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Abstract
An optimization approach is used for the operation of groundwater artificial recharge systems in an alluvial fan in Beijing, China.
The optimization model incorporates a transient groundwater flow model, which allows for simulation of the groundwater
response to artificial recharge. The facilities’ operation with regard to recharge rates is formulated as a nonlinear programming
problem to maximize the volume of surface water recharged into the aquifers under specific constraints. This optimization
problem is solved by the parallel genetic algorithm (PGA) based on OpenMP, which could substantially reduce the computation
time. To solve the PGA with constraints, the multiplicative penalty method is applied. In addition, the facilities’ locations are
implicitly determined on the basis of the results of the recharge-rate optimizations. Two scenarios are optimized and the optimal
results indicate that the amount of water recharged into the aquifers will increase without exceeding the upper limits of the
groundwater levels. Optimal operation of this artificial recharge system can also contribute to the more effective recovery of the
groundwater storage capacity.

Keywords Artificial recharge . Optimizationmodel . Genetic algorithm . Numerical modeling . China

Introduction

Artificial recharge plays a vital role in the sustainable manage-
ment of groundwater resources. More storage of water in aqui-
fers via artificial recharge is necessary to save water in times of
water surplus for use in times of water shortage (Oki and Kanae
2006). Particularly in some arid or semi-arid areas, it is neces-
sary to develop effective and efficient artificial recharge sys-
tems to supplement aquifers. Many artificial recharge systems
have been implemented around the world in the last few de-
cades (Al-Assa’d and Abdulla 2010; Babcock and Cusing
1942; Peters and Ji 2010; Wright and du Toit 1996).

Beijing in eastern China, with a population of over
19 million (BSB 2011), has been exploring groundwater as
the major water supply source for decades. Persistent overex-
ploitation of groundwater has resulted in alarming water level
decline and some large regional groundwater depression
cones have developed. Recovery from overexploitation is ex-
pected to be very slow. For this reason, China initiated the
Middle Route Project (MRP) for the South-to-North Water
Transfer Project (CCSNWD 2008), which will provide more
water for the recovery and efficient management of ground-
water resources (Li et al. 2017) such as artificial recharge of
groundwater.

However, designing the feasible and efficient operation of
an artificial recharge system is far from simple because human
activities have placed various constraints on land use, and the
aquifers’ characteristics are usually complex and the response
of water levels to recharge is nonlinear. Nevertheless, deter-
mining the optimized operation of an artificial recharge sys-
tem is preferred over constructing too many recharge facilities
that may be used inefficiently. Moreover, implementing opti-
mized operation of an artificial recharge scheme is important
for increasing groundwater storage as much as possible and
avoiding undue water level rises under the recharge and the
adjacent areas.
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Before an artificial recharge system is developed, it is nec-
essary to assess the potential of the recharge facilities. Pilot
testing is suggested as the most reliable way to evaluate the
infiltration rate of a recharge facility (Bouwer 2002), but full-
scale field testing is expensive, and the results do not assist in
determining how many facilities should be installed.
Numerical simulation is a widely used method to assess the
potential and the efficiency of an artificial recharge system
(Flint et al. 2012; Izbicki et al. 2008; Sayit and Yazicigil
2012; Singh et al. 1996). However, it cannot automatically
calculate the facilities’ optimal recharge rates under given
constraints. By combining a groundwater simulation model
with an optimization model, it is possible to solve the problem
effectively. This technique is known as simulation optimiza-
tion (S/O), and it is a powerful tool in groundwater resources
management.

Optimization of groundwater systems has been the subject
of many studies (Gorelick 1983). Many optimization studies
have been conducted in the field, addressing, for example,
remediation design (Mantoglou and Kourakos 2007; Zheng
and Wang 1999), identification of pollution sources (Aral
et al. 2001; Singh et al. 2004) and saltwater intrusion preven-
tion (Abarca et al. 2006; Cheng et al. 2000). However, the
actual operation of a groundwater artificial recharge system
has been attempted in only a few studies.

