWRAM; 
IDE 2009). The observed groundwater levels ranged from 
–2.2 to 12 m relative to mean sea level (msl), with a mean of 
3.5 m msl, as presented in Fig. 2. However, there were some 
missing values in the groundwater level data from obser-
vation wells for 3 months in 2006, during April, October, 
and November, and these missing values were filled using 
interpolation methods as GRACE data. Information on the 
aquifer material where the monitoring wells are located was 
also taken from the previous groundwater study report. Nine 
of the total wells are located in the old alluvium aquifer and 
the remaining wells are in young alluvium. The old alluvium 
is composed primarily of coarse-grained sand and gravel and 

has a thickness of up to 200 m, whereas the young alluvium 
is composed primarily of fine-grained clay and silt and has 
a thickness of 10–40 m (IDE 2009).

Observed surface water level in the Tonle Sap Lake

A recorded daily time series of water levels from April 
2002 to March 2017 at Kampong Luong station in Tonle 
Sap Lake was collected from Mekong River Commission 
(MRC) online portal, for estimating the surface-water stor-
age in Tonle Sap Lake; the location of the gauging station 
is shown in Fig. 1a. The daily time series lake water level 
for the entire study period is depicted in Fig. 3. The average 
lake water level was 4.5 m msl, with the maximum and mini-
mum values of 12.1 and 0.8 m msl, respectively. Similar to 
missing data in groundwater level datasets, lake water level 
data were absent for some periods and were filled using the 
same interpolation procedure as GRACE data. Following 
gap filling, these water levels were substituted into an area-
volume function to determine the extent and volume of the 
lake water. Table 1 summarizes all the required datasets.

Methodology

Deriving GWSA from GRACE TWSA datasets

Because the GRACE TWSA comprises surface water, soil 
moisture, snow, and groundwater storage components, 
obtaining the groundwater storage anomaly GWSA is as 
simple as subtracting other components from the TWSA, as 
indicated in Eq. (1) (Frappart and Ramillien 2018):

where SMS is total soil moisture in the storage depth of 
the soil, SWS represents all surface-water storage, including 
lakes, reservoirs, weirs, and channel storage, SNC is total 
snow water storage, and letter A represents their anomaly 
values.

In this study, all the collected datasets were preprocessed. 
Preprocessing generally involves filling gaps in missing data, 
transforming data to a standard/needed datum projection, and 
resampling to a required resolution. GRACE TWSA in each 
grid was then multiplied by gain factors to reduce leakage 
error and resampled from the original resolution of 0.5° × 0.5° 
to 0.25° × 0.25° in order to obtain a consistent resolution with 
GLDAS data; additionally, the nearest neighbour interpolation 
method (Johnsy 2021) was used for resampling TWSA data 
in order to preserve their original values.

GLDAS-based SMS values for each soil layer were summed 
together to get the total soil moisture storage. To be consist-
ent with TWSA, SMSA values were also estimated using the 

(1)GWSA = TWSA − (SWSA + SMSA + SNSA)
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same baseline period of 2004–2009. Monthly SMSA values 
were estimated after subtracting baseline average values from 
monthly time series SMS values.

The relationship between Tonle Sap Lake water level 
(SWL), inundated area (A, in km2), and water volume (V, in 
km3) was used to convert the water level into the equivalent 
depth of water over the lake in centimeters. The open water 

area and volume of the lake water vary as a direct function of 
SWL and are expressed as follows (Kummu et al. 2014):

(2)A = 5.5701 × SWL
3

KL
+ 1.374 × SWL

2

KL
+ 470.29 × SWL

KL
+ 1680.2

(3)V = 0.7307 × SWL2

KL
− 0.3544 × SWLKL + 0.9127

Fig. 2   Time series monthly in-
situ groundwater level between 
2006 and 2008

Fig. 3   Daily time series Tonle 
Sap Lake water level at Kam-
pong Luong station between 
April 2002 and March 2017

Table 1   Data for analysis, the related specifications, spatial and temporal resolution, time period and source

Data Product specification Spatial/temporal resolution Time Period Source

Terrestrial water storage anomaly 
(TWSA)

   (cm)

GRACE JPL Mascon Land RL06 
V2

(Time Mean: 2004–2009)

0.5° × 0.5°
monthly

Apr 2004–Mar 2017 Wiese et al. (2018)

Soil moisture storage (SMS)
   (kg/m2)

GLDAS-2.1 NOAH model 0.25° × 0.25° monthly Apr 2004–Mar 2017 Rodell  et al. 
(2004)

Precipitation (P)
   (kg/m2/s)

GLDAS-2.1 NOAH model 0.25° × 0.25° monthly 2003–2016 Rodell et al. 
(2004)

Evapotranspiration
  (kg/m2/s)

– – 2003–2016 Rodell et al. 
(2004)

In situ surface water level (SWL)
   (m msl)

– Daily Apr 2004–Mar 2017 MRC

In situ groundwater level (h)
   (m msl)

– Monthly 2006–2008 NexView
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where SWLKL is water level depth [m] at Kampong Luong 
station.

