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Abstract
This study proposed a novel combination of a meshfree simulator with the covariance matrix adaptation evolution strategy 
(Mfree-CMA-ES) to construct a simulation-optimization (SO) model for accurate estimation of aquifer parameters. In 
most regional aquifer systems, minimal temporal fluctuations are observed throughout the year. Therefore, the widely used 
approaches of least squares error minimization with metaheuristics (MH) optimization, such as differential evolution (DE), 
particle swarm optimization (PSO), and their hybrid versions, are often prone to premature convergence and lead to incorrect 
estimations of aquifer parameters. In the proposed model, the Mfree simulator was used, which produces accurate values of 
groundwater head, particularly when compared to the popularly used grid or mesh-based finite difference method (FDM) 
or finite element method (FEM). Furthermore, CMA-ES, with its auto-updated-strategy parameters, provided a competitive 
resultant population in each generation, leading to fast convergence and excellent matches with observed head data. The 
developed SO model was applied to both a synthetic regional aquifer and a real field case, i.e., the Mahi Right Bank Canal 
aquifer in India. Results showed that Mfree-CMA-ES requires less computational time and has a greater accuracy of estimated 
parameter values in comparison to various other models, i.e., FEM-DE, Mfree-DE, FEM-PSO, Mfree-PSO, FEM-DE-PSO, 
Mfree-DE-PSO, and FEM-CMA-ES. A sensitivity analysis showed the relative composite scaled sensitivity (RCSS) values 
of all the hydraulic conductivity zones that are within the range of 1–0.1. These obtained RCSS values validated the ability 
of the proposed model to estimate zonal hydraulic conductivity values using the Mfree-CMA-ES model.
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Introduction

Accurate estimation of aquifer properties such as hydraulic 
conductivity, transmissivity, and storativity is paramount to 
successful groundwater modeling. Field pumping tests with 

graphical matching are the widely used and most common 
techniques to determine these parameters. This approach, 
however, usually involves significant simplification such as 
idealized flow models and assuming constant parameters, 
e.g., homogeneous and isotropic aquifers (Zhou et al. 2014). 
In the last two decades, inverse groundwater modeling has 
often been advocated as an advanced, economical, feasible, 
and automatic technique, and has been gradually adopted as 
a valid mathematical approach to estimate aquifer param-
eters. Using inverse problems, distributed parameters are 
assigned to a mathematical model with known boundary 
conditions in such a way that it ensures error minimization 
between the observed and simulated state variables to obtain 
representative optimal aquifer parameters (Lakshmi Prasad 
and Rastogi 2001).

Simulation optimization (SO) is a mathematical approach 
to solving inverse groundwater problems. In general, head 
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values from the simulator are fed to the optimization model 
and the goal is to minimize the objective function, which 
is an expression of the sum of the error between simulated 
and measured heads at different monitoring well locations. 
Mahinthakumar and Sayeed (2005) broadly classified the 
optimization methods based on their application in SO 
models as derivative-based and nonderivative-based. The 
nonderivative-based optimizations are population-based sto-
chastic search methods that do not require an initial guess 
of the parameter to be estimated, e.g., genetic algorithms 
(GA; Harrouni et al. 1996), simulated annealing (SA; Zheng 
and Wang 1996), particle swarm optimization (PSO; Ch 
and Mathur 2012; Abril et al. 2022; De Jesus et al. 2022), 
ant colony optimization (ACO; Abbaspour et al. 2001), cat 
swarm optimization (CSO; Thomas et al. 2018) and differ-
ential evolution (DE; Rastogi et al. 2014; Chang et al. 2021). 
These optimizations are frequently applied to synthetic prob-
lems and a few real field problems are also attempted.

The estimation of aquifer parameters using the SO-based 
approach is a challenging task for most regional aquifers 
because: (1) SO models call the simulator frequently to cor-
rect its course towards optima, and if a mesh-based simulator 
is used then it takes a fairly large number of iterative runs 
(due to mesh-based approximation error which increases 
geometrically with each generation), leading to higher run 
time to reach the convergence criteria; (2) minimizing the 
error norm (difference between observed and simulated 
head) with higher precision for smaller groundwater head 
variation is difficult with existing global stochastic search 
algorithms as their diversity of producing new population 
weakens after certain generations and they are eventually 
unable to produce unique representative optimal parameter 
values; and (3) the accuracy of the most-often used global 
search optimization methods is highly dependent on their 
manually adjusted control parameters, which are problem-
specific and their tuned values are obtained after numerous 
model runs, which is the main cause for their high compu-
tational cost.

Meshfree (Mfree) simulators are independent of a mesh 
and therefore not prone to mesh-induced approximation 
errors. When coupled with population-based stochastic 
optimization, lower objective function values are achieved 
and aquifer parameters are estimated quickly. Among dif-
ferent groundwater Mfree simulators, the multiquadric-
based groundwater simulator by Patel and Rastogi (2017) 
for groundwater modeling is a promising option, particularly 
for parameter estimation applications, for a number of rea-
sons: (1) it has straightforward discretization for flow equa-
tions and its computer code is implemented conveniently; 
(2) it is computationally efficient compared to conventional 

mesh-based simulators like FEM (Li et al. 2003); (3) it does 
not suffer from mesh inadequacy and is free from mesh-based 
approximation error; and (4) it estimates accurate groundwa-
ter head values using a fixed range of the dimensionless shape 
parameter, which is uncertain in other Mfree simulators.