The focus of the presented paper is on optimization of an
artificial groundwater recharge system in Beijing. The operat-
ing objective is to maximize the volume of water recharged
into the aquifers, while satisfying hydraulic constraints. An
optimization model is proposed, which directly incorporates
the groundwater flow model. In this study, a parallel genetic
algorithm (PGA), with application of the multiplicative pen-
alty method (MPM) and the relative fitness scaling function, is
developed using the FORTRAN language to solve this opti-
mization problem. TheMPMmethod is used to penalize these
individual violated constraints, to ensure that the proper indi-
viduals could be selected, while the relative fitness function is
employed to deal with population stagnation and premature
convergence. In addition, the effect of parameter uncertainty
on optimization results is analyzed using the scenario model-
ing method. Lastly, the optimization results are compared with
those of previous studies.

Study area

The study area, the Yongding River alluvial fan, is part of the
Beijing Plain (Fig. 1). Beijing has a temperate continental
climate that is cold and dry in the winter, hot and humid in
the summer, and moderate temperatures prevail during spring
and autumn. The long-term (1958–2006) average annual pre-
cipitation is around 590 mm, while the long-term (1979–
2006) average annual pan evaporation in the Beijing plain is

around 1,725 mm. The pan water evaporation is almost three
times as much as the precipitation (Hu 2017).

Yongding River is the largest river flowing through Beijing
Municipality, at 650 km in length, and it drains an area of
47,016 m2. It is dammed by Guanting Reservoir, the biggest
reservoir serving Beijing; however, river inflows have drasti-
cally decreased since the 1970s. In addition, the consecutive
droughts since 1999 have contributed significantly to the fur-
ther reduction of river inflows.

The study area consists of Quaternary deposits covering a
series of Paleozoic to Mesozoic geological formations, which
comprise the impermeable base of the aquifers. The
Quaternary aquifer system is complex with variable sediment
thickness and lithology (Fig. 2; Gu et al. 2017). From north-
west to southeast, the sediment thickness increases, whereas
grain size decreases with land surface topography gradually
sloping south-eastwards, while the aquifer systems change
from a single gravel aquifer to multiple aquifer systems of
sand layers separated by silt and clay layers (Hao et al.
2012; Yang et al. 2012).

The western and north-western aquifers are impermeable
boundaries composed of sandy shale and lava. The eastern
aquifers’ boundary is a natural aquifer boundary composed
of relatively less permeable sediments, including multiple
layers of silt sand and clay. These boundary conditions mean
that the aquifers become a relatively independent
hydrogeological unit. Considering the rapid decline of
groundwater levels caused by human overexploitation, an ide-
al groundwater-level depression has been formed, which
could act as a reservoir, covering approximately 333 km2 in
area (Cui et al. 2009).

Methodology

Figure 3 illustrates the framework of the optimization model
developed to perform the optimal solution search. The opti-
mization model mainly includes the following three compo-
nents: (1) a groundwater flow model for simulating the
groundwater response of the aquifer under different artificial
recharge schemes; (2) a recognizer (a program to calculate
fitness and penalty points) to evaluate the fitness of each
scheme and then give penalty points both to the fitness of
the scheme, which violated the constraints, and to the corre-
sponding variables; and (3) a parallel genetic algorithm (PGA)
technique for searching for a global optimal solution.

Groundwater-flow-simulation model

A transient regional groundwater flow model was developed
consisting of three aquifers: the top aquifer is phreatic and the
other two aquifers are confined. The surface and the bottom of
each aquifer was delineated based on digital elevation model
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(DEM) data and the data of 49 boreholes using Kriging inter-
polation, generating aquifer contour lines.

The modeling domain was discretized into a rectangular
grid, varying from 10 × 10 m to 200 × 200 m, with
MODFLOW 2005 (Harbaugh 2005). At the recharge site pro-
posed, the minimum grid size is 10 × 10 m, while the grid size
becomes larger gradually from the recharge sites to the other
place away from the recharge sites. The modular structure of
MODFLOW is beneficial when it is coupled with an optimi-
zation model. The 11-year simulation period is from 16
June 2000 to 15 June 2011, and it is divided into 132 stress
periods, with a stress period of amonth. For each stress period,
the average hydrologic conditions are assumed constant.

