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Abstract
Coal-floor water-inrush incidents account for a large proportion of coal mine disasters in northern China, and accurate risk
assessment is crucial for safe coal production. A novel and promising assessment model for water inrush is proposed based on
random forest (RF), which is a powerful intelligent machine-learning algorithm. RF has considerable advantages, including high
classification accuracy and the capability to evaluate the importance of variables; in particularly, it is robust in dealing with the
complicated and non-linear problems inherent in risk assessment. In this study, the proposed model is applied to Panjiayao Coal
Mine, northern China. Eight factors were selected as evaluation indices according to systematic analysis of the geological
conditions and a field survey of the study area. Risk assessment maps were generated based on RF, and the probabilistic neural
network (PNN) model was also used for risk assessment as a comparison. The results demonstrate that the two methods are
consistent in the risk assessment of water inrush at the mine, and RF shows a better performance compared to PNN with an
overall accuracy higher by 6.67%. It is concluded that RF is more practicable to assess the water-inrush risk than PNN. The
presented method will be helpful in avoiding water inrush and also can be extended to various engineering applications.
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Introduction

Mining-water inrush constitutes one of the major disasters in
coal mine production. Compared with gas outbursts, coal dust
explosions and other coal mine accidents, water-inrush inci-
dents result in greater economic loss and the recovery to pro-
duction is more challenging (Wu et al. 2016; Li et al. 2013;
Sun et al. 2012). In North China, the near-surface coal has
almost been fully exploited, so with increased mining depths,
the water pressure in the underlying limestone aquifer keeps

increasing, and in some coal mines, the pressure is up to as
much as 10 MPa or more (Wu et al. 2011; Sun et al. 2012; Li
et al. 2015). According to statistics, more than 16 billion tons
of coal resources are at risk of coal-floor water inrush and up
to 60% of coal mines are threatened by the confined karst
water to varying degrees (Meng et al. 2012; Wu et al. 2009).
Furthermore, the hydrogeological conditions are becoming
increasingly complicated; therefore, it is essential to accurate-
ly predict the risk of coal-floor water inrush (Shi et al. 2014;
Sun et al. 2012; Goldscheider 2005).

In the past several decades, numerousmethods and theories
for assessing the risk of coal-floor water inrush have been
developed. The most widely used method in China is the
water–inrush coefficient method, which was proposed in
1964. The water-inrush coefficient is defined as the ratio be-
tween the thickness of the aquitard and the water pressure of
the underlying aquifer (Wu and Zhou 2008; Shi et al. 2014).
The scholars put forward an empirical formula related to the
water-inrush coefficient by summarizing lots of measured
water-inrush data from several large-scale mines (Meng
et al. 2012; Wu et al. 2017; Shi et al. 2014); however, the
method does not reflect the complicated water-inrush mecha-
nism, as it only considers two controlling factors. In order to

* Qiang Wu
wuq@cumtb.edu.cn

1 China University of Mining & Technology (Beijing),
Beijing 100083, China

2 National Engineering Research Center of Coal Mine Water Hazard
Controlling, Beijing 100083, China

3 Information Engineering College, Beijing Institute of Petrochemical
Technology, Beijing 102617, China

4 Beijing Urban Construction Exploration and Surveying Design
Research Institute Co. Ltd., Beijing 100101, China

Hydrogeology Journal (2018) 26:2327–2340
https://doi.org/10.1007/s10040-018-1767-5

http://crossmark.crossref.org/dialog/?doi=10.1007/s10040-018-1767-5&domain=pdf
mailto:wuq@cumtb.edu.cn


describe the water-inrush process accurately, Wu and Zhou
(2008) proposed a vulnerability index method, which incor-
porates a geographic information system (GIS) and other tech-
niques such as the artificial neural network (ANN), analytic
hierarchy process (AHP), and logistic regression analysis.
Also, based on the water-inrush coefficient, Meng et al.
(2012) discussed the relationship between water inrush and
geological conditions including lithology and structure fea-
tures. Meanwhile, several mathematical theories have gradu-
ally been applied to the risk assessment of water inrush, in-
cluding (1) fuzzy mathematics theory (Wang et al. 2012), (2)
attribute measurement theory (Li et al. 2015), (3) gray rela-
tional analysis (Li et al. 2015; Qiu et al. 2016; Shi et al. 2014),
and (4) unascertained measure theory (Wu et al. 2017).

