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Abstract
Parameter estimation with uncertainty quantification is essential in groundwater modeling to ensure model quality; however,
parameter estimation, especially for non-Gaussian distributed parameters in highly heterogeneous aquifers, is still a great
challenge. The ensemble smoother with multiple data assimilation (ES-MDA) is one of the most popular and effective
ensemble-based data assimilation algorithms. However, it only works for multi-Gaussian fields, since two-point statistics are
used to estimate the co-relation between parameters and state variables. The probability conditioning method (PCM) has the
capability to integrate nonlinear flow data into facies simulation, but it has an assumption of homogeneity within each facies. Full
characterization of facies and estimates of hydraulic conductivity within each facies are equally important. This work firstly
modifies the original PCM, introducing a new probability assignment method, to consider within-facies heterogeneities, and then
it is further combined with the ES-MDA to estimate non-Gaussian distributed hydraulic parameters in a groundwater model. The
proposed method is evaluated using a two-facies case and a three-facies case in groundwater modeling. Both cases demonstrate
that the modified PCM is effective for facies delineation, especially to identify high heterogeneities in each facies, as well as non-
Gaussian characteristics with good connectivity within certain facies. The results also show that the performances of data
reproduction and model prediction are of high accuracy and low uncertainty, which is attributed to the accurate characterization
of the non-Gaussian parameters in the heterogeneous aquifers used.
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Introduction

Inverse problems are very important in groundwater modeling
since the quality of the groundwater model largely depends on
the quality of the model parameters (Gómez-Hernández et al.
2003; Karahan and Ayvaz 2008; Franssen et al. 2009; Zhou

et al. 2014). Many studies have focused on parameter estima-
tion in the last few decades (e.g. Carrera et al. 2005; Dagan
1985; Doherty 2004; Gómez-Hernández et al. 2003; Franssen
et al. 2009; Neuman 1973; Oliver et al. 1997; Zhou et al.
2014). Due to the intrinsic heterogeneities of natural porous
media and the scarcity of observation data, accurate character-
ization of the spatial distribution of hydraulic properties and
corresponding uncertainty is always a key issue in groundwa-
ter management and protection (De et al. 1999; Carrera et al.
2005; Zhou et al. 2014).

Inverse methods are often used by conditioning on obser-
vation data (e.g. flow data, concentration data, and
hydrogeophysical data) to characterize the spatial variation
of parameters (e.g. hydraulic conductivity). Data assimilation
methods have been popular in recent decades as they can
assimilate different sources of information to estimate param-
eters and predict states (Oliver and Chen 2008, 2011; Chen
and Oliver 2011; Chen et al. 2009; Chen and Zhang
2006; Nan and Wu 2011; Li et al. 2012a; Zhou et al. 2014;
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Xue and Zhang 2014; Man et al. 2016; Lan et al. 2018;
Evensen 2018). Well-known data assimilation methods in-
clude the Kalman filter (KF, Kalman 1960), ensemble
Kalman filter (EnKF, Evensen 2009), ensemble smoother
(Van Leeuwen and Evensen 1996), and iterative ensemble
smoothers (e.g. ensemble smoother with multiple data assim-
ilation, ES-MDA, Emerick and Reynolds 2013a). They have
gained popularity due to their simplicity and flexibility in
implementation. For subsurface flow problems, the ES-
MDA method, proposed by Emerick and Reynolds (2013a),
can typically obtain better data reproduction and better esti-
mation of parameters, compared to the EnKF (Emerick 2016;
Emerick and Reynolds 2012, 2013a, b). However, the data
assimilation methods mentioned previously cannot get opti-
mal solutions when they are applied to groundwater inversion
problems where estimated parameters usually have a non-
Gaussian distribution. Accounting for non-Gaussian distribu-
tions of hydraulic conductivity is very significant since flow
and transport predictions are dramatically different between
Gaussian and non-Gaussian conductivity fields (Gómez-
Hernández and Wen 1998; Zinn and Harvey 2003; Feyen
and Caers 2005; Lee et al. 2007).

There have been many published papers on alleviating this
non-Gaussian challenge. On the one hand, much research fo-
cused on parameterization methods that can represent the non-
Gaussian parameters using latent Gaussian variables (Dorn and
Villegas 2008; Sarma et al. 2008; Chen et al. 2009; Chang et al.
2010; Li et al. 2012b; Zhou et al. 2012a; Xu and Gómez-
Hernández 2016; Xu and Gómez-Hernández 2017; Li et al.
2018). Liu and Oliver (2005) applied the truncated pluri-
Gaussian model to match geologic facies using dynamic flow
data via the EnKF. Jafarpour andMcLaughlin (2008) applied the
discrete cosine transformation to decrease the non-Gaussianity of
parameters, and then used a traditional method to accomplish the
model inversion. Chang et al. (2010) applied level-set parame-
terization for the non-Gaussian parameter estimation problem.
Zhou et al. (2011) combined normal score transformation and
the EnKF together to solve the non-Gaussian inversion problem.
Moreover, as machine learning has becomemore and more pop-
ular, some researchers have begun to use machine learning algo-
rithms as parameterization methods (Canchumuni et al. 2017;
Mo et al. 2020). However, most of these studies are illus-
trated based on two-facies cases, and their applicability in
multiple faces, such as three-facies, is worth further re-
search and demonstration. Sometimes, change from two-
facies to three-facies could lead to new challenges for some
parameterization methods, as the existence of the third fa-
cies greatly increases the complicity of facies delineation
(Chen et al. 2015, 2016).