The optimization model feeds the input to the simulation 
model in terms of aquifer parameters. For this study, the 
covariance matrix adaptation evolutionary strategy (CMA-
ES) optimization was selected and coupled with the Mfree 
simulator. CMA-ES is a quasi-parameter-free global stochas-
tic optimization algorithm, where population size is the only 
parameter needed to be tuned (Hansen and Ostermeier 2001). 
It can be a better alternative when compared with existing 
optimization algorithms for parameter estimation. Two main 
advantages of this optimization are as follows. First, there 
is no need to perform numerous model runs to calibrate the 
associated strategy parameters; hence, it is highly suitable for 
field problems. Second, it works well for high-dimensional 
problems, requiring significantly fewer model generations 
(Bayer and Finkel 2004). The CMA-ES optimization model 
has already proved its applicability to a variety of groundwa-
ter engineering problems such as contaminant source iden-
tification (Bayer and Finkel 2004), parameter estimation for 
gully erosion (Rengers et al. 2016), and aquifer parameter 
estimation (Elshall et al. 2015).

This paper describes the novel combination of the mul-
tiquadric Mfree method with CMA-ES optimization to 
estimate aquifer parameters. The new model is referred to 
here as Mfree-CMA-ES. Most of the past studies used the 
combination of a mesh-based simulator and manually tuned 
control-parameters-based optimization for aquifer parameter 
estimation. These algorithms were unable to produce the 
lowest value of the objective function (due to premature con-
vergence), and they are time-consuming and costly options 
in terms of computational cost. Therefore, the Mfree-CMA-
ES-based SO model is developed which is a powerful tool to 
obtain aquifer parameters with high precision, particularly 
for regional aquifer systems that have minimum temporal 
changes in groundwater head. The accuracy of Mfree simu-
lators for calculating head values together with the ability 
of CMA-ES optimization to converge faster with a lower 
number of generations is highly advantageous and yields 
more precise values for aquifer parameters.

Inverse groundwater model

The mathematical formulation of Mfree-CMA-ES for solv-
ing inverse problems using the SO approach is explained in 
the upcoming subsections.
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Groundwater simulation

Consider a flow model representing a transient, two-dimen-
sional (2D), heterogeneous, anisotropic, and fully saturated 
confined aquifer. The governing equation is given by (Wang 
and Anderson 1995):

where H is the piezometric head, S is storativity, Tx and Ty 
are the transmissivity values in the longitudinal (x) and lat-
eral (y) directions, Qw represents source (+) or sink (-) terms 
located at the points (xp,yp), δ(x,y) is the 2D Dirac delta 
function, t is time and R is surface recharge. Mesh-based 
simulations require computationally demanding preprocess-
ing (Liu 2003); hence, a global collocation-based meshfree 
groundwater simulation model, developed by Patel and Ras-
togi (2017), is selected in this study. In this model, spatial 
derivatives are approximated by a multiquadric approach 
(Kansa 1990a, b) and the temporal terms are discretized by 
the finite difference method (FDM) using a central differ-
ence implicit scheme (section S1 of electronic supplemen-
tary material (ESM). The final discretized form of governing 
Eq. (1) for an individual node, using a multiquadric radial 
basis function (MQ-RBF) and after neglecting insignificant 
terms, is rewritten as (Patel and Rastogi 2017):

where [ϕ] is known as a radial basis function matrix.

Objective functions

The objective functions used in optimization methods for 
parameter estimation are typically nonlinear, noncontinuous, 
and cannot be expressed explicitly in terms of decision vari-
ables, i.e., aquifer parameters. Here, the objective function 
to be minimized is defined as the fitting error between the 
observed and the simulated aquifer head at monitoring well 
locations. This fitting error can be represented in three dif-
ferent ways: the sum of squared difference (SSD; Eq. 3), the 
sum of the mode of difference (SMD; Eq. 4), and the sum 
of the root mean squared error (SRMSE; Eq. 5). These can 
be expressed as:
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where E represents the objective function to be minimized, 
hsim
b,t

 is calculated groundwater head at observation well b at 
time t with parameter (P) as input, hobs

b,t
 is observed ground-

water head at observation well b at time t, Pi is the aquifer 
parameter at zone i, L is the total number of observation 
wells, t0 and tt are the beginning and end time of observa-
tions, superscripts l and u represent the lower and upper 
bounds of the parameters, and γb, t ∈ [0, 1] is the weighting 
coefficient representing a confidence value for the ground-
water head measurement accuracy at monitoring well loca-
tions. In the field problem, it is assumed that measurement 
for each monitoring well is undertaken with precision; there-
fore, a uniform value of γb, t as unity is considered in the 
entire study.

Optimization model

In this study, the CMA-ES proposed by Hansen and 
Ostermeier (2001) is selected as an optimization model 
for inverse groundwater problems. It is part of a family of 
evolutionary algorithms. Detailed information on CMA-ES 
is presented in section S2 of the ESM.

Development of the proposed 
simulation‑optimization model for aquifer 
parameter estimation

In this study, multiquadric-based Mfree simulation is cou-
pled with CMA-ES optimization (for details, see section 
S1 of the ESM) to develop a SO model for aquifer param-
eter estimation. The detailed steps of the Mfree-CMA-ES 
model to estimate the aquifer parameters are as follows. It 
may be noted that all computations are performed using 
MATLAB 2015b on 4 GB RAM, Intel Core i5 processor 
with 3.20 GHz CPU speed (Source code at Patel 2022).

Step 1. 	 All input data, like observation well data, bound-
ary conditions, storativity, zonation pattern, and other 
geological field data (obtained through field survey and 
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hydrogeological investigation) are fed to the Mfree-
CMA-ES-based SO model.

Step 2. 	 Similar to other evolutionary-based SO models, 
the upper and lower limits of parameters are predefined 
based on field experience and fed as input to the CMA-
ES optimization model. This helps initialize a mean of 
the initial population using an assumed D-dimensional 
vector (according to the known zonation pattern) fol-
lowing predefined bounds. Values of different strategy 
parameters (i.e., ccov, μeff, cc, cσ, and dσ) are calculated 
based on empirical formulae suggested by Hansen and 
Ostermeier 2001). The covariance matrix (C) is initial-
ized by a unit matrix for its further expected evolution 
with the progress of each generation. The global step 
size (σ) is initialized with the value 0.5 which is large 
enough to check the increment in σg. Population size 
(λ) is calculated via an empirical relation proposed by 
Hansen (2011), using the known dimension of the prob-
lem. This is necessary for creating an initial population 
(Pg = 0) using λ vectors in D-dimensional space.