The mountain front in the west was defined as an
inflow boundary and the flux rate from the western
boundary was determined according to a previous study
(HEGTB 2008). The northern and southern boundaries
were defined as no-flow boundaries because the flow
lines are generally parallel to them under present condi-
tions; however, the northern and the southern boundaries
were changed to general head boundaries in the predic-
tion model to cope with the influence of artificial re-
charge on the flux rate out of the boundaries (Fig. 1).
The eastern boundary was also defined as a general head
boundary and the groundwater heads were obtained from
measured data.
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The initial aquifer parameter values that pertain to ground-
water flow were zoned and assigned based on the sediment
features and the results from the previous investigation
(BHEGS 1982). The distribution of hydraulic conductivity
values varied from 15 to 300 m/day. The recharge and dis-
charge volumes of aquifers were also collected from the pre-
vious studies and investigations (Zhai and Wang 2012; Zheng
et al. 2009). Aquifer parameters were adjusted during the cal-
ibration process using long-term groundwater level data ob-
tained from 15 observation wells.

Optimization model

Objective function and decision variables

The purpose of the groundwater recharge system considered
here is to replenish the aquifers with surface water through
several recharge facilities. Therefore, the objective of this op-
timization problem is to maximize the total volume of water
recharged into the aquifers. The objective function can be
expressed as follows:

Maximize Qopt ¼ ∑M
i¼1∑

T
j¼1QijΔt j ð1Þ

where the decision variableQij represents the recharge rates in
each of the M facilities in the time period j; M includes re-
charge basins, injection wells, and dry rivers;Δtj is the length
of the time period j. The value of Qij in each facility can be
adjusted during the recharge period in order to satisfy the
constraints, particularly under a long continuous recharge
condition.

The location of each recharge site is another implicit vari-
able. A number of promising recharge sites are initially select-
ed as potential recharge locations. However, after optimiza-
tion, the optimal recharge rates of some of these facilities may
be relatively small, due to locality-specific constraints in
groundwater levels or the influence of other recharge

facilities; thus, in practice, these locations are not suitable for
artificial recharge and should be excluded during the artificial
recharge system’s design.

Constraint conditions

Optimization of artificial recharge must come under some
constraints. Firstly, the optimized recharge volume of a facility
cannot exceed its potential recharge ability. Secondly, the
groundwater levels after recharge cannot exceed the upper-
limit water levels, otherwise groundwater may leach from
the landfills in the study area and then cause contamination
of water. Thus, two constraints are taken into consideration in
the optimization problem: the infiltration rates of the recharge
facilities and the groundwater levels. Therefore, the objective
function (Eq. 2) is subject to:

0 < Qij≤Qmax;i i ¼ 1; … ; M ð2Þ
H j;t ≤H limit

j j ¼ 1; …; N ð3Þ

where Qmax,i is the maximum infiltration rate of eachM facil-
ities, which can be obtained by field testing and the analogy
method; Hj,t is the groundwater head at point j at time step t
predicted by the simulation model and Hj

limit denotes the up-
per limit of groundwater levels due to land use and/or envi-
ronmental constraints.

Parallel genetic algorithm

The genetic algorithm (GA), the most widely used evolution-
ary algorithm method, is a stochastic global search procedure
based on the mechanics of natural selection and genetics
(Goldberg 1989; Holland 1992). In the GA, the solution is
obtained with a random search process based on the ‘survival
of the fittest’ concept. Moreover, the GA can be directly
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applied to parallelization in high-performance computing, in
order to search for the optimal solution efficiently.

In the present study, an OpenMP-based PGA is developed
on a shared-memory computer for parallel computations of
this optimization problem. The OpenMP supports multipro-
cessing programming in FORTRAN and gives a simple and
flexible interface for developing parallel multi-physics appli-
cations efficiently, especially for groundwater systems

(Amritkar et al. 2012; Dong et al. 2010). In the PGA, one of
the processors is used to control the operation of the GA (se-
lection, crossover, mutation, reproduction), and then all the
other processors simultaneously calculate the results of a large
number of simulation models (MODFLOW), which represent
the responses of the groundwater system to different levels of
stress.