On the other hand, many researchers focused on
geostatistical methods, for which the core purpose is to con-
dition facies simulation to the non-linear flow data (Strebelle
2002; Caers and Hoffman 2006; Cao et al. 2018; Hansen et al.

2018; Laloy et al. 2018; Khaninezhad et al. 2019). Jafarpour
and Khodabakhshi (2011) proposed a probability condition-
ing method (PCM) based on the tau-model proposed by
Journel (2002), and combined it with the EnKF. Zhou et al.
(2012b) developed a pattern-search-based method following
the idea of direct sampling (Mariethoz et al. 2010). Li et al.
(2013) proposed an ensemble PATtern (EnPAT) search meth-
od that simultaneously updated both hydraulic conductivity
and hydraulic head. Recently, Ma and Jafarpour (2018a) pro-
posed a new pilot-points method for conditioning discrete
MPS facies simulation on dynamic flow data and coupled it
with ES to test several numerical experiments.

Among these methods mentioned already, the PCM gained
popularity as it can condition both facies and hydraulic prop-
erties on flow data via the probability map (Jafarpour and
Khodabakhshi 2011). Lots of research has been focused on
understanding its mathematical principles and improving its
performance (Khodabakhshi and Jafarpour 2014; Ma and
Jafarpour 2019). Khodabakhshi and Jafarpour (2013) pro-
posed an adaptive sampling strategy based on the PCM when
multiple training images are used to acknowledge the uncer-
tainty. Ma and Jafarpour (2018b) improved the PCM by con-
structing a probability map based on first- and second-order
moments and introducing pixel-based tau values. To the best
of the authors’ knowledge, these further studies on the PCM
are based on the assumption that conductivities within each
facies are homogeneous. However, conductivity heterogene-
ities within facies play an important role in the groundwater
flow and transport model (Zhang et al. 2013).

To illustrate the effect of heterogeneous conductivities
within facies on the flow and transport, two cases were con-
structed for comparison (case homo and case heter; more de-
tails of the flow and transport model can be found in the
‘Appendix’). In these two cases, everything is the same except
that the conductivities in each facies in case homo are set as a
constant (equal to the mean value in case heter, i.e. 3
ln(m/day) for the channel and –2 ln(m/day) for nonchannel,
see Fig. 1b,c). Figure 1d shows that the breakthrough curves
are rather different in case homo and case heter for both ob-
servation points. In addition, Fig. 1e,f illustrates that the flow
fields are strongly different even though the two cases are
identical except for the conductivity heterogeneities within
the facies. These observations indicate that accurate character-
ization of the conductivity heterogeneities within each facies
is also significant in the non-Gaussian inversion problems.

This work first proposes a modified PCM to characterize
geological facies as well as hydraulic conductivities within each
facies by combining PCMwith the ES-MDA. Note that the ES-
MDA was chosen instead of the EnKF as the data assimilation
method, due to the better performance from ES-MDA for sub-
surface inverse problems (Emerick 2016; Emerick and
Reynolds 2012, 2013a, b). Meanwhile, to the best of the au-
thors’ knowledge, this work is the first time that the PCM is
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used to simultaneously estimate facies and conductivity fields
in groundwater models, especially for models with three facies.

The rest of the paper is organized as follows. The relevant
methods and the proposedmethod are introduced. Afterwards,
a two-facies synthetic case and a three-facies synthetic case
are constructed to illustrate the performance of the proposed
method. Then, a sensitivity analysis to evaluate the impact of
two important parameters of the proposed algorithm is carried
out, followed by summarization.

System model and methodologies

Groundwater flow model

The flow model is assumed to be transient, and its governing
equation is as follows (Bear 1972),

∇ � K∇Hð Þ þW ¼ μs
∂H
∂t

ð1Þ

where ∇ is the divergence operator; ∇ is the gradient operator;
K is the hydraulic conductivity [L T−1]; H is the hydraulic
head [L]; W is the volumetric injection (pumping) flow rate
per unit volume of the aquifer [L T−1]; μs is the specific stor-
age of the aquifer [L−1]; and t is the time [T].

Ensemble smoother with multiple data assimilation
(ES-MDA)

The ES-MDA is one of the most popular data assimilation
methods with better performance and higher efficiency

compared to the EnKF. In the ES-MDA, all the parameters
of interest p are augmented with state variable h into a joint
state vector x = [ph]T, and an ensemble of Ne realizations of
parameters is generated. The principle of the ES-MDA is very
similar to that of the EnKF. There are only two differences
between these two methods: one is that the ES-MDA uses
global updates with all available data while the classical
EnKF carries out updates sequentially using data from differ-
ent times, and the other difference is that the ES-MDA uses
multiple data assimilations with inflation coefficients, while
the EnKF performs only one assimilation with each set of
data. The main procedures of the ES-MDA are listed here:

Step 1. Decide the number of data assimilations (Na) and
choose the coefficient (αi, i = 1,…,Na) for each data
assimilation step satisfying the constraint in Eq. (2).
Considering the computational cost and its perfor-
mance, the number of assimilation times (iteration
times) in the ES-MDA algorithm is chosen to be 4 in
this work (Emerick and Reynolds 2013a), and the
coefficient of each data assimilation in the ES-MDA
is chosen to be α1 = 9.333, α2 = 7.0, α3 = 4.0 and
α4 = 2.0 (Emerick and Reynolds 2013a).