A series of steps were carried out to estimate SWSA from 
lake water levels data as follows:

1.	 Observed daily water level from April 2002 to March 
2017 was averaged to get monthly water level.

2.	 The estimated monthly water levels from step 1 were 
substituted into Eqs. (2) and (3) to obtain monthly A and 
V, respectively.

3.	 An equivalent depth of water was calculated from V by 
dividing by the average monthly area (Aavg). Aavg was 
calculated from estimated monthly A values using a sim-
ple arithmetic mean function.

4.	 Computed monthly time series equivalent depths of water 
from step 3 were then converted into SWSA by removing 
baseline time mean values.

Because the spatial extent of surface water was unknown, 
the Aavg area was divided with a 0.25° × 0.25° grid (i.e., ca. 
27.75 km × 27.75 km) to estimate the number of grids covered 
over the surface water. The locations of surface water were 
assigned to the grids that are nearest to the permanent area of 
Tonle Sap Lake. Then the estimated monthly SWSA value for 
individual months was assigned to all the grids covering the 
Tonle Sap Lake area.

Since there is an absence of snow in the study area, 
the snow cover storage component was not considered in 
the present study. Canopy water storage fluctuations have 
been shown to be well below the detection limit of GRACE 
(Rodell et al. 2005; Liesch and Ohmer 2016). Therefore, 
both snow cover storage and canopy cover storage compo-
nents were not considered in the present study; thus, GWSA 
values were simply obtained by removing SWSA and SMSA 
values from TWSA values as shown in Eq. (4):

Trend estimation from GWSA signals

The nonparametric Mann-Kendall and Theil-Sen’s slope 
tests were adopted to estimate the trends and slope of the 
trend of the time series signals, respectively. Trend analysis 
of the time-series GWSA values was separately performed 
at pixel, basin, and country scales. Each of the time series 
GWSA values was used to estimate the trend and slope of the 
trend for each pixel in the study area. Consequently, spatially 
averaged GWSA values resulting from the basin and country 
boundaries were used to estimate the trend and slope of the 
trend at basin and country scales, respectively.

(4)GWSA = TWSA − (SWSA + SMSA)

Mann‑Kendall (MK) test

The MK test was applied to detect significant changes in 
GWSA time series datasets. This test is based on the test sta-
tistic Stest, which is defined as follows (Chatterjee et al. 2016):

where x1, x2,…, xn are n data points and xj is the data point at 
time j. Where the Stest value is positive, an increasing trend 
is indicated, and where the Stest value is negative, a decreas-
ing trend is reflected. When n is equal to or higher than 10, 
the statistic Stest has an approximately normally distributed 
mean (E) and variance (var), as demonstrated in Eqs. (7) and 
(8), respectively:

where m represents the number of tied ground (a set of sam-
ple data having the same value) values and ti represents the 
number of data points in the ith group. The standardized test 
statistic Z is calculated as follows:

The null hypothesis (H0), which means that an insignifi-
cant trend exists, is accepted if Z is not statistically signifi-
cant, i.e. −Zα/2 < Z < Zα/2 where α is the selected significant 
level; a p-value of 0.05 was chosen as a threshold of signifi-
cance in this study.

Theil‑Sen’s estimator

The slope of change in groundwater storage was calculated 
using Theil-Sen’s estimator. According to Lavagnini et al. 
(2011), this approach is much less sensitive to outliers than 
simple linear regression approaches since it calculates the 
median slopes of lines fit through pairs of points in the data-
set. This method has been applied to quantify magnitudes 

(5)Stest =

n−1∑
i=1

n∑
j=i+1

sign
(
xj − xi

)

(6)sign
�
xj − xi

�
=

⎧
⎪⎨⎪⎩

1 if xj − xi > 0

0 if xj − xi = 0

− 1 if xj − xi < 0

(7)E
(
Stest

)
= 0

(8)

var
�
Stest

�
=

n(n − 1)(2n + 5) −
∑m

i=1
ti
�
ti − 1

��
2ti + 5

�
18

(9)Z =

⎧⎪⎨⎪⎩

S−1√
var(S)

if S > 0

0 if S = 0
S+1√
var(S)

if S < 0
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of the trends in hydrology as well as climate data records, 
and it is often used in conjunction with the MK test (Li et al. 
2014). The Theil–Sen’s estimator by Sen (1968) and Theil 
(1992), which is used to estimate the slope of n pairs of data 
points, is defined by the following relation (Eq. 10):

xj and xi are data values at time j and i (j > i) respectively. 
Sen’s estimate of slope is the median of the N values of Ti, 
which is derived as follows:

The sign of Qi denotes trend direction, while its value 
represents the trend’s steepness.