Selection method and the relative fitness scaling
function

In the optimization model, the fitness function gives individ-
ual scores based on how well they perform under the given
condition. The fitness in this study is equal to the volume of
water recharged to an aquifer, and each individual has a cor-
responding fitness score. The higher the score an individual
has, the higher the chance the individual is selected by the
selection method. Here the commonly used roulette wheel
selection is applied in the GA, whereby the probability of an
individual being selected for reproduction is proportional to its
fitness. However, it faces two main challenges: population
stagnation and premature convergence. In order to solve these
problems, a fitness scaling technique is used, which is known
as relative fitness (RF) for roulette-wheel-parent selection
(Gupta 2009). Relative fitness scaling gives most individuals
a small or average score and very high score to a few individ-
uals with high fitness; thus, these individuals with high fitness
would be selected efficiently. The RF scaling function can be
described as follows:

f xð Þ ¼ x
1
ffiffiffiffiffiffiffiffiffiffiffi

1−
x2

c2

r

0

BB@

1

CCA ð4Þ

where x is the fitness of an individual, i.e., the volume of water
recharged to the aquifer, which is calculated when an individ-
ual (a recharge scheme) was created; c is the ceiling fitness,
which can take on values greater than or equal to the maxi-
mum possible fitness. It can be maintained as a constant or
vary with the number of generations. In the present study, the
ceiling fitness is equal to the maximum volume of water that
could be recharged to the aquifer without considering the con-
straint of limited water level, i.e., the sum of all potential
recharge facilities’ infiltration ability.

Penalty function method

The GA is directly applicable only to unconstrained optimiza-
tion. It is necessary to use some additional methods to deal
with constraints when the GA is used (Yeniay 2005). The
penalty function is mostly used to deal with constraint condi-
tions (Nanakorn and Meesomklin 2001). The method
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transforms a constrained problem to an unconstrained one
with the penalty function added into the fitness function; thus,
the fitness of individuals violating the constraints decreases
greatly, and their possibility of producing offspring is reduced.
In the present study, the multiplicative penalty method (MPM)
is used to incorporate constraints into the objective function
(Carlson 1995; Hilton and Culver 2000). In general, this meth-
od is the more robust method for constraint handling, because
it can find feasible solutions over a broad range of weight
values. The new objective function is then determined by the
following:

Qopt ¼ αi; j∑M
i¼1∑

T
j¼1Qij△t j ð5Þ

where αi,j is the multiplier that penalizes an infeasible string. It
is given by the function:

αi; j ¼ 1

1:0þ ∑M
i¼1∑

T
j¼1ωVi; j

ð6Þ

where the constraint violation Vi,j is defined as follows:

Vi; j ¼ max 0;H j;t−H j
limit

� � ð7Þ

and ω =weight applied to the violation on constraint Vi,j. The
constraint weight ω can also be kept constant or vary as the
GA generations proceed.

Implementation of the optimization problem

Infiltration rates of facilities

Figure 4 shows the potential surface facilities of the artificial
recharge system in the study area. It consists of four gravel pits
(XHC, LGZ, BW and LS), one dry river known as Nan han
River (NH River) and a number of recharge wells, which may
be installed at sites relatively close to the rivers, where no
building is located. The recharge water from the Middle
Route Project (MRP) can be transferred from Kunming Lake
to these recharge facilities mentioned previously.

In most previous studies, the infiltration rates of these fa-
cilities were kept constant in numerical simulations. The re-
charge period was manually reduced to prevent simulated
groundwater levels from exceeding the upper limits; however,
this is not the most efficient way to manage artificial recharge
facilities. In optimization works, one needs to make the infil-
tration rates vary with time; therefore, the facilities’ infiltration
rates should be expressed as follows:

Qt
i ¼ αt

iQmax;i ð8Þ

where Qi
t is the infiltration rate for facility i at time t, Qmax,i

is the maximum infiltration rate for facility i and αi
t is the

coefficient automatically searched by the optimization
model.

Table 1 shows the maximum infiltration rates (Qmax,i) of
the infiltration facilities cited from the previous study
(Hao et al. 2014). In that study, the analogy method was used
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Fig. 4 The locations of the potential surface infiltration facilities and
observation wells. 1–12 represent recharge well fields. 13–16 represent
XHC gravel pit, LGZ gravel pit, BW gravel pit and LS gravel pit,
respectively. Observation wells are not only installed in the location
shown in the figure, but also in the location where infiltration facilities
are located. These observationwells have the same name as the associated
facilities

Table 1 Maximum infiltration rates of the infiltration facilities

Infiltration facility
name

Area (m2)/length × width (m2)
/diameter × depth (m·m)