∑
i¼1

N a 1

αi
¼ 1 ð2Þ

Step 2. For each realization, run the forward model G(.)
from time zero

di ¼ G xf
i

� �
; i ¼ 1; 2;…;N e ð3Þ

Fig. 1 The comparison of case homo and case heter. a Facies field and two observation points for both two cases; b lnK field for case homo; c lnK field
for case heter; d breakthrough curves at two observation points for the two cases; e the flow field of case Homo; f the flow field of case Heter
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In the aforementioned equation, i is the ensemble member
index, and superscript f denotes forecast.

Step 3. Update the ensemble of realizations using Eq. (4).

xai ¼ x f
i þ CYD CDD þ αlCDð Þ−1 dobsi−dið Þ; i ¼ 1; 2;…;N e ð4Þ

In the preceding equation,CYD is the cross-covariance ma-
trix between the forecast state and the predicted data, CDD is
the covariance matrix of the predicted data, l is the iteration
index of the ES-MDA, l = 1, 2, …, Na, CD is the covariance
matrix of the measurements error, dobs is the perturbed obser-
vations with noise covariance αlCD, d is the predicted data,
and superscript a denotes analysis.

After step 3, the updated ensemble Xa is obtained. Then, go
back to step 2; the updated ensemble obtained from this step is
implemented for the next data assimilation. Repeat steps 2–3
until the total number of data assimilations Na is reached.

Probability conditioning method (PCM)

Original PCM

The probability conditioning method (PCM) was proposed to
constrain single normal equation SIMulation (SNESIM)-based
(Strebelle 2002) facies simulations on flow data (Jafarpour and

Khodabakhshi 2011). The implementation of the PCM consists
of two main steps. In the first step, flow data are used to update
the lnK field through ES-MDA, and then the updated lnK field
is used to infer a facies probability map. In the second step, the
probability map is used as soft data (through the tau-model,
Journel 2002) in the SNESIM algorithm to generate new
(updated) realizations of facies indicators.

In order to infer a facies probability map from the nonlinear
flow data, the EnKF data assimilation method was used in the
original PCM to update conductivities (denoted as lnK) based

Fig. 2 The framework of the a original PCM and b proposed modified PCM method (see red frame)

Table 1 Flow model parameters in synthetic cases

Flow simulation Transient state

Total simulation time (days) 500

Stress period 1

Time steps 100

Grid spacing (m) 10 × 10 × 5

Model length (m) 600

Model width (m) 600

Model height (m) 5

Starting head (m) 0

Porosity 0.3

Specific storage (m−1) 0.0003
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on the flow data. Then the updated hydraulic properties were
used to infer the facies probability map. For a model with two
facies types, channel and nonchannel, with homogeneous lnK
values, i.e. lnK1 and lnK0 respectively, one can use the follow-
ing equation to calculate the facies probability map based on
the updated lnK,

P f xð Þ ¼ channeljflow datað Þ

¼
pmax; lnK xð Þ > lnK1

pmin; lnK xð Þ < lnK0

pmin þ pmax−pminð Þ lnK xð Þ−lnK0

lnK1−lnK0
; otherwise

8>>><
>>>:

ð5Þ

where lnK xð Þ denotes the ensemble mean of lnK at grid cell x;
lnK1 and lnK0 denote the homogeneous lnK values in the
channel and non-channel respectively; and [pmin,pmax] are
the boundaries of probability values. In this work, [pmin,pmax]
are set as [0.01, 0.99].

For the two-facies case, one first uses Eq. (5) to calculate
the probability of the channel in each grid based on the lnK
ensemble which is conditioned to flow data, then the proba-
bility of the nonchannel is equal to 1 – P(f(x) = channel).
However, for the three-facies case, it is necessary to calculate
the probability of each facies type separately. The equations
for the three-facies case are shown in the following, which are
similar to that used in the two-facies case, calculating proba-
bilities based on updated lnK,

P f xð Þ ¼ highlnK faciesjflow datað Þ

¼
pmax; lnK xð Þ > lnK2

pmin; lnK xð Þ < lnK1

pmin þ pmax−pminð Þ lnK xð Þ−lnK1

lnK2−lnK1
; otherwise

8>>><
>>>:

ð6Þ

P f xð Þ ¼ mid lnK faciesjflow datað Þ

¼

pmin; lnK xð Þ > lnK2 or lnK xð Þ < lnK0

pmin þ pmax−pminð Þ lnK xð Þ−lnK0

lnK1−lnK0
; lnK0 < lnK xð Þ < lnK1

pmin þ pmax−pminð Þ lnK2−lnK xð Þ
lnK2−lnK1

; lnK1 < lnK xð Þ < lnK2

8>>>>><
>>>>>:

ð7Þ
P f xð Þ ¼ low lnK faciesjflow datað Þ

¼
pmin; lnK xð Þ > lnK1

pmax; lnK xð Þ < lnK0

pmin þ pmax−pminð Þ lnK1−lnK xð Þ
lnK1−lnK0

; otherwise

8>>><
>>>:

ð8Þ

where lnK xð Þ denotes the ensemble mean of lnK at grid cell x;
lnK0, lnK1 and lnK2 denote homogeneous lnK values in the
three facies (from low to high), respectively; and [pmin,pmax]
are the boundaries of probability values. In this work,
[pmin,pmax] are set as [0.01, 0.99].

Modified PCM

It is evident that there is an assumption of homogeneity in the
preceding equations. To apply the scenario to non-Gaussian
and heterogeneous cases, the preceding equations are modi-
fied as follows. It should be noted that non-Gaussian and
heterogeneous lnK fields in this work are constructed by com-
bining the SNESIM algorithm (used to generate facies distri-
bution) and GCOSIM3D algorithm (used to generate hetero-
geneity within each facies type).