In recent years, with the rapid development of artificial
intelligence technologies, the application of machine-
learning algorithms, such as the decision tree (DT), support
vector machine (SVM) and artificial neural network (ANN),
to risk assessment has gradually become a trend (Harris 2013;
Samuel et al. 2017; Pradhan 2013; Naghibi and Dashtpagerdi
2017). However, these methods have certain limitations in
practical application—for example, numerous data pre-
treatment procedures are required for the DT model (Kubal
et al. 2009), and it tends to fall into the local optimum; the
SVMmodel has limitations because of its complex mathemat-
ical functions; and as for the ANNmodel, it has the shortcom-
ings of over learning, slow convergence speed and local min-
imum value.

Considering all the aforementioned problems, this paper
proposes a new risk assessment model of coal-floor water-
inrush based on random forest (RF), which is a statistical-
learning theory introduced by Breiman (2001). Random forest
is a nonlinear modeling tool, coupling the main advantages of
two major learning techniques: bagging and random feature
selection. It has a self-adaptive property and just needs con-
tinuous training of sample information, and it is suitable for
solving problems with unclear a priori knowledge and incom-
plete data. Compared with the traditional intelligence algo-
rithms such as ANN and SVM, RF has high prediction accu-
racy and good tolerance to outliers and noise (Breiman 2001;
Bonissone et al. 2010). Moreover, it has less computational
cost and can avoid the problem of over-learning (Rodriguez-
Galiano et al. 2012). Because of its superior performance, RF
has been widely applied in biology, medicine, economics,
management, remote sensing and other fields in recent years
(Adam et al. 2014; Boulesteix et al. 2012; Eisavi et al. 2015;
Hong et al. 2016; Pal 2005; Polishchuk et al. 2009).

In the current study, RF is used to construct a risk assess-
ment model of coal-floor water inrush. The method consists of
three main parts: construction of the comprehensive evalua-
tion index system, selection of training and validation sam-
ples, and establishment of the RF model. For comparison, a
probabilistic neural network (PNN) model was also

constructed for risk assessment. PNN is a feed-forward neural
network for classification and parallel estimation of probabil-
ity density proposed by Specht (1990). It is widely used, as its
structure is simple. Lastly, the models were applied to
Panjiayao Coal Mine in northern China to verify the effective-
ness of the proposed RF model.

Study area and data used

Study area

The Panjiayao Coal Mine is situated in the west of Datong
Coalfield, approximately 50 km southwest of Datong City,
Shanxi Province, in North China (Fig. 1). The mine elevation
in the initial planning stage ranged from 1,399.9 to 1,606.0 m.
The region has a temperate continental climate with a mean
annual precipitation of 433.6 mm.

Topographically, according to drilling data, the main strata
include: Ordovician (O), Carboniferous (C), Permian (P),
Jurassic (J), Cretaceous (K), Neogene (E), and Quaternary
(Q). The coal measure strata in the mining area include the
Benxi group of the Middle Carboniferous system, the Taiyuan
group of the Upper Carboniferous system, and the Shanxi
group of the Lower Permian system. The total thickness of
the Taiyuan group strata varies from 91.94 to 137.97 m. It
contains 12 coal seams and the average total thickness is about
27.24 m. The main minable coal seams are Nos. 5 and 8,
whereby the No. 5 coal seam, studied in this paper, is the
thickest and the most stable coal seam in the mine area, with
a mean thickness of 11.77 m and is found throughout the
entire area except some sporadic areas.

Structurally, the coal seams strike NW–SE to the north of
fault F73, and NE–SW to the south of it. The dip angle of the
coal seams varies from 3 to 9°. Sixty faults and several col-
lapse columns have been exposed by drilling in the study area;
meanwhile, small folds are widely distributed in the study
area. The overall structural complexity is moderate. Figure 2
shows a typical geological cross-section of the study area.