Step 3. 	 The initial population is fed to the simulation model 
to obtain simulated head values at certain well locations 
(where field head values are known) and objective func-
tion values are calculated using Eq. (3). If the predefined 
convergence criterion is achieved then the mean values 
of D-dimensional λ vectors are the estimated aquifer 
parameters, otherwise, step 4 will be followed.

Step 4. 	 From the initially generated population, an updated 
weighted mean of μ selected vectors out of the λ vectors 
is calculated using Eq. S13 of the ESM. Next, the esti-
mated strategy parameter covariance matrix and global 
step size are updated according to Eqs. S15 and S16 of 
the ESM, respectively. Therefore, a new population for 
the next generation is created according to Eq. S14 of 
the ESM.

Step 5. 	 This newly generated population is again fed to the 
simulation model to check the predefined convergence 
criteria. If the criterion is achieved then the iterative 
procedure is concluded and estimated aquifer param-
eters are reached, otherwise repeat steps 4 and 5 until 
a convergence criterion is met. The entire procedure of 
the indirect method of parameter estimation using the 
new Mfree-CMA-ES SO model is represented in a flow 
diagram (Fig. 1).

Application of the Mfree‑CMA‑ES model 
to a synthetic aquifer problem

Problem statement

The aquifer problem described in Cyriac and Rastogi 
(2016) is selected in order to test the applicability of the 

proposed algorithm on a synthetic aquifer mimicking a 
real field-like problem. This flow domain is irregular 
and occupies an area of around 40 km2, which extends to 
nearly 9 km in the longitudinal direction and 5 km in the 
transverse direction. It has a single confined stratum with 
a uniform thickness of 100 m. Two impervious granite 
formations are located on the southern and northern sides. 
A lake with a constant head of 98 m elevation is con-
sidered on the southeastern side. A Neumann boundary 
condition with an influx rate of 0.5 m2/day is considered 
along the eastern section and a river boundary on the 
western side has linearly varying groundwater head. The 
boundary conditions and zones are depicted in Fig. 2a.

Ten nodes are taken to model the entire river length 
with a head difference of 2 m between the upstream- and 
downstream-most nodes. This results in an effective drop 
of 0.2 m head between two successive river nodes. To rep-
resent actual field conditions, the temporal change in the 
river head is considered to vary according to the Indian 
monsoon system, depicted in the histogram presented in 
Fig. 2c. For simplicity, a total simulation time of 360 days 
is considered, approximately equivalent to 1 year, and each 
month is represented uniformly by 30 days which are fur-
ther divided into three segments of 10 days each.

In real field conditions, the aquifer parameters are generally 
continuously distributed, however, this is difficult to simulate 
mathematically. Therefore, parameters are often divided into a 
limited number of regions, a process known as parameteriza-
tion (Zhou et al. 2014). In this study, the zonation method of 
parameterization is used to represent the aquifer geology. The 
selected synthetic problem contains five transmissivity zones 
that characterize the heterogeneous nature of the problem (see 
Fig. 2a). Detailed information on the assumed geological char-
acteristics of each zone is presented in Table 1. The anisotropic 
nature of aquifers is also taken into account by assigning dif-
ferent values to the two components of transmissivity along 
the principal Cartesian x and y axes. Three pumping wells 
(P23, P76, P125 each with discharge rate of 2,000 m3/day) along 
with three recharge wells (R26, R80 and R122 with recharge 
of respectively 900, 1,000 and 1,000 m3/day) are considered 
in the domain, leading to dynamic variations in the aquifer. 
To model the flow, the entire aquifer domain is discretized 
using 146 nodes where the nodal distance varies from 500 to 
620 m in both directions (Fig. 2b). Groundwater head values 
obtained using FEM simulation show insignificant fluctuations 
after 1 year and this is a condition that is analogous to aquifers 
in arid and semiarid regions.

Parameter estimation for the synthetic aquifer 
problem

To solve the inverse problem, the multiquadric-based 
Mfree groundwater simulator requires calibration of two 
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main parameters, i.e., nodal density (N) and shape param-
eter αs, prior to its application. The calibrated values of N 
and αs are 146 and 3, respectively, which are obtained after 
numerous trial runs using the suggested range as reported 
by Liu and Gu (2005). The values of other input param-
eters like time step size (Δt) and total simulation period 

are kept at 0.5 and 360 days, respectively (refer the study 
by Patel and Rastogi 2017 for more details).

In this study, ten transmissivity values (Table 1) represent-
ing five zones of the heterogeneous aquifer are considered 
to be unknown for testing the applicability of the proposed 
model. The objective here is to determine transmissivity 

Fig. 1   Flowchart of proposed 
Mfree-CMA-ES-based simula-
tion-optimization (SO) model
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values using known data like storativity, boundary condi-
tions, and zonation pattern by minimizing the squared dif-
ference between observed and simulated groundwater head 
data at 50 distinct observation-well locations. Transmissivity 
values range from 500 m2/day (fine sand) to 2,000 m2/day 
(gravel). Since it is a synthetic aquifer problem, simulated 
groundwater head values at 50 observation-well locations 

are treated as observed data (known data) and are the input 
for the SO model to seek the 10 unknown transmissivity 
parameters.