Max infiltration rate
(m3/d)

Gravel pits:

XHC 26,000 69,120

LGZ 68,000 181,440

BW 52,000 69,120

LS 163,000 432,000

Nan han River 7,040 × 6.4 86,400

Recharge well 0.5 × 60 4320
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to determine the maximum infiltration rates of these re-
charge facilities. Liu et al. (1988) once conducted a field
experiment of artificial recharge in this area. The recharge
facilities they used included: (1) an average 5.5 m wide,
about 1,150-m-long dry river which had a steady recharge
rate of 26,784 m3/d; (2) a gravel pit with an area of
26,000 m2, which had a steady infiltration rate of approxi-
mately 86,400 m3/d; (3) a 25-m-deep large-diameter hole
(8 m) with steady infiltration rate of 25,920 m3/d; (4) and a
42-m-deep well with diameter of 0.5 m with an infiltration
rate of 7,776 m3/d.

Since the infiltration facilities proposed in this study are
located in the same hydrogeological unit as Liu’s study,
they have a similar hydrogeological setting. Therefore, it
is feasible to determine the infiltration rate herein by ana-
logue analysis. As the artificial recharge process normally
lasts for a long time, the vertical hydraulic gradient could be
assumed to be close to one. Thus, the maximum infiltration
rates of the surface infiltration facilities (the gravel pits and
the river) were determined to linearly correlate to their in-
filtration areas and the hydraulic conductivity of the aqui-
fers. On this assumption, the derived maximum infiltration
rate of the surface facilities varies from 69,120 to
432,000 m3/d. According to Liu’s infiltration experiment
of the recharge wells, and considering the difference in
the hydraulic conductivity of the aquifers and the time
needed for backwash, 4,320 m3/d was determined as the
maximum infiltration rate for a 60-m-deep recharge well
with a diameter of 0.5 m.

Artificial recharge scenarios

Two artificial recharge scenarios are proposed in this
optimization problem. The first scenario only considers
using surface infiltrations facilities, whereas additional
recharge wells are installed under the second scenario
in order to recharge more water into the aquifers. The
recharge rates of the surface infiltration facilities and
recharge well fields under water level constraints are op-
timized using the PGA.

The upper limit of the groundwater level refers to the
highest elevation that does not have a negative effect on the
environment, such as water percolating through landfills or
foundations of buildings. The elevation of the upper limit is
calculated according to the suitable groundwater level re-
quired by environmental geology and engineering geology
investigations in Beijing (Cui et al. 2009).

Groundwater levels in 2015 are simulated with the ground-
water flow model MODFLOW and used as the initial condi-
tion of the optimization model. The recharge period is set as
6 months, from May until October, because that period in-
cludes the flood season, so that there is possibly some surface
water surplus.

Results and discussion

Model calibration

The model was manually calibrated by trial and error.
Preliminary analysis indicated that rainfall and artificial ex-
ploitation had the greatest influence on the groundwater-
level fluctuations of the model. Therefore, to minimize the
difference between the simulated and the observed groundwa-
ter levels, the rainfall recharge and artificial exploitation rates
had to be adjusted; additionally, the hydraulic conductivity
values of different subareas were adjusted to further reduce
the difference between them. Finally, the storage coefficient
was adjusted so that the simulated groundwater levels were
closer to the observed. These steps were repeated until the
difference between the simulated and the measured heads of
each observation well were within 1 m. The average differ-
ence of all stress periods is referred to as the mean residual.
Table 2 shows the mean residual of the 15 observation wells in
the study area. In general, the mean residual values range from
−0.71 to 0.97 m.

To assess the accuracy and reliability of the calibrated mod-
el, the Nash-Sutcliffe efficiency (NSE) was used as shown in
Eq. (7):

NSE ¼ 1−
∑
n

i¼1
Y obs
i −Y sim

i

� �2

∑
n

i¼1
Y obs
i −Ymean

i

� �2 ð9Þ

where Yi
obs is the ith observed groundwater head of one ob-

servation well, Yi
sim is the ith simulated level of this observa-

tion well, Yi
mean is the mean observed level of the observation

well, and n is the total number of observation wells.