Hydrogeologically, the Panjiayao Coal Mine is situated in
the runoff area of the Shentou karst spring region. The water
level of the Ordovician limestone aquifer is about 1,164–
1,180 m above sea level, whereas the elevation of the No. 5
coal floor is 580–810 m. Therefore, the No. 5 coal floor is
under pressure in the whole area and the limestone aquifer of
the Ordovician system is the main aquifer that threatens the
safe mining of No. 5 coal seam (Fig. 2).

Data used

By detailed analysis of the geological conditions and the field-
measured data of the Panjiayao Coal Mine, the main control-
ling factors for coal-floor water inrush were determined. The
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process of constructing the index system controlling water
inrush is described in detail in previous works (Wu et al.
2008, 2017). A short overview of the eight main factors is
given as follows, and eight thematic maps were obtained by
interpolation of the measurement values of the eight factors
(Fig. 3):

& Water pressure (WP). Water pressure is one of the most
important factors resulting in water inrush from the coal
floor. The greater the water pressure, the greater the pos-
sibility of water inrush. The water pressure is related to the
water level and the elevation of the top interface of the
Ordovician limestone. The water pressure acting on the
No. 5 coal floor is between 2.4 and 5.7 MPa, and it grad-
ually increases from the southeast to the northwest of the
mining area (Fig. 3a).

& Water-yield property (WYP). The Ordovician karst aquifer
underlying the coal seams is the main water source for
water inrush. It is directly reflected by the unit inflow,
which was calculated from pumping tests. The thematic

map of the water-yield property was generated by interpo-
lation of the unit inflow value of several hydrogeological
boreholes (Fig. 3b).

& Aquitard effective thickness (AET). The aquitard effective
thickness plays an inhibitory role in coal-floor water in-
rush. The water resistance capacity of the aquitard is relat-
ed to the thickness, strength and lithologic characteristics
of the aquitard. As the aquitard is composed of several
different lithological strata, the effective thickness of the
aquitard was obtained by converting them into an equiva-
lent effective thickness of sandstone (Coalfield Geological
Central Bureau of China 2000; Wu et al. 2016). The
aquitard effective thickness ranges from 27 to 67.5m,with
an average value of 46 m (Fig. 3c).

& Brittle-rock thickness (BRT). The brittle rock (such as
sandstone and limestone) in the aquitard underlying the
coal seams plays a key role in the resistance of the water
inrush. According to the exploration data, the brittle-rock
thickness in the pressure-damaged zone of the No. 5 coal
floor varies from 6.6 to 38.2 m (Fig. 3d).
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& Distribution of faults and folds (DFF). According to the
distance from the fault-lines and fold-axes, the zones
around the structures are divided into two parts: affected
zones and fractured zones. The fractured zones that are
affected by faults and folds are the weak zones which
may lead to direct hydraulic connections between the coal
seams and the underlying aquifers. The thematic map of
the distribution of faults and folds (Fig. 3e) was generated
by quantification of the fault-lines and fold-axes distribu-
tion as shown in the geological structure map. The frac-
tured zones and affected zones around a structure are
quantified with the values of 1.0 and 0.7, respectively,
according to the degree of fragmentation.

& Distribution of collapse columns (DCC). Collapse col-
umns are the main water-inrush passages in karst areas.
As the geological structure map (Fig. 1) shows, several
collapse columns were explored in the study area, and
they were quantified according to the degree of fragmen-
tation in the impact zones and their hydraulic conductivity
(Fig. 3f). The buffer zone, which is an irregular concentric
fracture zone around the column, is quantified as 0.8, and
the collapse columns as 1.0.

& Distribution of structural intersections and endpoints
(DSIE). As the intersections and endpoints within struc-
tures tend to cause stress concentration and damage the
rock mass more easily, hydraulic conductivity in these

areas is apparently greater than the surrounding areas.
Additionally, these intersections and endpoints are most
likely to lead to water inrush under the influence of min-
ing. They were quantified according to the quantified
values of DFF and the fragmentation degree of the rock
mass. The thematic map was generated as Fig. 3g.