For the two-facies case,

P f xð Þ ¼ channeljflow datað Þ

¼
pmax; lnK xð Þ > lnK1

pmin; lnK xð Þ < lnK0

pmin þ pmax−pminð Þ lnK xð Þ−lnK0

lnK1−lnK0

; otherwise

8>>>><
>>>>:

ð9Þ

where lnK xð Þ denotes the ensemble mean of lnK at grid cell x;
lnK1 and lnK0 are the means of lnK in channel and nonchannel
type facies; and [pmin,pmax] are the boundaries of probability
values. In this work, [pmin,pmax] are set as [0.01, 0.99].

For the three-facies case,

P f xð Þ ¼ highlnK faciesjflow datað Þ

¼
pmax; lnK xð Þ > lnK2

pmin; lnK xð Þ < lnK1

pmin þ pmax−pminð Þ lnK xð Þ−lnK1

lnK2−lnK1

; otherwise

8>>>><
>>>>:

ð10Þ

P f xð Þ ¼ mid lnK faciesjflow datað Þ

¼

pmin; lnK xð Þ > lnK2 or lnK xð Þ < lnK0

pmin þ pmax−pminð Þ lnK xð Þ−lnK0

lnK1−lnK0

; lnK0 < lnK xð Þ < lnK1

pmin þ pmax−pminð Þ lnK2−lnK xð Þ
lnK2−lnK1

; lnK1 < lnK xð Þ < lnK2

8>>>>>>><
>>>>>>>:

ð11Þ
P f xð Þ ¼ lowlnK faciesjflow datað Þ

¼
pmin; lnK xð Þ > lnK1

pmax; lnK xð Þ < lnK0

pmin þ pmax−pminð Þ lnK1−lnK xð Þ
lnK1−lnK0

; otherwise

8>>>><
>>>>:

ð12Þ

where lnK xð Þ denotes the ensemble mean of lnK at grid cell x;
lnK0, lnK1 and lnK2 denote the means of lnK values in the
three facies (from low to high), respectively; and [pmin,pmax]
are the boundaries of probability values. In this work,
[pmin,pmax] are set as [0.01, 0.99].

Note that these equations could be extended to more facies

types, providing the differences between each lnKi are
significant.
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Parameter estimation scheme

In this paper, to apply the PCM in non-Gaussian and hetero-
geneous parameter estimation cases, the original PCM is first
modified to remove its homogeneity limitation (see details in
section ‘Probability conditioning method (PCM)’), and then
the modified PCM is combined with the ES-MDA instead of
the EnKF due to the superior performance of ES-MDA for
subsurface parameter estimation problem. In order to show the
proposed scheme thoroughly, Fig. 2 shows the framework of
the original PCM in Jafarpour and Khodabakhshi (2011) to-
gether with the framework resulting from this study. As
shown in Fig. 2, in order to estimate non-Gaussian parameters
in heterogeneous aquifers, the proposed scheme has an addi-
tional step of updating lnKi for facies type i compared to the
original PCM.

Figure 2 shows that the proposed parameter estimation
framework includes seven steps overall:

Step 1. Generate initial realizations of the facies indicator
using the SNESIM algorithm, initial ensembles of
heterogeneous lnK of different facies types using
GCOSIM3D algorithm (Gómez-Hernández and
Journel 1993), and an initial probability map accord-
ing to the number of facies (if there are n types of
facies in the study domain, then the initial probabil-
ity in each grid is set to 1/n).

Step 2. Generate the non-Gaussian lnK ensemble by map-
ping lnK ensembles in a different facies to facies
ensemble. For example, for the jth facies realization,
if the facies type indicator in grid i is 0, then the lnK
value in this grid is set to be the corresponding value
in grid i of the jth lnK0 realization.

Step 3. Run the forward model with each non-Gaussian lnK
realization.

Step 4. Update lnKi ensembles and the non-Gaussian lnK
ensemble based on the ES-MDA equations

Fig. 4 The training image used in
case 1

Fig. 3 Reference fields and observation wells layout. a Facies distribution; b Reference hydraulic conductivity distribution; c The locations of
observation wells in case 1
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introduced in section ‘Ensemble smoother with mul-
tiple data assimilations (ES-MDA)’.

Step 5. Calculate the probability map based on the updated
lnK according to equations stated in section
‘Modified PCM’.

Step 6. Generate new facies realizations using the updated
probability map in SNESIM.

Step 7. Generate the updated non-Gaussian lnK ensemble by
mapping the updated lnKi ensembles in step 4 to the
updated facies ensemble in step 6.

Since the ES-MDA is an iterative data assimila-
tion method, step 3 to step 7 is repeated Na times.

Case 1: two-facies case

Case setup

In this case, the flow is assumed to be transient in a two-
dimensional (2D) confined aquifer with a starting head of

Fig. 5 The estimation results of facies indicators in case 1

Table 2 Geostatistical parameters
to characterize the spatial
distribution of lnK within each
two facies in case 1

Facies Proportion Mean (ln(m/d)) Standard deviation
[ln(m/day)]

Variogram type λx (m) λy (m) Sill

Sand 0.28 3 1 Exponential 200 100 1

Shale 0.72 –2 0.6 Exponential 100 100 0.35
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0 m. As shown in Fig. 3, the dimension of the aquifer is
600 m × 600 m and the grid size is 10 m in both horizontal x
and y directions. In this case, the upward and downward
boundaries are assumed to be impermeable, and the head of
the left boundary is fixed to be 0 m. The flux at the right
boundary is shown in Fig. 3c. More details can be found in
Table 1.