The main strength of CMA-ES optimization lies in its 
ability to self-adapt with each generation (Bayer et al. 2009). 
Unlike precalibrated control parameters of other popular 
metaheuristic optimization methods, the strategy parameters 
of CMA-ES are calculated by certain empirical formulae. 
Some of these, like λ, μ, and cc, are functions of the dimen-
sion of the problem. The remaining strategy parameters, like 
ccov, cμ, and cσ, are a function of μeff, which varies with the 
weighting constant (wi). Since wi varies stochastically, the 
values of ccov, cμ and cσ will also change their values with 
each generation. This change will be adaptive and based 
on past experience obtained from evaluations of the gener-
ated candidate solution (section S2 of ESM). The calculated 
value of CMA-ES strategy parameters for the rectangular 
synthetic confined problem is presented in Table 2.

For comparison purposes, the different evolutionary algo-
rithms, i.e., DE, PSO, and a hybrid version of DE and PSO, 
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boundary conditions (e.g., Neumann and Dirichlet), b discretized 
domain using nonuniform collocation nodes showing pumping, 

recharge, and monitoring well locations, and c temporal variation in 
river head at upstream node number 40 throughout the year

Table 1   Zonal parameters—transmissivity (T) and storativity (S)—of 
the synthetic confined aquifer problem by Cyriac and Rastogi (2016)

Zone T (m2/day) S Zone area (km2)

Tx Ty

1 1,500 1,200 0.0004 4.72
2 800 600 0.0003 5.49
3 1,000 800 0.0002 7.32
4 1,300 1,000 0.0001 7.67
5 2,000 1,000 0.0006 10.49

2210 Hydrogeology Journal (2022) 30:2205–2221



1 3

i.e. DE-PSO (Patel et al. 2020) are also investigated for the 
same synthetic problem. For DE and PSO, numerous model 
runs are performed to obtain the best configuration of control 
parameters and these are presented in Table 3. In the entire 
study, the possible range of DE and PSO control parameters 
are adopted based on the work of Price et al. (2005) and 
Kennedy and Eberhart (2010), respectively. For DE-PSO, 
the appropriate tuned control parameter values of both the 
individual heuristics are used directly. To compare the per-
formance of the Mfree simulator in the inverse groundwater 
problems, a mesh-based FEM simulator is also coupled with 
DE, PSO, DE-PSO, and CMA-ES optimizations. Therefore, 
a total of eight SO models are developed and applied to the 
problems presented here, resulting from combinations of two 
simulators with four optimization algorithms.

Figure 3a presents the objective function values (i.e., 
SSD, Eq. 3) as a function of the generations for the eight 
different SO models considered here: FEM-DE, FEM-PSO, 
FEM-DE-PSO, FEM-CMA-ES, Mfree-DE, Mfree-PSO, 
Mfree-DE-PSO, and Mfree-CMA-ES. It is evident that the 
Mfree-CMA-ES model converged to the lowest objective 
function value (10–14), many orders of magnitude lower 
than the other models. In fact, the performance of MFree-
CMA-ES surpassed the other models by attaining the lowest 
objective function value in the limited 300 iterations. These 
results affirm that Mfree-CMA-ES has better accuracy and 
higher robustness in comparison to other models.

To check the stability of all the estimated ten parameters 
using the new model, the populations of the last 50 gen-
erations are plotted in a box plot, presented in Fig. 3b. All 
the box plot attributes such as upper range, lower range, 
upper quartile, and lower quartile coincide with the median 
values for all 10 parameters. This shows the high stability 
of the solution. Although the number of iterations to reach 

convergence of all ten parameters using the Mfree-CMA-ES 
model is slightly higher when compared to other models, it 

Table 2   Summary of the 
best-suited values of control 
parameters used in the CMA-ES 
model for the synthetic aquifer 
problem

Control parameter Equation Estimated value
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Table 3   Summary of the 
best-suited values of control 
parameters used in the 
developed DE, PSO, and 
DE-PSO-based models for the 
synthetic aquifer problem

Control parameter Suggested range Calibrated value Optimization method

Population size (N) - 30
Mutation weighting factor (F) 0.3–0.5 0.4 DE DE-PSO
Crossover rate (Cr) 0.8–1 0.8
Inertia weight (ω) 0.8–0.3 Linearly varying 
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PSO
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is justifiable for two main reasons. First, it reaches a signifi-
cantly higher degree of accuracy while arriving at a stable 
solution. This is particularly important for this arid-region 
aquifer which has low head variation. Second, its compu-
tational time to complete one generation is much lower 
(Fig. 4), therefore overall model run time to achieve 500 
generations is significantly less compared to other models.

To further evaluate the performance of the eight models, 
the synthetic problem is also tested using two additional 
objective functions, other than SSD—these are SMD (Eq. 4) 
and SRMSE (Eq. 5). The results summarized in Table 4 reaf-
firm the superiority of Mfree-CMA-ES over its seven other 
counterparts. It can be seen that the new model produces the 
lowest fitness values which are many orders of magnitude 
smaller than the seven others and this is consistent for all 
three choices of objective functions.

All the considered SO models are based on stochastic 
optimization algorithms, which are prone to some error due 
to the randomness of population generation. To reduce this 

effect, each SO calculation was conducted 10 times and its 
average value was taken to arrive at the final result. The 
average transmissivity value from all 10 runs using 8 distinct 
methods is presented in a bar chart in Fig. 5, along with the 
true values from Table 1. For all 10 values of transmissivity, 
the combination of Mfree with CMA-ES showed a higher 
degree of agreement with true transmissivity values when 
compared to other counterparts (Table 5). Here, it is empha-
sized that in Fig. 3a, the best performance among 10 trial SO 
runs for each method is presented, while Fig. 5 shows results 
for the average of 10 SO model runs; therefore, they are not 
directly associated with each other.