Table 2 Calibration
error of observation
wells

Observation
well code

Mean
residual (m)

NSE

46 −0.64 0.912

98 0.97 0.898

667 0.37 0.939

45 −0.54 0.936

17 −0.66 0.933

DJ4 −0.03 0.939

173 0.13 0.944

522 0.41 0.937

DJ35–1 −0.58 0.941

22 0.23 0.942

150 −0.71 0.924

DJ35–3 0.48 0.902

DJ41 0.75 0.935

473 −0.25 0.947

D6 −0.49 0.933
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There are 15 observation wells used for calibration for the
period of June 2000 to June 2011. All the values of NSE
except one are higher than 0.9 as shown in Table 2, indicating
that simulated results get good agreement with the observed
groundwater levels. Through the calibration process, the mod-
el adequately reproduced the observed water level variation
throughout the aquifers.

Analysis of the RF scaling function and penalty
function

The proposed PGAwith the RF scaling function can be used
to determine the optimal solution; however, the convergence
rate is significantly affected by the ceiling value (c) in the RF
scaling function, as shown in Fig. 5. Without applying the RF
scaling function method, the optimization model fails to reach
the optimal fitness. This is because the difference among all
the individuals is not large enough that the ordinary roulette-
wheel selection method is able to choose the fittest ones.
Setting the value of c to 1.30 or 1.05 times that of the maxi-
mum possible fitness (Fmax) of the optimization problem, the
average fitness value increases rapidly at the beginning, but it
also cannot achieve the optimal solution within 200 genera-
tions owing to the drastic decline of the convergence rate from
approximately the 30-th and the 50-th generation, respective-
ly. However, one can obtain higher fitness values by setting c
to 1.05 times of the Fmax rather than 1.30 times, which sug-
gests that the lower the value of c, the higher the fitness can
become within the same generation. When c is equal to Fmax,
which is the lowest value of c that satisfies the RF scaling
function, one can rapidly achieve the optimal solution within
about 100 generations. This is because the most suitable indi-
viduals are valued more under this situation. Considering its
fast convergence rate, the optimal solution sometimes may be
just the local-optimal solution; therefore, a varying c is neces-
sary in the RF scaling function. As shown in Fig. 5, with c
exponentially dropping from 1.05 of the Fmax to a value very

close to Fmax, the convergence rate of the optimization model
is relatively much slower and more reliable than that when c is
equal to Fmax. In this study, c is used as a variable.

Penalty functions are commonly used to handle constraints
in the GA. In this study, the MPM is used because of its
robustness; however, the value of w (penalty weight) also
affects the GA convergence rate, as shown in Fig. 6. As this
parameter is related to the specific optimization problem and
there is no recommended default value, the value of w should
be determined first.

ω = 0 means that it does not penalize any individuals that
violate constraints. Under this situation, the fitness value
would finally reach the maximum fitness, which obviously
is not the optimal solution as expected. When ω is set to 1 or
10, the same fitness value is achieved at the last generation,
which is the true optimal solution, indicating that the MPM is
able to play its role in penalizing constraint violations. In
addition, the MPMwith ω = 1 is more efficient and stable than
that when ω = 10; thus, the optimal solution can be reached
after much fewer generations. However, if ω is set too large,
such as 100, the convergence rate becomes very slow, because
the MPM with ω = 100 would penalize the individuals with
violation too much; thus, more time would be required to find
the optimal solution. Consequently, for the present study, the
MPM with ω = 1 is the most stable and efficient penalty func-
tion and is selected for the PGA.

Fig. 5 Effect of the ceiling value (c) in the RF scaling function on the
convergence rate. The solution does not consider any constraints of the
optimization problem

ω ω 1

ω 10 ω 100

Generations

3

F
it
n
e
s
s
 v
a
lu
e
(
m

)

Possible maximum fitness

0 50 100 150 200

1.0E+08

1.5E+08

2.0E+08

2.5E+08

3.0E+08

3.5E+08

Fig. 6 Effect of the penalty weight (ω) on the convergence

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 50 100 150 200 250

V
a
lu
e
 (
1
0
8
 m

3
)

Generations

Max

Average

Min

Fig. 7 The objective function values versus generations for scenario 2

1756 Hydrogeol J (2018) 26:1749–1761



Optimal volume of recharge water and uncertainty

In the optimization problem for the Beijing case, the initial
generation is randomly produced. The population size M is
200 with the crossover probability Pc = 0.80 and the mutation
probability Pm, = 0.05. Each run is performed for 300 gener-
ations. Figure 7 shows that the optimization model for scenar-
io 2 reaches a steady value of the average fitness within 300
generations. The same results can be found for scenario 1 (not
shown here).