It is assumed that there are two facies types in the study
domain, the channelized facies field and lnK field (Fig. 3), and
are constructed in the following three steps:

Step 1. Generate the facies field using the SNESIM algo-
rithm with the training image (Fig. 4) in Strebelle
(2002).

Fig. 6 The estimation results of lnK in case 1

Fig. 7 The probability map in different assimilation steps for case 1
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Step 2. Generate two Gaussian random fields, lnK0 and
lnK1, of the same size as the study domain using
GCOSIM3D (Gómez-Hernández and Journel
1993) with parameters shown in Table 2 for sand
(channel) and shale (nonchannel). In GCOSIM3D,
the log-conductivity fields are characterized by their
mean, standard deviation and directional correlation
lengths in the two spatial dimensions (λx and λy).

Step 3. Assemble the non-Gaussian lnK field by populating
regions with one facies type (from step 1) with log-
conductivity values from the corresponding
Gaussian random field from step 2, i.e. the lnK value
of a grid cell is based on the facies indicator value, if
the facies indicator is equal to 1 then the lnK of this
grid cell is set to the corresponding lnK1 value at this
grid cell, and vice versa.

It should be noted here that both the reference fields and the
initial realizations are generated using the procedures already
mentioned.

In order to estimate the facies map and heterogeneous lnK
map in this synthetic case, nine observation wells are random-
ly chosen (Fig. 3c) to get observation data for data assimila-
tion. The measurement errors of the head are assumed to fol-
low the standard normal distribution with mean of zero and
standard deviation of 0.01 m. The numerical code
MODFLOW−2000 (Harbaugh et al. 2000) is used to solve
the flow model in this case.

Case 1: results and analysis

Estimation results

Figures 5 and 6 show the evolution of three individual reali-
zations, and the ensemble mean and ensemble standard devi-
ation with the four iterations (data assimilations) of the ES-
MDA. The ensemble mean of the initial realizations do not
show any channelized feature, but the spatial structures start to
appear and become evident during the data assimilation. For
instance, at the first assimilation step, the upper channel is well

Fig. 9 The evolution of Ef during
the data assimilation in case 1

Fig. 8 a RMSE of initial
ensemble; b RMSE of final
ensemble
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identified; and at the final step, the ensemble mean has good
connectivity and clear channel boundaries, recovering most
channel locations in the reference model. In addition, Fig. 6
shows that the lnK heterogeneities in two facies are also well
characterized in this case. The standard deviation has de-
creased dramatically from conditioning to head data, with
the highest uncertainly remaining only near the estimated
channel boundary at the final iteration.

Similarly, Fig. 7 shows the evolution of the probability
map of the channel facies with the iterations of the ES-
MDA. The high probability region at the last iteration clearly
identifies the channel location in the reference model, demon-
strating the effectiveness of this proposed method. The

gradually refined probability map with the iterations of the
ES-DMA constrains the facies models simulated from the
SNESIM for the next data assimilation, hence increasing the
estimate accuracy with each iteration.

In order to evaluate the estimation results further and quan-
titatively, two quantitative indicators are analyzed: root mean
square error (RMSE) and the fraction of the correct facies
indicator.

Since the true distribution of the estimated parameters
in the synthetic case is known, it is possible to calculate
the deviation of the estimation from the truth (reference
field). The RMSE is a commonly used indicator in pa-
rameter estimation, measuring the accuracy of estimation

Fig. 10 The data reproduction of
head data in case 1

Table 3 The MAE values of initial and final ensembles for data
reproduction. SD standard deviation

Statistic Initial ensemble Final ensemble

Min 0.4179 0.2453

Max 6.0939 5.3302

Mean 1.9189 0.7869

SD 0.9979 0.6176

Table 4 The MAE values of initial and final ensembles for data
prediction. SD standard deviation

Statistic Initial ensemble Final ensemble

Min 0.6542 0.4733

mMx 19.5809 13.5774

Mean 4.2763 1.5313

SD 3.4339 1.5385
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results. In this work, RMSEi at grid i is computed as
follows

RMSEi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N r
∑
j¼1

N r

Y j;i−Y ref ;i
� �2s

ð13Þ

where Yref,i and Yj,i are the reference value and jth re-
alization value at grid i respectively, and Nr denotes the
total number of realizations used in ES-MDA.

Figure 8 shows the map of RMSE from the initial ensemble
and from the final ensemble. The initial RMSE values in the
study domain are relatively large, indicating the low accuracy

of the heterogeneity characterization. However, after the data
assimilation, the RMSE values decrease dramatically, illus-
trating the ability of this proposed method to capture spatial
heterogeneity.

In this paper, the ‘fraction of correct facies’ is defined as the
number of grid cells for which the facies indicator is correctly
estimated divided by the total number of grid cells in the study
domain. The average fraction of all realizations, Ef, is used to
quantitatively evaluate the quality of the reconstructed facies
model.

Figure 9 shows the evolution of the Ef during data assim-
ilation, and one finds that the Ef increases as the assimilation

Fig. 11 The prediction of head
data in case 1

Fig. 12 a Reference facies distribution; b reference hydraulic conductivity distribution; c the locations of wells in case 2. The blue crosses in c are
pumping wells, and black circles are another 10 observation wells
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step advances. After only two steps, facies indicators in
around 80% of grid cells are correctly estimated. For the final
ensemble, facies indicators are estimated correctly in around
85% of grid cells, which shows the efficiency and effective-
ness of this proposed method.