The synthetic aquifer problems are free from field-
measurement-related errors since simulated head values 
are directly considered as observed head values. In real 
field conditions, the head data acquired through measure-
ment may contain errors. To check the impact of meas-
urement error on the stability of the proposed model, 
observation head values are degenerated by incorporating 
normally distributed random noise at the 50 observation-
well locations. Mathematically, the normally distributed 
random error is commonly denoted by N(μ, σ2) where 
μ represents the data mean and σ2 is the square of the 
standard deviation, i.e. variance. To represent measure-
ment error, two sets of normal randomly distributed noises 
with N(0,0.1) and N(0,0.01) have been added to the origi-
nal observation well data (dataset A) and are referred to 
as dataset B and dataset C, respectively. Using these two 
noisy data sets, two more model runs are performed and 
the results are presented in Table 6. Estimated parameters 
are shown to be stable as the projected model shows insig-
nificant differences between the values of datasets A, B, 
and C, i.e., errors in estimated values are similar in all 
datasets. The obtained results again reaffirm the robust-
ness of the proposed Mfree-CMA-ES and show promise 
for application to real field cases.

The estimated parameters by the Mfree-CMA-ES 
model are subsequently fed as input to the forward model 
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Fig. 4   Bar chart showing the time required to perform one iteration 
using eight different SO models for the synthetic confined aquifer 
problem

Table 4   Performance of 
different algorithms based on 
objective function lowest values 
considering three different types 
of objective functions for the 
synthetic problem

Algorithm The best solution (lowest value of the objective function)

Sum of squared difference 
(SSD) (m)

Sum of mode of difference 
(SMD) (m)

Sum of root mean 
squared error 
(SRMSE) (m)

FEM-DE 0.02162 0.14702 0.02079
Mfree-DE 0.01815 0.1347 0.01905
FEM-PSO 0.00678 0.08233 0.01164
Mfree-PSO 0.00397 0.06304 0.00891
FEM-DE-PSO 0.00051 0.02262 0.0032
Mfree-DE-PSO 1.11E-04 0.00622 0.00088
FEM-CMA-ES 5.22E-05 4.30E-05 0.0003178
Mfree-CMA-ES 1.22E-14 1.10E-07 1.56E-8
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Fig. 5   Average transmissivity 
over 10 model runs for eight 
different SO methods and their 
comparison with true values 
(dotted bar diagram) for the 
synthetic aquifer
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Table 5   Average transmissivity 
(T, m2/day) over 10 model runs 
for eight different SO methods 
and their comparison with true 
values for the synthetic aquifer

SO model Average value of 10 times model run

Tx1 Ty1 Tx2 Ty2 Tx3 Ty3 Tx4 Ty4 Tx5 Ty5

1. FEM-DE 1,504.5 1,337.4 953.3 633.3 912.7 979 1,084.8 915.2 1,614.2 1,110.1
2. Mfree-DE 1,503.7 1,202.7 820.9 614.8 996.1 843.7 1,390.5 1,102.6 1,783.9 1,082.5
3. FEM-PSO 1,278.8 1,162 764.1 500 1,150.2 802.1 1,318 956.3 2,000 850.8
4. Mfree- PSO 1,463.9 1,172.8 802.4 614.5 993.4 839.3 1,302 1,054.3 1,985.3 1,050.6
5. FEM-DE-PSO 1,510.6 1,209.9 844.2 616.9 993.5 795.6 1,297.1 998.8 1,941.4 906.5
6. Mfree-DE-PSO 1,508.4 1,224.4 800.6 599.3 989.1 815.1 1,306.6 996.5 2,000 1,002.8
7. FEM-CMA-ES 1,514.8 1,206.6 842.8 617 999.1 796.9 1,302.4 999.1 1,937.6 907.3
8. Mfree-CMA-ES 1,500 1,200 800 600 1,000 800 1,300 1,000 2,000 1,000
True value 1,500 1,200 800 600 1,000 800 1,300 1,000 2,000 1,000

Table 6   Comparative 
assessment of transmissivity 
(T) with noisy and noiseless 
observation data

Zone (Fig. 2) True values Dataset A 
Mfree-CMA-ES
[no noise]

Dataset B 
Mfree-CMA-ES
[N(0,0.1)]

Dataset C 
Mfree-CMA-ES
[N(0,0.01)]

Tx Ty Tx Ty Tx Ty Tx Ty

1 1,500 1,200 1,500 1,200 1,520.478 1,252.243 1,433.058 1,049.276
2 800 600 800 600 750.9363 568.6429 809.7311 595.0164
3 1,000 800 1,000 800 1,154.94 760.7197 1,018.23 754.9587
4 1,300 1,000 1,300 1,000 1,324.709 1,046.785 1,311.143 1,032.594
5 2,000 1,000 2,000 1,000 2,056.491 980.9257 2,024.399 979.512
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to obtain the groundwater head values after 360 days at 
50 monitoring well locations. These estimated values are 
plotted in Fig. 6 and the maximum and minimum differ-
ences between observed and simulated heads are 138.77 
and 1.49 × 10–8 mm, respectively. These differences are 
minuscule in comparison to the head values (less than 
0.1%) and this is another result of the high accuracy of 
the new SO model.

Field case study

The successful application of the proposed model to a syn-
thetic problem leads to further evaluation considering a 
real field case study.

Study area

The Mahi Right Bank Canal (MRBC) aquifer region is a 
2,798.5 km2 unconfined formation that is geographically 
located in the Kheda and Anand district of the Gujarat 
province of India. The study area receives nearly 823 mm 
normal annual rainfall, 90% of which falls during the mon-
soon season (June–September). The MRBC area exhibits 
characteristics of a semiarid region and hence it is selected 
for aquifer parameter estimation in this study. A geological 
survey and extensive field investigation of the MRBC com-
mand area have been previously carried out by the Gujarat 

Water Resources Development Corporation (GWRDC) 
and they estimated the applicable specific yield of the flow 
region as 15%.