Validating GRACE‑based GWSA with respect 
to observation well data

The comparison between remote-sensing-estimated GWSA 
and in-situ GWSA was performed at subbasin scale. There 
are 10 subbasins that cover the monitoring well locations, 
and they were dissolved into only four subbasins for valida-
tion purposes, as shown in Fig. 1b. Another set of GRACE 
TWSA and GLDAS SMS data covering validation subba-
sins from 2006–2008 were prepared for validation purpose. 
TWSA and SMS values were converted to anomaly values 
with respect to this 3-year mean time value so that resulting 
GRACE-derived GWSA values were able to consistently be 
compared with in-situ well data.

The monthly in-situ GWSA was estimated using 
observed groundwater level depth, h, in the monitoring 
well and storativity (S) of the aquifer (Todd and Mays 
2005; Bhanja et al. 2017, 2018) as follows:

 where GWSAobs is in-situ-based GWSA, hm and hi are the 
mean groundwater level and groundwater level that are 
recorded from an observation well at any time i, respec-
tively, and S is storage coefficient/storativity, the ability of 
an aquifer to release a volume of water from the storage per 
unit of decline of hydraulic head per unit of the area of the 
aquifer. As the aquifer formation where the wells are located 
was known, the S value used in this study was approximated 
based on the Johnson (1967) information as presented in 
Table 2.

Because the young alluvium was constituted primarily 
of fine-grained clay and silt, its S value was determined 
by averaging the S values of clay and silt. Similarly, the 

(10)Ti =
xj − xi

j − i

(11)Qi =

{
TN+1

2

if N = odd

1

2

(
TN

2

+ TN+2

2

)
if N = even

(12)GWSAobs = hm × S − hi × S

S value of the old alluvium was determined by averaging 
the S values of coarse sand and gravel, as it was formed 
primarily from coarse-grained sand and gravel (IDE 2009). 
The procedure to calculate in-situ GWSA values is as 
follows:

1.	 At first, monthly groundwater level was multiplied by 
the storage coefficient for each well to get monthly 
GWSobs.

2.	 Monthly GWSobs values for each well were converted to 
monthly GWSA using 2006–2008 baseline mean values. 
Another set of GRACE TWSA and GLDAS SMS data 
was prepared, covering validation subbasins from 2006 
to 2008, and then these were converted to anomaly val-
ues with respect to this 3-year mean time value so that 
the resulting GRACE-derived GWSA values for valida-
tion with in-situ GWSA are consistently compared with 
each other.

3.	 The obtained in-situ GWSA values from the previous 
phase were interpolated over subbasin boundaries using 
the inverse distance weighting method to construct spa-
tially continuous raster grids. This approach estimates 
the unknown point based on the concept that the far-
thest known point with a record gets less weight than 
the closer one, and its formulation is given by Eq. (13) 
(GISGeography 2020):

where GWSAint is an unknown point value, GWSAi is a 
known point value, d represents the distance between the 
known and the unknown point, and n is the total number of 
known points.

The performance of remote-sensing estimates with 
respect to in-situ groundwater level measurements was 
assessed using statistical measures such as root mean 

(13)GWSAint =

∑n

i=1

GWSAi

d2
i∑n

i=1

1

d2
i

Table 2   Storage coefficient (S) for different materials (Johnson 1967)

Formation S (%) Savg (%)

Clay 00–05 02
Sandy clay 03–12 07
Silt 03–19 18
Fine sand 10–28 21
Medium sand 15–32 26
Coarse sand 20–35 27
Gravelly sand 20–35 25
Fine gravel 21–35 25
Medium gravel 13–26 23
Coarse gravel 12–26 22
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square error (RMSE), and correlation coefficient (r). The 
RMSE and r values between monthly GRACE-based and 
in-situ GWSA for each subbasin were computed using the 
following formulations (AgriMetSoft 2019):

where xi represents the observed data, yi is the estimated data 
and n is the total number of observed data.