Data reproduction and prediction performance

The foregoing analysis is focused on demonstrating and illus-
trating the performance of parameter estimation. To further
evaluate the estimation results, the performance of data repro-
duction and model prediction is illustrated here.

To quantitatively assess the performance of data reproduc-
tion and model prediction, the mean absolute error (MAE) is
used in this work. It is calculated as follows

MAE j ¼ 1

nobs
∑
i¼1

nobs

jhsij−hij ð14Þ

where nobs is the total number of head data used for data
assimilation, hi is the ith observation head data, and hsij is the
corresponding simulated head data of jth realization.

The scatterplots of the observed data and the ensemble
mean of the simulated head data are shown in Fig. 10.
Linear fit results andMAE are included to evaluate the overall
model calibration performance. A perfect result would show
the simulated head data on the 45° line. Figure 10 shows that
the cloud from the final ensemble (blue) is much closer to the
45° line compared to the cloud from the initial ensemble.
Based on this, one can argue that this proposed method has
a rather good performance in terms of data reproduction. The
MAE values of the initial and the final ensemble, shown in
Table 3, also suggest that the final ensemble obtained a good
match to data with small uncertainty, since the min, max,
mean, and standard deviation of the MAE are all largely re-
duced compared to those from the initial ensemble.

In order to evaluate the prediction ability, the updated lnK
is used to forecast head data in the next 500 days. All model
parameters remain the same. The scatterplots of true values
and the ensemble mean of the simulated data are shown in
Fig. 11. Linear fit results and MAE are also included to eval-
uate the overall model prediction performance. Figure 11
shows that the average simulated prediction data of the
final ensemble are very close to the 45° line, and they are

Fig. 13 The training image used
in case 2

Table 5 Geostatistical parameters
to characterize the spatial
distribution of lnK within each
facies in case 2

Facies Proportion Mean
[ln(m/day)]

Standard deviation
[ln(m/day)]

Variogram type λx (m) λy (m) Sill

Sand 0.2 3 1 Exponential 200 100 1

Shale 0.7 -2 0.6 Exponential 100 100 0.35

Clay 0.1 -5 0.5 Exponential 100 100 0.25
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dramatically better than those of the initial ensemble,
showing the good prediction ability of this proposed meth-
od. In addition, Table 4 shows MAE values of the initial
and final ensembles. It shows that the final ensemble has
much lower values in terms of min, max, mean, and stan-
dard deviation relative to the initial ensemble, which fur-
ther suggests that the prediction data of the final ensemble
have high accuracy and low uncertainty.

Case 2: three facies case

Case setup

To further investigate the applicability of the proposed scheme
to the estimation of facies and heterogeneous lnK in the

multiple facies case, this proposed method was applied to an
example with three facies.

In this case, the flow is assumed to be transient in a
2D confined aquifer with a starting head of 0 m. As
shown in Fig. 12, the dimension of the aquifer is
600 m × 600 m and the grid size is 10 m in both hori-
zontal x and y directions. In this case, the head of all
boundaries is fixed to be 0 m. There are three pumping
wells in the study domain (blue crosses in Fig. 12c), and
the flux at each pumping well is set as 60 m3/day. The
locations of three pumping wells and another 10 obser-
vation wells are shown in Fig. 12c. More details can be
found in Table 1.

It is assumed that there are three facies types in the
study domain, and the facies field and lnK field (Fig. 12)
are constructed in the same way as introduced in case 1.

Fig. 14 The estimation results of facies indicators in case 2
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A low-permeability facies is added to the training image
used in case 1 to generate a new training image with
three facies, namely high conductivity (sandstone chan-
nels), medium conductivity (shale background), and low
conductivity (lens-shaped clay). The new training image
is shown in Figure 13. More details of parameter settings
can be found in Table 5.

In order to estimate the facies map and heterogeneous lnK
map in this synthetic case, 13 observation wells (3 pumping
wells and another 10 observation wells) are used (Fig. 12c) to
get observation data for data assimilation. The measurement
errors of the head are assumed to follow the standard normal
distribution with mean of zero and standard deviation of
0.01 m. The numerical code MODFLOW−2000 (Harbaugh
et al. 2000) is used to solve the flow model in this case.

Case 2: results and analysis

Estimation results

Figures 14 and 15 show the evolution of three individual re-
alizations, and the ensemble mean and ensemble standard de-
viation with the four iterations (data assimilations) of the ES-
MDA. The ensemble mean of the initial realizations do not
show any evident non-Gaussian and heterogeneous features
despite that single initial realizations have non-Gaussian and
heterogeneous features, but spatial structures start to appear
and become evident during the data assimilation. For instance,
at the first assimilation step, the bottom channel is identified;
at the second step, the upper channel and lens-shaped low-lnK
distribution become evident. Finally, at the fourth step, the

Fig. 15 The estimation results of lnK in case 2
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Fig. 16 The probability map in different assimilation steps for case 2

Fig. 17 a RMSE of initial
ensemble; b RMSE of final
ensemble

Fig. 18 The evolution of Ef

during the data assimilation in
case 2
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ensemble mean has good connectivity within certain facies and
clear boundaries between different facies types, recovering
most non-Gaussianity and heterogeneities in the reference
fields. The standard deviation has significantly reduced from
conditioning to head data, indicating the decrease of uncertain-
ty. Figure 15 shows that the lnK heterogeneities in three facies
types are also well characterized in this case. So, one can argue
that this proposed method has a strong ability to recover non-
Gaussian characteristics and estimate parameter heterogeneities
via conditioning to head data.