The unconfined aquifer of MRBC command area rep-
resents a nearly triangular entity that is surrounded by 
known head boundaries from all three directions, i.e., 
Sedhi River on the northern side, Mahi River on the 
southern side, and the Alang drain on the west side, as 
shown in Fig. 7a. A large number of canals are spread 
across the aquifer, measuring a total length of 1,627 km. 
Six main canals comprise 539 km of the total length, 
while the remaining length is constituted by several 
branch canals and distributaries. A large volume of 
water is added to the aquifer by seepage from the lined 
(main and branch canals) and unlined distributaries. The 
rainfall recharge and canal seepage losses together with 
irrigation return flows are primarily responsible for the 
steady rise in the water table. The Department of Irriga-
tion’s MRBC Project in Nadiad, Gujarat, provided the 
required meteorological, geomorphological, and hydro-
logical data to understand the complete dynamics of 
groundwater flow in the region. These data are subse-
quently used to calculate the net annual recharge (NAR) 
of the year 2003 by following the recommendations of 
IARI (1983), which is then used to estimate groundwa-
ter head values with initial and boundary conditions as 
inputs to the simulator. The calculation of NAR is based 
on different hydrological input data which are presented 
in Appendix 1.

Fig. 6   Bar chart of head values 
at 50 monitoring well locations 
using true parameters and esti-
mated parameters by the Mfree-
CMA-ES-based SO model for 
the synthetic aquifer problem
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Model input parameter setting

Using the SO approach, the optimal hydraulic conductiv-
ity values are sought by least-squares-error-based data-fit-
ting between observed and simulated head values. These 
observed head values were collected from the 44 different 
monitoring well locations while simulated values were 
obtained via the Mfree simulator using 117 nonuniformly 
distributed nodes (Fig. 7c). Using the known value of the 
aquifer area and a predefined number of nodes, the calcu-
lated value of ds is found to be 570.65 m. The numerous 
simulation trials on MRBC suggested the best-suited value 
of αs is equal to 3 (refer Patel and Rastogi (2017) for more 
details). To determine boundary head values, graphical 
interpolation is carried out using isobaths maps from the 
year 2003 (prepared by GWRDC). The initial head values 
are also extracted from the map to feed as input to the dis-
cretized form of unconfined flow, i.e., Eq. S12 of ESM. Col-
lective well withdrawals are considered in the calculation 

of the NAR. To distribute the NAR value on each node, the 
recharge distribution coefficient (Rd) method proposed by 
Sondhi et al. (1989) is adopted in this study. It allocates the 
NAR value into each node in terms of actual nodal recharge 
(ANR), which is a product of average annual nodal recharge 
(AANR) and Rd for each specified nodal area. Here Rd val-
ues are obtained directly from the Rd contour map prepared 
by Sondhi et al. (1989) for the MRBC region, and AANR 
is defined as the nodal area-wise weighted distribution of 
NAR. After the incorporation of nodal recharge, each simu-
lation is performed for 1 year of the simulation period for a 
time step size of one day.

Lakshmi Prasad and Rastogi (2001) used the FEM-
GA-based SO model and identified optimal zonation pat-
terns using structural identification for the MRBC region 
(Fig. 7b). The obtained parameter values are also verified 
by the hydraulic conductivity map prepared by GWRDC. 
It took nearly 600 generations with a population size of 75 
to arrive at the convergence which can be considered costly 
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in terms of the currently available computational resources. 
The possible reasons behind a poor convergence are, (1) 
mesh-based interpolation error and (2) application of GA 
for optimization, which requires a large population, a higher 
number of generation cycles and is highly dependent on the 
encoding scheme adopted. Therefore, the proposed Mfree-
CMA-ES simulation-optimization model is expected to 
improve convergence.

Using the known zonation pattern of MRBC, 10 hydraulic 
conductivity values need to be identified. Therefore, in this 
case, the value of D will be 10. It also determines the esti-
mated values of distinct strategy parameters which are pre-
sented in Table 7. The lower and upper bounds of hydraulic 
conductivity (decision variable) are kept as 15 and 150 m/
day respectively. A uniform stopping criterion for solution 
convergence is taken to be 300 iterations for this problem.

Following a similar procedure as described in the syn-
thetic aquifer case, control parameters associated with DE, 
PSO, and DE-PSO for the MRBC region are fine-tuned and 
obtained after numerous model runs. The final values are 
presented in Table 8.

Results and analysis

After strategy parameter values have been estimated, the 
Mfree-CMA-ES-based SO model can be applied to the 
MRBC problem. The other seven models that were used 
for comparison in the synthetic problem are also applied to 
the field case for comparison. Figure 8a presents results for 
the objective function values with each generation for all 
eight SO models. It is clear that the Mfree-CMA-ES model 
has the highest order of accuracy (lowest objective function value), many orders of magnitude smaller than the seven 

other models. The objective function of the Mfree-CMA-
ES model shows oscillations due to the adaptation of σ and 
C. However, at the later stage, the objective function values 
become stable as the offspring population becomes uniform 
after certain generations. The multiquadric-based Mfree 
simulator is also proven to be effective since it is shown to 
be computationally efficient and accurate. Computational 
time to perform a single iteration of each SO model is pre-
sented in Fig. 9 showing that the CMA-ES-based models 
are the most computationally efficient, comparable only 

Table 7   Summary of the strategy parameters used in the CMA-ES 
model for the MRBC aquifer problem based on the study of Hansen 
(2011)

Control parameter Value used

Population size (λ) 10
Parent population (μ) 5
Time constant for cumulation of C (cc) 0.4
Time constant for cumulation of σ (dσ) 1

Table 8   Summary of control 
parameters used in DE, PSO, 
and DE-PSO-based SO models 
for MRBC aquifer problem

Control parameter Range Calibrated value Optimization method
Population size (N) - 25

Mutation weighting factor (F) 0.3–0.5 0.3 DE DE-PSO
Crossover rate (Cr) 0.8–1 0.6
Inertia weight (ω) 0.8–0.3 Linearly varying from 

0.8 to 0.3
PSO

Acceleration constants (C1 = C2) 1.5–2 1.9
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to FEM-CMA-ES. To check the convergence of the Mfree 
CMA-ES SO model in terms of hydraulic conductivity (K) 
values, the last 10% of the population is plotted in a box plot 
in Fig. 8b. Results verify the stability of all 10 estimated 
hydraulic conductivity values.