The improvements over the trial-and-error results of the
previous model can be clearly seen in Fig. 8. The total re-
charge rates increase from 127.42 × 106 m3 and 243.48 ×
106 m3 to 140.46 × 106 m3 and 275.55 × 106 m3 for scenario
1 and scenario 2, respectively. Scenario 2 has a relative larger
increase than scenario 1, because additional recharge wells are
taken into consideration under scenario 2. The more recharge
facilities are analyzed in the study area, the more complex the
problem is. Moreover, it is much more difficult to find an
optimized solution by the trail-and-error method; therefore,
the optimization solution is more effective under scenario 2
than under scenario 1.

The groundwater model sensitivity to parameters in the
study area has been illustrated in the literature (Fang et al.
2015). It was found that hydraulic conductivity is the most
sensitive factor affecting the groundwater model uncertainty.
Therefore, this study mainly presented the uncertainty
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Table 3 Optimization uncertainty
related to hydraulic conductivity Optimization model Hydraulic conductivity

variation
Optimal total volume of
recharged water (106 m3)

Change ratio of the
volume

Model I +20% 281.28 2.08%

Model II +10% 279.11 1.29%

Model III 0% 275.55 0.00%

Model IV −10% 271.35 −1.52%
Model V −20% 269.02 −2.37%
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analysis of the optimization resulting from the hydraulic con-
ductivity. The uncertainty analysis was addressed by
employing the scenario modeling method (Anderson et al.
2015), and scenario 2 was selected to assess the uncertainty.
Five optimization models with different values of hydraulic
conductivity in scenario 2 were run as shown in Table 3.
Model III is the base model with calibrated hydraulic conduc-
tivity. The hydraulic conductivity in model I and model II is
set larger than that of the base model with 20 and 10%, re-
spectively. In contrast, the hydraulic conductivity in model IV
and model V is less than that of the base model with 10 and
20%, respectively. Optimization results show that the optimal
total volume of the recharged water varies when hydraulic
conductivity changes, but the variation range is much smaller.
When the hydraulic conductivity decreases by 10%, the opti-
mal total volume of the recharged water just decreases by

1.52%. A similar trend can be found when the hydraulic con-
ductivity increases. These results indicate that the uncertainty
of hydraulic conductivity will have little impact on the opti-
mization problem. A reliable solution can be achieved through
the optimization model even if the parameters of the ground-
water model have some uncertainty.

Optimal recharge rate and groundwater level
variation

Optimization reduces the recharge rates of some facilities or
recharge well fields. Figure 9 shows that recharge rates of sites
1, 2, 14 (LGZ gravel pit) and 16 (LS gravel pit) would de-
crease; only in that way would the calculated water levels of
observation wells beside recharge facilities not exceed the
upper limits.
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Fig. 10 Groundwater-level variation under optimized scenario 2
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The recharge rates of big facilities or recharge well fields
with large areas are prone to decrease in the optimization
model. The LS gravel pit has a large infiltration capacity of
432,000 m3/d because it has a very large area for artificial
recharge. However, the groundwater level does exceed the
upper limit if such an amount of water is put into the aquifers
at a given time. After optimization, the recharge rate of the LS
gravel pit gradually decreases from 432,000 to 334,405 m3/d.
Only in this way does the groundwater level of obs-16 in-
crease dramatically without exceeding the upper limit of the
groundwater levels.

Recharge facilities or recharge well fields also affect each
other if the distance between them is very small. As shown in
Fig. 4, the distance between the recharge site 1 and site 15
(BW gravel pit) is only 110 m. Under the influence of the BW
gravel pit, the optimal recharge rate of site 1 decreases dra-
matically from 35,058 to 1,783 m3/d. At a certain level, it is
unwise to consider it as a recharge site for the installation of
recharge wells, because the optimal solution is much less than
that for other facilities or recharge well fields.