In addition, Fig. 16 shows that probability maps gradually
recover the spatial distribution of the three facies in the study
domain based on the updated lnK ensemble, showing the ef-
fectiveness of this proposed method. In this way, it is possible
to convert flow data into soft data on which SNESIM condi-
tions facies realizations, hence increase the accuracy of the

geo-statistical simulation. Furthermore, only after two assim-
ilation steps, the probability map characterizes most spatial
features of the three facies, illustrating the efficiency of this
proposed method.

In order to quantitatively evaluate the estimation results
further, two quantitative indicators are again analyzed: root
mean square error (RMSE) and the fraction of correct facies
indicators.

Figure 17 shows the map of RMSE from the initial en-
semble and from the final ensemble. The initial RMSE
values in the study domain are relatively large, indicating
low accuracy of the heterogeneity characterization.
However, the RMSE values of the final ensemble (estima-
tion result) decrease dramatically compared to the initial
ones, illustrating the ability of this proposed method to
capture spatial heterogeneity.

Table 6 The MAE values of initial and final ensembles for data
reproduction in case 2. SD standard deviation

Statistic Initial ensemble Final ensemble

Min 0.1415 0.0942

Max 109.0834 55.8730

Mean 23.6963 1.7129

SD 24.9279 7.1537

Fig. 19 The data reproduction of
head data in case 2

Table 7 The MAE values of initial and final ensembles for data
prediction in case 2. SD standard deviation

Statistic Initial ensemble Final ensemble

Min 0.1380 0.0965

Max 127.8173 66.0868

Mean 27.5745 1.9438

SD 30.1090 8.2461
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Figure 18 shows the evolution of the Ef during the data
assimilations, and it is evident that the Ef increases as the
assimilation step advances. After only one assimilation step,
facies indicators in around 75% of grid cells are correctly
estimated. For the final ensemble, facies indicators are esti-
mated correctly in around 81% of grid cells, which shows the
efficiency and effectiveness of this proposed method in char-
acterizing non-Gaussian features in the multifacies case.

Data reproduction and prediction performance

The above analysis is focused on demonstrating and illustrat-
ing the performance of parameter estimation. To further

evaluate the estimation results, the performance of data repro-
duction and model prediction is illustrated here.

The scatterplots of the observed data and the ensemble
mean of the simulated head data are shown in Fig. 19.
Linear fit results andMAE are included to evaluate the overall
data reproduction performance in this case as well. Figure 19
shows that the cloud from the final ensemble (blue) is much
closer to the 45° line compared to the cloud from the initial
ensemble, illustrating the accuracy of this proposed method in
terms of data reproduction. The MAE values of the initial and
the final ensemble shown in Table 6 show that the final en-
semble obtained a good match to data with small uncertainty,
since the min, max, mean, and standard deviation of MAE are
all significantly reduced compared to the initial ensemble.

In order to evaluate the prediction ability, the updated lnK
was used to forecast head data in the next 500 days. All model
parameters remain the same. The scatterplots of true values
and the ensemble mean of the simulated data are shown in
Fig. 20. Linear fit results and MAE are also included to eval-
uate the overall model prediction performance. In Fig. 20, it is
easy to see that the average simulated prediction data of the
final ensemble are very close to the 45° line, and they are
dramatically better than those of the initial ensemble, showing
the good prediction ability of this proposed method. In addi-
tion, Table 7 shows MAE values of the initial and final en-
semble. It shows that the final ensemble has much lower
values in terms of min, max, mean, and standard deviation

Fig. 20 The prediction of head
data in case 2

Table 8 Data-assimilation-related parameters used in different cases

Case Name Ensemble size (Ne) Assimilation steps (Na)

Case 2 300 4

Case 3 150 4

Case 4 500 4

Case 5 800 4

Case 6 1,000 4

Case 7 300 2

Case 8 300 8
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relative to the initial ensemble, illustrating the prediction abil-
ity of the proposed method as prediction data of the final
ensemble show high accuracy and low uncertainty.

Discussion

Effect of ensemble size

The results of case 2 shown in the previous section are based
on an ensemble size of 300. To evaluate the impact of the
ensemble size on parameter estimation, an analysis with en-
semble sizes of 150, 300, 500, 800, and 1,000 (Table 8) is

performed here. Note that scalar RMSE and ensemble spread
are used in this section to evaluate the performance of different
parameter settings for simplicity. These two indicators are
defined as follows

RMSEscalar ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nm
∑
i¼1

Nm

Y e;i−Y r;i

� �2

s
ð15Þ

Ensemble Spread ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nm
∑
i¼1

Nm

var Y e;i
� �s

ð16Þ

where Y e;i and Yr,i are the ensemble mean value and the ref-
erence value at location i respectively; var(Ye,i) is the ensemble

Fig. 22 a RMSEscalar for different Na settings; b Ensemble spread for different Na settings

Fig. 21 a RMSEscalar for different Ne settings; b Ensemble spread for different Ne settings
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variance at location i; and Nm is the total number of nodes in
the study domain.