Estimating monthly GWS change

Monthly times series groundwater storage change 
(GWSC) values from 2003 to 2016 were computed from 
estimated monthly time series GWSA values using sec-
ond-order central difference, as given by Eq. (16), since 
it is more numerically stable than the forward/backward 
difference (Biancamaria et al. 2019).

where GWSC(m) is the value of GWSC at month m; 
GWSA(m + 1) and GWSA(m – 1) are successive and pre-
ceding ‘m’ months values of GWSA.

Evaluating GAS and AR

In this study, the GAS values result from the subtraction 
of groundwater released from the renewable groundwater 
resource as defined by the following expression:

Here, renewable groundwater is represented by poten-
tial groundwater recharge, which was estimated by sub-
tracting monthly time series P from ET values considering 
only positive values, i.e., P – ET > 0.

Only estimated GWSC values with a negative sign were used 
to represent groundwater release (Eq. 17), which, in this study, 
refers to the amount of groundwater released from the aqui-
fer by all mechanisms (e.g., extraction or natural groundwater 
flow). Therefore, GAS ≥ 0 means that no stress occurs because 
renewable groundwater is greater or equal to groundwater 
release, while GAS < 0 means that stress happens because 
release exceeds the renewable groundwater of the aquifer.

(14)RMSE =

�∑n

i=1

�
xi − yi

�
n

(15)
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�
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�
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�
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i=1

�
yi
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�
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−
�∑n

i=1
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�
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−
�∑n

i=1
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�2
�

(16)GWSC(m) =
GWSA(m + 1) − GWSA(m)

2

(17)
GAS = Renewable groundwater − Groundwater release

Resilience (AR) measures how quickly a system returns 
to a satisfactory state (i.e., recovered from shocks) follow-
ing an unsatisfactory state (Hashimoto et al. 1982). In this 
study, groundwater resilience was determined according to 
Loucks (1997) and Mays (2013) as follows:

If the GAS value shifts from negative to positive, this 
is considered a recovery event. This study classified AR 
into five levels—0–0.25: very low resilience; 0.25–0.4: 
low resilience; 0.4–0.6: moderate resilience; 0.6–0.75: 
high resilience; and 0.75–1: very high resilience.

Results and discussion

Trends in GWSA values deriving from GRACE TWSA

The spatially averaged values and linear fitted trends in 
each of the component anomaly values for Cambodia for 
each month from April 2002 to March 2017 are depicted 
in Fig. 4. Monthly TWSA values were between –300 and 
+650 mm, and SMSA values ranged between ±200 mm. 
For the surface water component, the Aavg value of the 
lake water was 4,978 km2, which is equal to about the 
area of seven raster grid cells. The monthly SWSA values 
were then assigned to only these seven grids closest to 
the permanent Tonle Sap Lake location and, hence, these 
assigned grids are only located in basin 1. This assump-
tion of surface-water locations, therefore, generates spa-
tial uncertainty for grid-scale results; nevertheless, this 
assumption may not affect basin and national-scale results 
because estimated monthly surface water area fluctuated 
≤17,388 km2, which is around ≤20% of the catchment area 
for basin 1. As a result, the surface-water component was 
considered for the basin 1 and country scales but not for 
the grid-scale analysis. The SWSA values at the national 
scale were calculated by averaging the SWSA values in 
each grid throughout the entire country’s boundary. The 
spatial average SWSA values ranged from –100 to +400 
mm.

The spatially averaged GWSA values varied between 
–250 and +300 mm, and it was noticed that SWSA and 
SMSA fluctuated in a seasonal cycle, whereas GWSA fluc-
tuated in a complicated pattern, indicating that it is not 
just climatic factors that have contributed to this variation 
in groundwater storage. Furthermore, a decreasing linear 
trend in TWSA values was observed with a change of slope 
of 0.03 mm/month, with changes in groundwater storage 
accounting for approximately 70% (linear change slope = 

(18)
AR =

No. of a satisfactory conditions following an unsatisfactory condition (GAS)

Total no. of unsatisfactory conditions (GAS)
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–0.0234 mm/month) of the variation in TWSA values, while 
changes in soil moisture and surface water storage accounted 
for only 10% (slope = –0.0037 mm/month) and 20% (slope 
= –0.0068 mm/month), respectively (Fig. 4). The MK-test 
and Sen’s slope estimation results for the trend and slope 
of change in GWSA are also shown in Fig. 4. A signifi-
cant decreasing trend (p-value 0.05) in GWSA values was 
observed, with a slope of change of 0.63 mm/month, indi-
cating that GWS declined significantly at a rate of approxi-
mately –113 million m3/month over the last recent 15 years, 
implying that groundwater storage has been overextracted 
in the study area.