& Fault-scale index (FSI). The fault-scale index is related
to the length and throw of the faults, and it refers to the
sum of all faults’ throw and length per unit area calcu-
lated based on the geological structure map (Fig. 1; Wu
et al. 2017). It represents the scale and development
degree of the faults. Based on the exploration data, the
fault-scale index was calculated and interpolated for the
whole study area, as in Fig. 3h. Its calculation formula is
as follows:

F ¼
∑
n

i¼1
LiHi

S
ð1Þ

where F is the fault-scale index, S is the area of the unit, Hi is
the fault throw of the i-th fault, Li is the length of the i-th fault
per unit area.

Fig. 2 Typical geological cross-section (A–A1, see Fig. 1) of the study area
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Fig. 3 Thematic map of the eight controlling factors: a WP, b WYP, c AET, d BRT, e DFF, f DCC, g DSIE, and h FSI
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Materials and methodology

Random forest

Random forest is a statistical-learning theory introduced by
Breiman (2001), and it is an ensemble-learning algorithm
which is more accurate and robust to noise compared to the
single classifiers (Breiman 1996; Dietterich 2000; Tatsumi
et al. 2015; Krkač et al. 2016). The RF presents some strengths
for its application in water-inrush risk assessment, compared
with the traditional intelligence algorithms:

& The learning process is very fast.
& For many kinds of data, it produces classifiers with high

accuracy.
& It can evaluate the importance of variables when

classifying.
& When building a forest, it can internally estimate the gen-

eralization error.
& It can estimate the missing data. Even if a large portion of

the data is lost, it can still maintain high accuracy.
& For imbalanced classification data sets, it can balance the

error.

Random forest is an ensemble of numerous classification
and regression trees (CART) to classify or predict the value of
a variable (Breiman 2001; Rodriguez-Galiano et al. 2012;
Wang et al. 2012). The CART algorithm was proposed by
Breiman et al. (1984) and has the advantage of handling both
numerical and categorical variables. The tree building and
pruning procedures of CART are as follows (Death and
Fabricius 2000; Loh 2011). Firstly, the attributes of the root
node are determined by the Gini index method. The Gini
index IG is used to measure the impurity of a given element,
and it is themeasure for the best split selection. For the dataset,
D, IG can be expressed as:

IG Dð Þ ¼ 1 ∑
N

i¼1
p2i ð2Þ

where pi is the probability of the samples belonging to the i-th
leaf andN is the number of the leaves; the lower the Gini index
IG, the purer the samples. Next, in order to split the node into
two leaf nodes, one attribute or the combination of several
attributes is chosen from the multiple predictive attributes as
the split variable. This process is repeated for each new leaf
node until a sufficiently large classification tree is built. The
complexity of the tree is reflected by the number of terminal
nodes in the tree. Lastly, the tree is pruned by deleting the
redundant variables to generate a simpler tree, as this is easier
to understand and calculate.

The RF model contains two important parameters: the
number of classification trees (k), and the number of random
variables at each split node (m). The parameters must be

optimized to guarantee the least error in data processing. The
RF model can increase the diversity of the classification trees
in two ways: sampling with replacement, and changing the
combination of predictive variables randomly. Each classifi-
cation tree grows on the basis of a sampling subset (Xi) of the
initial data set (X), and the optimal attributes inm attributes are
randomly chosen to segment the nodes.

The specific implementation procedures of the RF algo-
rithm are as follows:

1. Draw k samples randomly from the original training set X
using the bootstrap resampling method.

2. For k bootstrap samples, k unpruned classification trees
are created respectively. In the tree growing process, for
each node, m attributes are randomly selected from the
totalM attributes as internal nodes (m <M). Then, accord-
ing to the minimum Gini index principle, an optimal at-
tribute is selected from m attributes as a split variable to
make the branches grow. Thus, each tree will grow with-
out pruning so that the purity of each node is minimal, and
k classification results are obtained.

3. According to the k classification results, each decision tree
is voted by a simple majority voting method to determine
its final classification results.

A schematic diagram of the RF structure is shown in Fig. 4.