To evaluate the impact of different objective functions 
on all eight models, SMD and SRSME are tested, replacing 
the SSD function. Results are presented in Table 9 in terms 
of the lowest value achieved by each algorithm. The Mfree-
CMA-ES SO model is clearly shown to have a significantly 
lower objective function than its competitors for all three 
different types of functions.

Next, the average value of each estimated parameter from 
10 model runs is taken as the final representative parameter 
value. The hydraulic conductivity results obtained through 
the different methods are presented in Fig. 10 as a bar chart. 
The final values of parameters are also presented in Table 10. 
For comparison, in addition to results from the seven SO 
models discussed previously, results of FEM-GA from 

Lakshmi Prasad and Rastogi (2001) are presented in Fig. 10 
and Table 10. The new Mfree-CMA-ES shows the highest 
degree of agreement with the FEM-GA solution presented 
by Lakshmi Prasad and Rastogi (2001). Estimated values are 
also consistently in agreement with FEM-CMA-ES results. 
To check the accuracy of estimated parameters obtained 
by the new SO model, i.e., Mfree-CMA-ES, the parameter 
values are fed to the simulator to obtain groundwater head 
values. Results in the form of isobaths contour are presented 
in Fig. 11 alongside measured field data results from the year 
2004. The results show good agreement between simulated 
and observed heads.

A sensitivity analysis is carried out to evaluate the impact 
of head measurements on the parameter estimations. Low 
sensitivity of estimated parameters to observed heads may 
indicate unreliable estimations. Furthermore, the sensitivity 
of each parameter is tested separately, which allows for the 
determination of parameters that are estimated with higher 
confidence and others that may be inaccurate. The general 
sensitivity analysis is used to ascertain the mutual corre-
lation and consistency of a specified model based on the 
effect of input aquifer parameters on output groundwater 
head values (Foglia et al. 2009). In this paper, the proposed 
inverse groundwater model for the field case is tested by two 
statistical measures, i.e. relative composite scaled sensitivity 
(RCSS) and coefficient of variation (CV). Details regarding 
these two sensitivity measures are given in Appendix 2.

The RCSS analysis indicates the sensitivity of each 
hydraulic conductivity estimation to the overall monitoring-
well data. Results are plotted as a bar chart in Fig. 12 which 
generally shows that parameters K1, K2, K4, K7, and K9 are 
better-estimated using Mfree-CMA-ES due to their higher 
RCSS values as compared to the others, i.e., they are more 
sensitive to the information provided by monitoring well 
data. A general rule indicating unreliably estimated param-
eters is that the RCSS value of the specific parameter is less 
than 1% of the largest RCSS value (Poeter and Hill 1997). 
Since the RCSS values in this study are all in the range 
0.1–1, which is significantly larger than 1% of the largest 
value, it indicates that even parameters with smaller RCSS 
(K3, K5, K6, K8, K10) can be estimated reliably using data 
from all 50 monitoring wells.

Composite scaled sensitivity (CSS) and coefficient of 
variation (CV) are presented in Table 11. CSS values less 
than 1 indicate that the sensitivity contribution is less than 
the effect of observation error. It is seen that almost all esti-
mated parameters have CSS well above 1, suggesting suffi-
cient sensitivity, except three—K3, K8, and K10, with values 
of 0.5. CV is a measure to estimate the relative accuracy of 
estimated parameters. It is evident that all CV values in the 
table are small, suggesting that the Mfree-CMA-ES model 
is able to estimate fairly accurately values of all aquifer 
parameters for the MRBC region.
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Fig. 9   Bar chart showing the time required to perform one iteration 
using eight different SO models for the MRBC unconfined aquifer 
problem

Table 9   Performance of different algorithms based on objective-func-
tion lowest values considering three different types of objective func-
tions for the MRBC aquifer problem

SO model SSD SMD SRSME

FEM-DE 0.36407 0.603382 0.085331
Mfree-DE 0.03069 0.175186 0.024775
FEM-PSO 0.07519 0.274208 0.038779
Mfree-PSO 0.04958 0.222666 0.03149
FEM-DE-PSO 0.05935 0.243619 0.034453
Mfree-DE-PSO 0.00443 0.066558 0.009413
FEM-CMA-ES 0.05566 0.235924 0.033365
Mfree-CMA-ES 6.08E-04 0.024657 0.003487
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Discussion

The main strength of the developed Mfree-CMA-ES model 
is its ability to explore the solution space thoroughly with 
significantly less computational time than other models. 
It was found that the model requires fewer generations 
with small populations to reach lower objective func-
tion values. For instance, Fig. 8a shows that the proposed 
model reaches an accuracy of about 0.001 after only 110 

generations, while other models are unable to explore the 
solution space beyond the lowest value of 0.01. In addition 
to this, each generation requires less computational time. 
For example, Mfree-CMA-ES takes about 0.7 min to com-
plete one iteration, while other models require 3.18, 0.7, 
12, 2.4, 14.75, 4.2, and 2 min for FEM-DE, Mfree-DE, 
FEM-PSO, Mfree-PSO, FEM-DE-PSO, Mfree-DE-PSO, 
and FEM-CMA-ES, respectively. The Mfree-DE model 
is comparable in iteration time; however, it is unable to 

Fig. 10   Average hydraulic 
conductivity over 10 model runs 
estimated by eight different SO 
methods and a comparison with 
values obtained by Lakshmi 
Prasad and Rastogi (2001) using 
the FEM-GA model for the 
MRBC aquifer
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Table 10   Results displayed in 
Fig. 8 for hydraulic conductivity 
(K, m/day) given here in 
tabulated form