The spatial average TWSA, SWSA, SMSA, and GWSA 
values, as well as the slope of change and linear trend in 
GWSA within each river basin, are depicted in Fig. S1 in 
the electronic supplementary material (ESM). Except in 
basin 2, GWS was found to be significantly decreased in 
basins 1, 3, 4, 5, and 6. The calculated slopes ranged from 
–0.14 to –1.51 mm/month. The most significant decline 
was found in basins 3 and 4, with declining rates up to 
–1.51 mm/month, almost 5 times higher than the slope 
values in basins 1 and 6. Similarly, GWS in basin 5 has 
reduced at a rate of roughly –1.05 mm/month. In basin 
2, on the other hand, the rate of decreasing trend was 
assessed to be only 0.1 mm/month. These results indicate 

that groundwater extraction has occurred in some basins, 
such as basins 3 and 4, where the highest negative slopes 
were estimated, while a balance between recharge and dis-
charge has been maintained in basin 2, where the slope of 
change is insignificant. It was noticed that GWSA values 
within most of the basins fluctuated according to the sea-
sonal climate pattern (increasing in the wet season and 
decreasing in the dry season), but only within basin 1 did 
GWSA values reach their positive peak in a dry month 
(e.g., February 2005 and March 2006) and negative peak 
in a wet month (e.g., October 2005 and 2006), which 
means that this basin may be recharged by means other 
than direct precipitation infiltration such as losing streams 
(e.g., losing surface water from Tole Sap Lake), preferen-
tial flows, or through fractures.

The grid level analysis for slope of change and the sig-
nificance test over Cambodia is presented in Fig. S2 of the 
ESM. According to this figure, the majority of the western 
regions (latitudes 10–13.5°N and longitudes 102–104.5°E) 
had p-values greater than 0.05, indicating that there were 
no significant trends in GWSA signals in these locations, 
whereas the remaining regions had significant trends, indi-
cating that changes in GWS in these regions are critical. 
Significant decreasing trends in GWSA were found in the 
eastern areas and north-west borders, with rates ranging 

Fig. 4   Spatial average values 
of anomalies of the terrestrial 
water storage (TWSA), total soil 
moisture in the storage depth of 
the soil (SMSA), surface water 
storage (SWSA) and ground-
water storage (GWSA) for the 
whole study area, with their 
fitted linear trend, the slope 
of change in GWSA, and the 
p-value from the MK-test and 
Sen’s slope estimation
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from –0.5 to –2 mm/month, whereas significant increas-
ing trends were observed in the north-east borders, which 
is a mountainous area, with rates of +1.5 mm/month as 
presented in Fig. S2a of the ESM. Because the grids cov-
ered by basin 2 showed both significant increasing and 
decreasing trends, the resulting slope of change when all 
pixels were averaged over the basin’s boundary was not 
significant in the basin level analysis.

Influences of the surface water in Tonle Sap Lake 
on deriving GWS signals

The spatially averaged monthly time series GWSA values 
with their slope of change resulting from taking and not 
taking surface water in the lake, taking into consideration 
the basin 1 and country scales, are illustrated in Fig. 5a and 
b, respectively. When surface water is not included in deriv-
ing GWSA from TWSA, the slope of change in GWSA val-
ues decreases to about –0.73 mm/month for the country 
scale, which means that when surface water is not included 
in deriving GWSA from TWSA, there is a 15% overesti-
mation of change in GWSA values for the country scale. 
However, when the basin scale was assessed, there are very 
substantial changes in both patterns and slopes of change 
between these two cases. The slope of change of GWSA 
values without surface water decreases to –0.69 mm/month, 
while the slope of change with surface water is only –0.43 
mm/month. Therefore, if surface water is not taken into 
account, the decreasing rate of GWS change in basin 1 will 
be overestimated by 60%. In general, it has been shown that 
for the SWS component, even in the largest river basins 

in the world (such as the Mississippi River basin, USA), 
SWS changes have been shown to be at least an order of 
magnitude less than those of groundwater and soil moisture 
changes (Rodell and Famiglietti 2001; Rodell et al. 2007). 
However, this assumption is not valid in extreme flooding 
years or in basins that are extremely wet (i.e., rainforest 
regions). Consequently, SWS changes are often not consid-
ered in GRACE studies (Yeh et al. 2006; Rodell et al. 2007; 
Tiwari et al. 2009). In Cambodia, due to Tonle Sap Lake 
being the largest freshwater lake in Southeast Asia, the SWS 
component has been found to significantly impact the deriva-
tion of the GWS component from GRACE data. Therefore, 
the effect of large water bodies such as Tonle Sap Lake, 
must be taken into account in order to interpret the TWSA 
signals appropriately, as this could significantly change the 
statistical results and lead to misinterpretation of the effects 
on the groundwater storage signals.