Out-of-bag error estimate

In an RF model, it is not necessary to use cross validation to
establish the unbiased estimate of the errors because the RF
estimates the errors during modeling using the out-of-bag er-
ror estimate. There are n samples in the original training set X.
In the process of sampling from X using the bootstrap resam-
pling method, the probability that each sample would not be
drawn is p = (1 − 1/n)n. If n tends to infinity, p ≈ 0.37, which
indicates that about 37% of the samples in the original training
set X are not drawn, and these data are called out-of-bag
(OOB) data. In the process of building a classification tree,
these data are not used. After the classification tree is built, the
OOB data are classified. During the operation of the model,
each variable of the original data set becomes the OOB data in
the creation of k/3 classification trees. In the RF model, each
decision tree can obtain an OOB error estimate value, and the
average value is used as a generalization error estimation to
estimate the classification performance of the model (referred
to as OOB error estimate). The OOB error is calculated ac-
cording to the following procedures. Assume that the total
number of the OOB data is M, and these data are then used
to test the performance of the generated RF. TheM OOB data
are input to the RF classifier, and then the classification results
of the M data can be obtained. As the classification results of
the M data have been determined already, the number of the
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data with wrong classification results are counted as m. Then
the OOB error e =m/M. The e has been proved to be unbiased,
so it is not necessary to use the cross validation in the RF.

Importance degree measurement

The RF model provides two ways to calculate the degree of
importance of each variable index: a mean decrease in the Gini
index, and an OOB mean decrease in accuracy. A mean de-
crease in Gini index means a total impurity decrease of each
variable at each tree node and is a measure of the contribution
of each variable to the homogeneity of the nodes and leaves
(Hong et al. 2016; Menze et al. 2009). The method evaluates
the importance of the variables by calculating the Gini index
based on Eq. (2), and then accumulates the total impurity
decrease of all the trees.

The basic principle of the OOB error estimate method is:
when noise is added to a related feature which plays an im-
portant role in the accuracy, the prediction accuracy of the RF
will decrease significantly. The main procedures are as fol-
lows (Ulrike 2009): firstly, for the generated RF, the OOB
error et of each decision tree is calculated according to the
OOB data; secondly, the j-th eigenvalue Xj of the OOB data
is changed randomly (namely, the noise interference is added
artificially); thirdly, the OOB data with noise is used to test the

performance of the RF, and a new OOB error e jt is obtained;
finally, the importance degree of the variable Xj can be calcu-
lated according to Eq. (3):

I X j� � ¼ 1

n
∑
n

t¼1
e jt−et
� � ð3Þ

where Xj is the j-th eigenvalue of the OOB data; et is the initial
OOB error; e jt is the OOB error with noise; n is the number of
the decision trees; I(Xj) is the importance of the variable Xj.
The greater the OOB error caused by the change of the vari-
able Xj, the more the decrease in accuracy, indicating the more
important the variable is.

Results and discussion

Training and validation samples

Figure 5 shows the complete process of RF and the detailed
flowchart of the proposed methodology in this study. Before
the quantitative model is applied to predict the coal-floor wa-
ter inrush, it is necessary to select the training sample data for
the establishment of the model.

In the past research on machine-learning models, the train-
ing sample data only considered the positive samples (water-
inrush points data), but ignored the negative samples (non-
water-inrush points data) and transitional samples in the pre-
diction of the coal-floor water inrush. However, because of the
limited number of measured water-inrush points, the machine-
learning models based on these training data are usually less
accurate. If only water-inrush samples and non-water-inrush
samples are being applied for the model training, the results
from the generated machine-learning models cannot accurate-
ly reflect the different degrees of risk in the study area.
Therefore, in order to reflect the mechanism of water in-
rush realistically and to subdivide the water-inrush risk
accurately, samples in different water-inrush risk degrees
are necessary for the training of the machine-learning
models.

In this study, firstly, 41 field-measured water-inrush sam-
ples were collected from several large-scale coal mines in
North China, and the risk grades were quantified according
to the amount of water inflow. Secondly, the aforementioned
eight evaluation factors were graded based on the risk degree
of coal-floor water inrush. The risk-grade classification sys-
tem is shown as Table 1, which was constructed combining
the study area’s practical situation and the international re-
search achievements. Simultaneously, the K-means clustering
analysis method was used to determine the threshold values of
the controlling factors (Wu et al. 2009, 2013, 2017; Wang
et al. 2012, 2015). The water-inrush risk of the study area
was classified into five grades (safe, relatively safe, transition-
al, relatively dangerous and dangerous). Finally, in order to
increase the number of samples and improve the model accu-
racy, based on the classification standard of the evaluation
factors (Table 1), 20 groups of data were generated in each
grade threshold interval of each factor by using the method of
uniform-distribution random generation, and a group of 100
ideal samples is obtained for the five grades. Furthermore, a
synthetic minority oversampling technique (SMOTE) is intro-
duced to synthesize the data.