SO model Average value of 10 times model run

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10

1. FEM-DE 78.669 29.03 23.42 91.9 84 38.65 61.1 23 142.28 56.12
2. Mfree-DE 80.42 29.51 23.05 89.8 82.6 37.77 60.3 21.3 147.82 56.08
3. FEM-PSO 83.372 30.51 24.51 91.9 85.3 36.5 54.6 22.6 142.41 52.3
4. Mfree- PSO 83.9 30.01 24.69 91.7 85.8 37.15 55.2 21.7 146.9 53.15
5. FEM-DE-PSO 84.376 28.6 24.05 87.4 82.8 38.51 55.2 21 150 55.251
6. Mfree-DE-PSO 84.58 28.6 24.01 88.9 82.3 38.11 56 21 149.65 55.25
7. FEM-CMA-ES 84.43 29.06 24.03 86.3 82.5 38.54 55.7 21.2 149.8 55.45
8. Mfree-CMA-ES 84.93 28.96 23.64 87.5 81 37.67 56.8 20.6 148.4 55.24
FEM-GA [Lakshmi 

Prasad and Rastogi 
2001]

84.94 28.94 23.53 87.8 81.4 37.65 57.4 20.7 148.47 55.29
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reach the same accuracy. The possible reason behind the 
faster convergence of CMA-ES based models is the adap-
tive nature of different search parameters, while PSO, DE, 
and DE-PSO have constant and predefined control param-
eters for a specified problem. Apart from this, the zonation 
pattern of the aquifer system is also assumed to be known 
and certain minimum number of collocation nodes are 
used to discretize the domain using the Mfree simulator. 

Considering these two assumptions, the new model can 
be successfully implemented in other real field problems.

Conclusions

After successful implementation of the proposed model the 
following conclusions can be drawn:

•	 In the Mfree-CMA-ES SO model, strategy parameters 
control the direction of the optimal evolution path. 
However, unlike other heuristic-based models, there is 

Fig. 11   Isobath contours map of 
the head for the year 2004 using 
estimated hydraulic conductiv-
ity values by the Mfree-CMA-
ES model and from real field 
values provided by Gujarat 
Water Resources Development 
Corporation (GWRDC) for the 
MRBC region
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Fig. 12   Bar-chart of relative composite scaled sensitivity (RCSS) for 
each K (hydraulic conductivity) estimated by the Mfree-CMA-ES 
based SO model for the MRBC aquifer

Table 11   Coefficient of variation (CV) and CSS values for each 
parameter (hydraulic conductivity) estimated by the Mfree-CMA-ES 
SO model for the MRBC aquifer

Parameter Coefficient of variation Composite 
scaled sensi-
tivity

K1 0.0003082 4.8
K2 0.0039911 3.6
K3 0.0393413 0.5
K4 0.0181942 3.4
K5 0.0050261 1.5
K6 0.0006146 1
K7 0.0572576 1.9
K8 0.0055864 0.5
K9 0.0066312 2.2
K10 0.0098501 0.5
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no need to perform numerous model runs to calibrate 
these strategy parameters initially. Since they are esti-
mated by different empirical formulae and are automati-
cally updated with each generation, the developed model, 
therefore, is found to be more suited to field problems.

•	 The Mfree-CMA-ES-based SO model is a better-perform-
ing algorithm in terms of convergence, minimization of the 
objective function, computational time, and accuracy. These 
positive results are very encouraging for the further applica-
tion of the developed model in the areas of source identi-
fication, groundwater contaminant management, and other 
associated problems. To analyze the effect of measurement 
error on the observed head values, noise is introduced to the 
synthetic problem by adding normally distributed error to the 
monitoring wellhead values. The obtained results for Mfree-
CMA-ES verify the stability of the model as no significant 
difference is observed between aquifer parameters obtained 
using noisy and error-free monitoring wellhead data.

•	 A sensitivity analysis is performed for the real-field case to 
check the ability to estimate the aquifer parameters given the 
observation wellhead data. The RCSS value for each hydraulic 
conductivity estimation indicates that the values of all 10 zones 
are reliably estimated with available monitoring well data. The 
same is also confirmed by the evaluation of CV values.

Appendix 1

Net annual groundwater recharge (NAR) calculation for the 
year 2003

Source of recharge Recharge (MCMa)

Rainfall (Rp) 626.48
Seepage from main canal and branches (Rc) 61.1
Seepage from distributaries (Rd) 160.22
Return flow from canal irrigation (Rci) 860.00
Return flow from well irrigation (Rwi) 49.95
Groundwater extraction (Qp) 333.00
Groundwater Outflow (Qg) 230.24
Net Recharge 1,194.51

a  MCM million cubic meters

Appendix 2

According to Hill (2000), RCSS can be calculated as:

where αi represents the weighting coefficient (kept as unity); 
L is the number of observation wells in the domain; M depicts 

(7)Composite scale sensitivity
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where j = 1, 2.…M

the number of estimated parameters and 
(

�hi

�Tj

)

 is a sensitivity 
coefficient, which can be calculated by the influence coeffi-
cient method proposed by Becker and Yeh (1972) as:

where T is the estimated parameter; ∆Tl represents the small 
perturbation to the estimated parameter according to the rec-
ommendations by Bard (1974); e is lth unit vector and hi is 
the simulated value of the groundwater head.

From the calculated value of Cj, the relative compose scaled 
sensitivity (RCSS) can be calculated as (Ollinger et al. 2010):

The RCSS is a normalized form of Cj with respect to its 
maximum value.

The other statistical measure used in this work is CV which 
is a ratio of the standard deviation to the parameter value and 
can be represented as:

where var(Te) is a variation of an estimated parameter with 
true values. CV represents the relative accuracy of different 
estimated parameters.
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