Comparison and validation of GRACE‑based 
and in‑situ‑based GWSA

The comparison of GRACE-based GWSA and in-situ-
based GWSA values estimated from in-situ groundwater 
level data are illustrated in Fig. 6. This figure shows scat-
ter plots of monthly GWSA derived from GRACE against 
in-situ field-based observation well GWSA values within 4 
subbasins from 2006 to 2008. The scatter points for all sub-
basins were found to be reasonably scattered around the 1:1 
line. The fitted linear models between these scatter points 
were also very well aligned with the 1:1 line, indicating 
that the remote-sensing-based GWSA and in-situ GWSA 

Fig. 5   Spatial average GWSA 
values with slopes of change 
estimated with and without 
considering surface water stor-
age in the Tonle Sap Lake for: 
a basin 1 scale, b country scale. 
Red and blue lines represent 
linear fits of GWSA values 
with and without surface water, 
respectively
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values reasonably agreed with each other. A good match 
of r = 0.58 was observed between the satellite-derived and 
ground-based measurements in the High Plains Aquifer in 
the USA, using 2,700 monitoring wells from 2003–2005 
(Strassberg et al. 2007). Using 236 wells between 2003 and 
2007, Shamsudduha et al. (2012) found reasonable matches 
between the two estimations in Bangladesh. Strong correla-
tions (r > 0.70) between the two GWS estimations (GRACE 
and observed data from >15,000 groundwater observation 
wells between 2005 and 2013) have also been seen in 8 
out of 12 Indian basins (Bhanja et al. 2016). The GRACE-
derived groundwater storage change values agree reasonably 
with in-situ well observations (1,180 wells from May 2005 
to November 2016) with correlations of up to 0.89 for four 
basins in India (Sarkar et al. 2020). Similar to the results 
here, estimated r values of 0.88, 0.82, 0.85, and 0.86 were 
found for the four subbasins of this study, confirming that 
remote-sensing-based GWSA estimates are strongly related 
to in-situ-based GWSA estimates. However, when it comes 
to the RMSE indicator, the estimated RMSE values range 
from 70 to 86 mm. This error could be caused by uncertainty 
in the approximation of the storage coefficient values used 
to convert water level to storage.

Mean monthly GRACE‑derived GWSC

The mean monthly spatial GWSC values estimated from 
GRACE-derived GWSA between 2003 and 2016 are presented 
in Fig. 7. The GWSC values were found to be in the range of 
–150 to 200 mm/month. The largest decreases in GWS were 
found in November and December, at the start of the dry sea-
son, with a maximum decreasing rate of –150 mm/month in 

the south-west mountainous region and the region surround-
ing the Tonle Sap Lake, which might have caused reductions 
in water storage/stream flow in the lake. Similarly, the high-
est decreasing rate was found in the remaining dry months 
until April at a mountainous area at the north-east boundary. 
Regarding the rainy season, the months of May and June, 
which are the beginning of the wet season, groundwater levels 
declined but not significantly. The greatest increase in ground-
water storage was seen in July, August, and September, with a 
maximum increasing rate of >200 mm/month, and groundwa-
ter began to decrease at the end of the wet season, i.e., October.

Despite the fact that overall decreasing trends in GWSA 
values in the south-west mountainous region and the Tonle 
Sap Lake region were not significant, it was discovered that 
extreme events, i.e., the greatest decrease and increase in 
mean monthly groundwater (Fig. 7), occurred at these loca-
tions, indicating that although these regions had the most 
abundant groundwater in the rainy season, they also have 
the highest risk of water scarcity or groundwater depletion. 
In addition, the effects on water storage/flow in the Tonle 
Sap Lake, causing threats to the lake’s ecosystem, should 
be taken into account. Meanwhile, severe droughts have hit 
Cambodia for many years, with the frequency of drought 
varying from province to province, with the most affected 
provinces being Kampong Speu, Takeo, and Battambang 
(ODC 2016a), all of which are located in these regions.

Potential groundwater recharge and stress 
on the aquifer

The spatial mean monthly PR values computed from the 
GLDAS datasets from 2003–2016 are shown in Fig. 8. 