SMOTE is a widely used oversampling method proposed
by Chawla et al. (2002). In the SMOTE, the class is
oversampled according to the similarities in the feature space
between the existing sample data using theK-nearest neighbor
algorithm, which will avoid the overfitting problem. The spe-
cific operation procedure is as follows:

Training data

Bootstrap

Training
sample 1

Training
sample 2

Training
sample 3

Training
sample n

CART 1 CART 2 CART 3 CART n

Final classification model

Fig. 4 Principle and flowchart of RF
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Step 1. Randomly choose two samples in the same class, x1
and x2.

Step 2. Calculate the difference of the i-th attribute between
x1 and x2, namely, δ = x2i − x1i.

Step 3. Calculate the i-th attribute value of the new target
sample based on Eq. (4):

x12i ¼ x1i þ rand 0; 1½ �⋅δi ð4Þ

Construction of the comprehensive evaluation index system

Water pressure Water-yield property Aquitard effective thickness

Brittle rock thickness Distribution of faults and folds

Distribution of structural intersections and endpoints Distribution of collapse columns

Fault-scale index

300 training and validation samples

41 field-measured
water-inrush samples

100 generated samples based on
uniform-distribution random and
risk-grade classification system

210 samples (70%) used for training 90 (30%) samples used for validation

Accuracy assessment of the models

Coal-floor water-inrush
risk-zoning map produced using  RF

OOB error
estimate of RF

Establishment of RF model

Importance degree
measurement

Establishment of PNN model
for comparision

Coal-floor water-inrush
risk-zoning map produced using  PNN

Confusion matrices of risk-classification results for the models
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156 synthetic samples
based on SMOTE method

SMOTE

Fig. 5 Detailed flowchart of the
proposed methodology for water-
inrush risk assessment

Table 1 Grading of the main controlling factors related to the risk of coal-floor water inrush

Main controlling factor Risk grade

Safe Relatively safe Transitional Relatively dangerous Dangerous

WP (MPa) <1 1–2 2–3 3–4 >4

WYP (L s−1 m−1) <0.1 0.1–0.5 0.5–1 1–5 >5

AET (m) >80 80–60 60–40 40–20 <20

BRT (m) >15 15–10 10–5 5–0.5 <0.5

DFF <0.15 0.15–0.4 0.4–0.5 0.5–0.6 >0.6

DCC <0.2 0.2–0.5 0.5–0.7 0.7–0.9 >0.9

DSIE <0.5 0.5–1 1–1.2 1.2–1.4 >1.4

FSI <0.02 0.02–0.05 0.05–0.1 0.1–0.2 >0.2
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Step 4. The final synthetic sample generated using x1 and x2
can be calculated based on

x12 ¼ x1 þ rand 0; 1½ �⋅δ ð5Þ
(where) δ = (δ1, δ2,⋯, δn)

Step 5. Repeat the above process for N times, then N syn-
thetic samples are obtained.

According to the SMOTE method, 159 synthetic samples
were obtained based on the 41 field-measured water-inrush
samples; thus, together with the group of 100 ideal samples
generated (mentioned previously), 300 samples were obtained
in total, with 210 samples (70%) used for training and 90
(30%) used for validation.