However, the upper limit of groundwater levels sometimes
does not seriously affect the artificial recharge operations at
some recharge sites. As shown in Fig. 10, in the groundwater
levels of Obs-10, Obs-11 and Obs-12, after artificial recharge,
there is a large distance between the water levels and the upper
limits, up to 20 m. Under these circumstances, other con-
straints, such as land use and capacity of recharge facilities,
may be the main constraints for artificial recharge, rather than
the upper limit of the groundwater levels.

Figure 11 shows the changes in groundwater levels when
the optimal artificial recharge stops for the two examined

scenarios. The maximum water-level increase, compared with
no artificial recharge, is 26 m for both scenarios. To illustrate
this point, it was considered that the water-level rise is repre-
sented by the 0.5 m isoline. When the process of artificial
recharge stops, the area over which groundwater level in-
creased covers 127.56 and 163.12 km2, respectively for sce-
narios 1 and 2, and will include the third water-supply plant.
Then, coverage will gradually increase, and more groundwa-
ter source fields will be usable due to the groundwater level
rise.

Groundwater budget change

Table 4 shows the changes in the groundwater budget under
the two optimal recharge scenarios and under the condition of
no artificial recharge. By calculation, the deficit in the ground-
water balance changes under both scenarios with the balance,
increasing from −94.35 × 106 m3 to 43.21 × 106 m3 and to
174.00 × 106 m3, respectively. This indicates that the opti-
mized artificial groundwater recharge under both scenarios
can effectively improve the groundwater storage of the
aquifers.

Under scenario 1, precipitation infiltration remains the
main recharge source in the study area, accounting for
34.37% of the total recharge. Nevertheless, under scenario 2,
artificial recharge water is the main recharge source, contrib-
uting 41.55% of the total recharge, followed by rainfall infil-
tration, which accounts for 26.37% of the total recharge.
Therefore, artificial recharge is an efficient way to store water
in aquifers in the study area.

Fig. 11 Groundwater-level-rise contours under a scenario 1 and b scenario 2 compared with the ‘no artificial recharge’ scenario
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Discharge mostly occurs through exploitation, accounting
for 83.69 and 82.96% of the total discharge, respectively for
scenarios 1 and 2. Even though a large amount of water is
artificially recharged into the aquifers, lateral outflow increases
marginally at the first hydrological year, from 76.16 × 106 m3/
year to 79.07 × 106 m3/year and 83.36 × 106 m3/year, respec-
tively. Evaporation in the study area remains zero, as neither
scenario results in increased evaporation. Because the ground-
water level is quite deep in the study area, it is lower than the
extreme evaporation depth even after artificial recharge. That is,
within a short time, the artificially recharged water could be
almost stored in the aquifers, and the storage of groundwater
could be efficiently increased in the study area.

Conclusions

This study emphasizes the importance and necessity of the
optimal operation of artificial recharge systems, to supplement
aquifers in areas where groundwater has been overexploited.
An optimization model has been developed for an artificial
recharge system in Beijing, which integrates the three-
dimensional groundwater flow model MODFLOW and the
genetic algorithm. The facilities’ recharge rates in the optimi-
zation model are formulated as a nonlinear programming
problem to maximize the amount of surface water recharged
into the aquifers. In addition, the optimum locations for re-
charge facilities are determined from the results.

The optimal solution to this problem is obtained using a par-
allel genetic algorithmmethod, and the parallel genetic algorithm
can largely reduce the computation time for this kind of problem,
because MODFLOW models employed by the optimization
model can run simultaneously in different cores rather than only
one MODFLOW model running at a given time.

The presented results of the optimization problem greatly
improve the original model. The amount of water recharged
into the aquifers increases from 127.42 × 106 to 140.46 ×
106 m3 and from 243.48 × 106 to 275.55 × 106 m3 for scenario
1 and scenario 2, respectively, without exceeding the upper
limits of groundwater. Therefore, the proposed optimization
method improves the efficiency of the recharge system.

It is predicted that groundwater levels will rise under the
optimal recharge scenarios, and the water levels recovery area
would eventually cover some important well fields, especially
the third water-supply plant. It is also expected that it will
efficiently augment the groundwater storage without inducing
much discharge from the aquifers in the short term, like lateral
outflow or phreatic water evaporation.
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