Fig. 6   Scatter plots of GRACE 
monthly GWSA estimations vs 
observation well datasets for 
four subbasins in the study area. 
The blue line is the linear fit of 
the scatter point, whereas the 
grey line represents the 1:1 line
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Estimated PR values ranged roughly from 0 to 350 mm/
month, with only up to 50 mm/month during dry months 
(November–April) but ranging from 50–350 mm/month dur-
ing rainy periods (May–October), with a peak in September 
and significant spatial heterogeneity. Overall, the highest PR 
values (up to 350 mm/month in September) were detected 
in the southern and mountainous areas, indicating that these 
are the parts of the aquifer that are the most viable renewable 
source in the research area.

After subtracting estimated groundwater release values 
(i.e., negative GWSC values) from estimated renewable 
groundwater values (i.e., potential groundwater recharge), 
the resulting spatial mean monthly GAS values for each 
month between 2003 and 2016 are shown in Fig. 9. It was 
discovered that the aquifer of the research area experienced 
groundwater stress during the dry period, with GAS values 
of up to –200 mm/month, with the most severe stress occur-
ring at the beginning of the dry season through November 
to December. The strongest groundwater stress was encoun-
tered in the southwestern mountainous region, the area sur-
rounding Tonle Sap Lake, and the mountainous area at the 
northeastern boundary, which had the highest mean monthly 
decreasing rate in GWS (Fig. 7). During the rainy season, 

positive GAS values of up to 300 mm/month were found, 
suggesting that the available renewable groundwater was 
more than the extracted amount from the aquifer, and hence 
no groundwater stress emerged. The highest positive GAS 
values (GAS ≥ 300 mm/month) were observed in Septem-
ber in the regions receiving the highest potential recharge 
(Fig. 8). According to Oeurng (2020), during the wet sea-
son, potential groundwater recharge is more than sufficient 
in most of the country. Likewise, the results of this study 
reveal that the research area has had an abundance of renew-
able groundwater during the rainy season, while the aquifer 
experienced groundwater stress during the dry season, and 
this stress may be even stronger in reality because the actual 
amount of renewable groundwater could be less than the 
potential renewable groundwater values used in this study.

Figure 10 illustrates the monthly time series GAS values 
for each river basin from 2003 to 2016. During the dry season 
(November–April), all basins faced groundwater stress, with basin 
6 experiencing the most stress (GAS ≥ –200 mm/month) and basin 
2 experiencing the least stress (GAS ≥ –100 mm/month). The 
highest negative GAS values were detected in December 2011 
in all basins (excluding basin 2), indicating that the most serious 
groundwater stress occurred during this period, while Cambodia 

Fig. 7   Mean monthly GWSC values between 2003 and 2016, estimated from GRACE-derived GWSA values
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also experienced its worst seasonal flooding in a decade during 
the same year (Tritt 2011). Therefore, 2011 was the worst year in 
which the country was hit by two of the worst water-related haz-
ards consecutively; however, lower groundwater stress was found 
in the last 4 years (from 2013 to 2016). During the rainy season 
(May–October), GAS values were positive in the majority of the 
basins (basins 2–6), indicating that no groundwater stress occurred 
in the aquifer; however, even during the wet season, negative GAS 
levels were detected in basin 1 (e.g., August 2009 and 2011). Nev-
ertheless, because this study used potential recharge from climate 
data, and this basin might be replenished by additional means other 
than direction infiltration of rainfall (as discussed in section ‘Trend 
estimation from GWSA signals’), and thus the temporal pattern of 
groundwater release was different from the renewable source, the 
resulting aquifer stress in this basin should be interpreted carefully.

Resiliency of the aquifer

The results of the quantification of the aquifer resilience are illus-
trated in Fig. 11. Approximately 17% and 4% of the area possessed 
low resilience (0.25 < AR ≤ 0.4) and moderate resilience (0.4 < 
AR ≤ 0.6), respectively, which were mostly seen along the coun-
try’s border, while the remaining roughly 78% of the whole region 

had very low resilience (AR ≤ 0.25). When basin-scale analysis 
was performed, the AR values ranged only between 0.21 and 0.29. 
Three out of all the river basins (basins 1–3) possessed a very low 
recovery ability, and the remaining basins exhibited low resiliency. 
Even though having the highest groundwater stress, basin 6 was 
the most resilient, while basin 2 had the weakest recovery ability, 
despite getting the lowest stress (Fig. 10). Overall, the Cambodian 
aquifer exhibited a very low ability to swiftly recover from stress 
during the 14 years of study. This clearly indicates the impact of 
recent developments on the groundwater system in the region. 
Therefore, continuous monitoring, planning and regulation of the 
groundwater system against present and planned developments in 
the region is necessary for the sustainable management of ground-
water systems in Cambodia (Table 3).