The evolution of the RMSEscalar and the ensemble spread
with data assimilations for the cases with different ensemble
size are shown in Fig. 21. For the RMSEscalar, all cases with
ensemble size of 300 and above show similar performance.
When the ensemble size is only 150, the RMSEscalar increases
slightly after the second data assimilation. In terms of ensem-
ble spread, all cases show somewhat similar behavior. The
small differences in ensemble spread among the cases might
not be statistically significant, since ES-MDA is an ensemble-
based method and its results typically vary to a certain degree
when with different ensembles of the same size. Based on
both the RMSEscalar and the ensemble spread, it seems that
an ensemble size of 300 is an appropriate choice and further
increasing the ensemble size does not provide much improve-
ment to results. Note that in a typical use of the ensemble-
based data assimilation methods for parameter estimation of
subsurface models, increasing ensemble size would result in
large improvement to ensemble spread (maintaining ensemble
variability). The improvement in this case is not obvious be-
cause in the PCM workflow, facies realizations are always
regenerated using the updated probability map, and this
resimulation of facies realizations introduces new variability
to the ensemble for the next data assimilation (acting almost
like covariance inflation in a sense).

Effect of assimilation steps

The number of assimilation steps (Na) is another important
parameter in this proposed method. The results of case 2 (sec-
tion ‘Case 2: three facies case’) are obtained using four data
assimilations. To evaluate the impact of the number of assim-
ilation steps on the results of parameter estimation, an analysis
with two, four, and eight assimilation steps (Table 8) is per-
formed here.

Figure 22 shows the RMSEscalar and the ensemble spread
for the cases with different numbers of data assimilations. It
shows that the quality of parameter estimation is acceptable
when there are only two data assimilations, but it is slightly
less accurate compared to case 2 where Na is 4. However, the
performance of parameter estimation does not improve signif-
icantly as Na further increases. Again, in this example, Na

equal to 4 appears to be a good choice, balancing the perfor-
mance and computation cost.

Conclusions

In order to fully characterize both the facies boundary and
heterogeneity of hydraulic conductivity within each facies, a
modified PCM is proposed, in which a data assimilationmeth-
od that is more suitable for subsurface parameters estimation

(ES-MDA) is used with the probability conditioning method
(PCM) and the estimation is extended to include heterogeneity
within facies. It is of interest to note that, to the best of the
authors’ knowledge, this work is the first time that the PCM is
used to estimate both facies and conductivity fields in ground-
water modeling, especially for models with three facies types.
To illustrate and demonstrate the effectiveness and efficiency
of this proposed method, a two-facies case and a three-facies
case were constructed, both with heterogeneities within each
facies type, and both quantitative and qualitative measures
were used to evaluate the results.

For both test cases, the proposed method was able to iden-
tify nearly correct facies boundary locations in a few data
assimilations. The calibrated models were able to reproduce
head data that were used for conditioning during data assim-
ilation, and the predictability of the calibrated models are also
highly improved compared tomodels that were conditioned to
head data.

A sensitivity analysis is also carried out to evaluate the
impact of two important parameters of the proposed algo-
rithm, ensemble size (Ne) and assimilation steps (Na), using
the case with three facies types. The analysis showed that
for this particular case an ensemble size of 300 and ES-
MDA with four data assimilations are good choices,
balancing the performance and computational cost. As not-
ed in the discussion, increasing ensemble size did not show
as a significant impact, as typically it would for a standard
application of the ensemble-based method to parameter
estimation in subsurface models, because the facies regen-
eration step in PCM injects additional variability after each
data assimilation.

An important issue in conditioning facies simulation to
flow data indirectly is the usage of facies probability maps
for soft conditioning in the SNESIM algorithm. However,
having distinctive hydraulic conductivity for each of the facies
types is a critical condition for the effectiveness of PCM.
Therefore, it is of interest to note that PCMmay not be suitable
for nonclassical non-Gaussian problems where there are no
evident multi-peaks in the probability density function of the
conductivity field, meaning that the distance between peaks of
distributions of the hydraulic conductivity for each facies is
not significant compared to the standard deviation of the dis-
tributions. The impact of the distinctiveness of the distribution
of the hydraulic properties among different facies on PCM is
worth further research and discussion.
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Appendix

In case homo and case heter, the flow is assumed to be tran-
sient in a 2D confined aquifer with a starting head of 0 m. As
shown in 1, the dimension of the aquifer is 600 m × 600 m and
the grid size is 10 m both in horizontal x and y directions. The
height of the model is 10 m. The upward and downward
boundaries are assumed to be impermeable, the head of the
left boundary is fixed to be 0 m, and the flux at the right
boundary is set as −300 m3/day. Additionally, the porosity
and the specific storage are set to 0.3 and 0.0003 m−1

respectively
Meanwhile, there is a line source at the left boundary with a

constant concentration of 100 mg/L. It is of interested to note
that only advection and dispersion are considered in these two
comparing cases. The longitudinal dispersivity and horizontal
transverse dispersivity are set to be 10 and 1 m, respectively.
The governing equation for aqueous species’ transportation is
defined as (Zheng 2006):

∂Cn

∂t
¼ ∇ � D � ∇Cnð Þ−∇ � vCnð Þ þ qs

θ
Cs

n ð17Þ

where Cn is the aqueous concentration of the nth component
[M L−3]; t is the time [T]; D is the diffusion coefficient
[L2 T−1]; v = (−K ∇H)/θ[L2 T−1]; qs is the volumetric flow rate
per unit volume of the aquifer [T−1]; θ is the effective porosity;
and Cn

s is the concentration of the source or sink flux of the
nth component [M L−3]. The numerical code MT3DMS
(Zheng 2006) is used to solve the solute model. The total
simulation time is 500 days with 100 time steps.
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