Conclusions

For better monitoring and management of the groundwater 
dynamics in Cambodia, remote-sensing-based datasets were 
used to evaluate GWS change, aquifer stress and resilience 
in the country. The effects of surface water in Tole Sap Lake 

Fig. 8   Spatial mean monthly potential recharge (PR) values between 2003 and 2016, estimated from GLDAS products
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on deriving GWS change from GRACE TWSA datasets like-
wise were evaluated with the comprehensive validation of 
GRACE-based GWSA with well observation data as were 
the aquifer stress and its resiliency to the stress. Important 
conclusions from this study are drawn as follows:

1.	 The correlation coefficient values between the remote-
sensing and in-situ GWSA values are up to 0.88, imply-
ing that the remote-sensing estimates and ground-based 
observations have good consistency. This correlation 
analysis shows the potential of GRACE and GLDAS 

Fig. 9   Spatial mean monthly groundwater aquifer stress (GAS) values between 2003 and 2016

Fig. 10   Spatially averaged GAS values within each river basin between 2003 and 2006
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datasets for monitoring and assessing groundwater stor-
age dynamics throughout Cambodia.

2.	 At the national scale, groundwater storage has been 
decreasing at the rate of –0.63 mm/month, i.e., ca. –113 
million m3/month, over the period April 2002–March 
2017, with basins 3 and 4 experiencing the highest 
declining rate of more than 1.4 mm/month, and thus 
effective measures must be implemented to avoid deple-
tion of the groundwater resources in them.

3.	 Understanding the impact of Tonle Sap Lake water stor-
age on groundwater storage change is critical to under-
standing the surface-water and groundwater interactions 
and dynamics over the years. The statistical results sig-
nificantly change when the surface-water component 
from Tonle Sap Lake is not considered in the GWSA 
analysis; thus, neglecting the storage change of large 
water bodies in the GWSA analysis will propagate errors 
in the analysis, particularly at the basin scale.

4.	 During the dry season, the north-east border and south-
west mountainous regions, as well as the region sur-
rounding Tonle Sap Lake, had the greatest decrease in 
groundwater storage. Therefore, if no proper manage-
ment is implemented, the greatest risks of water short-
age will be during the dry season or groundwater storage 

depletion in these locations, as well as a reduction in 
water storage or flow in the Tole Sap Lake, which could 
lead to the destruction of the lake’s ecosystem.

5.	 During the rainy season, Cambodia has had a surplus 
of potential groundwater recharge; however, the aquifer 
has faced groundwater stress during the dry season, with 
basin 6 suffering the most stress and basin 2 experienc-
ing the least aquifer stress over the 14 years studied.

6.	 The Cambodian aquifer had a very low ability to 
quickly recover from stress, with basin 6 being the 
most resilient and basin 2 being the weakest, empha-
sizing that appropriate management is urgently needed 
to ensure the sustainability of the country’s groundwa-
ter resources.

Despite the fact that this study validated these remote-
sensing-based estimates using 24 observation well records, 
denser and more extensive networks of observation well 
information with a relatively longer period of records and 
storage coefficient information are expected to reduce the 
uncertainty in converting groundwater level to storage vol-
ume and to validate GRACE and GLDAS-based estimates 
further. In addition, more GRACE datasets from differ-
ent versions and processing centers should be analysed 
in order to select the one with the best performance for 
the study area. Furthermore, information regarding the 
spatial extent of the lake’s surface water should be identi-
fied (through, for example, satellite image data) and added 
in future studies to show more clearly the spatial effects 
of the surface-water component on deriving GWSA sig-
nals from GRACE TWSA data. Finally, given the study’s 
findings of decreased groundwater storage, the effects of 
these change drivers, such as climate change, land use/
land cover change, and groundwater pumping, should 
be investigated for better understanding and for more 

Fig. 11   Spatial groundwater 
aquifer resilience (AR) values 
between 2003 and 2016

Table 3   Resilience of the aquifer for each river basin

Basin AR value Level of resilience

Basin 1 0.24 Very low
Basin 2 0.21 Very low
Basin 3 0.24 Very low
Basin 4 0.27 Low
Basin 5 0.26 Low
Basin 6 0.29 Low
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effective management of groundwater systems in terms 
of climatic, land use/land cover, and human intervention 
factors.
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