Establishment of the RF model

In the RF, two parameters are required to be defined: the num-
ber of trees in the forest (k), and the number of random variables
of the split nodes (m). To maximize the model accuracy, it is
necessary to optimize the combination of the parametersm and
k. When k is defined with a small value, the RF classification
error is uncontrollable and the model performance cannot
achieve the optimal identification. Conversely, if the parameter
k is too large, the computation time and required memory will
increase accordingly. By repeated operation, it is found that
when k = 100, the OOB error of each classification tends to
be stable and the model does not tend to over fitting. According
to Breiman (2001), m = sqrt(M). In this case study, there are
eight variables, namely M = 8. To assess the optimal value of
m, two RF models were created for m = 2 and m = 3 (Fig. 6).
Figure 6 shows the change of the OOB error rate depending on
the number of trees k. The results show that when k = 100 the
error rate of themodel is stable, andwhenm = 3, the error rate is
lower with the value of approximately 0.14. This suggests that
when the RFmodel is applied to the risk prediction of the No. 5
coal-floor water inrush, it will have a result with 86% accuracy,
indicating that the RF is a reasonably goodmodel. Therefore,m
with value of 3, and k with a value of 100, were selected as
input parameters for the RF model.

The contribution of each variable to the generated RFmod-
el is shown in Fig. 7. As shown, the importance degree of each
variable is measured two ways: mean decrease in Gini index
and OOB mean decrease in accuracy. According to the Gini
index, water pressure (WP) has the highest importance,
followed by AET, DCC, WYP and DFF, while the BRT, FSI
and DSIE have the lowest importance. Regarding the OOB
mean decrease in accuracy, the most important variables are
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Fig. 7 a Mean decrease in Gini
index and b OOB mean decrease
in accuracy (sorted decreasingly
from top to bottom) of the RF
model

Fig. 6 The OOB error rate of the RF model
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WP and DCC, and the BRT and FSI are the least important
variables in water inrush. Based on both of the features of
importance, in the water-inrush risk-index system, WP, DCC
and AET are the three most important variables, indicating
that they contribute overwhelmingly to the water-inrush risk,
and this is in accordance with the past research (Wu et al.
2008, 2011, 2014; Zeng et al. 2016). Even so, all of the eight
factors were used to generate the RF model.

Risk classification results

In order to evaluate the risk within the study area and to reflect
the spatial difference more exactly, the study area was divided
into square grids with a fixed size set to 30 m × 30 m., where-
by the study area (117.1 km2) was divided into 130,119 grids.
The RFmodel, which was constructed based on all the sample
data, was applied to the whole study area, making then

Fig. 8 Risk-zoning maps
produced using a RF and b PNN
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possible to calculate the risk grade of each grid (see Fig. 8a for
the GIS enabled water-inrush-risk-zoning map of the No. 5
coal floor).

As seen in Fig. 8a, in the study area, the risk of No. 5 coal-
floor water-inrush shows a transitional trend from east to west.
The entire risk trend gradually increases from the periphery to
the center of the study area. The relatively dangerous and
dangerous risk zones are mostly located in the areas where
the faults, folds and collapse columns are developed.
Furthermore, these two risk zones occupy approximately
28.1% of the total area.

A total of 59,358 grids (in green), occupying approximate-
ly 53.38 km2, are classified as safe and relatively safe areas.
These areas are mainly distributed in the east and partly west
of the mine, where the water abundance of the aquifer is low
and the geological conditions are relatively simple. For these
areas, researchers need to strengthen the continuous observa-
tion of water level, water quantity and water pressure in the
hydrogeological boreholes. The relatively dangerous zones (in
orange) are mostly in the center and southwest of the mine
surrounded by the transitional zones (in yellow). In these
areas, the water pressure acting on the aquitard is between
4.5 and 5 MPa; the aquitard effective thickness is of an aver-
age low value (30 m), as is the brittle-rock thickness in the
mining pressure fractionated zone (15–20 m); several small-
scale structures exist in these areas. For the transitional and
relatively dangerous zones, focusing the investigation on the
geological structures is necessary, especially the zones of the
structural intersections and endpoints, guaranteeing that there
are no water-inrush precursors in these zones. The dangerous

zones are mainly located in the center of the mine around the
boreholes P302, PZK507 and PZK505. According to the ex-
ploration data and the water pressure thematic map, the water
pressures of these three boreholes are the largest in the whole
study area. In these dangerous zones: the water pressures are
all above 5 MPa; the geological structures are more devel-
oped; the water yield of the Ordovician limestone is high;
some large-scale faults (such as faults F73 and F164) have
large displacements; and most of the collapse columns are
exposed. For the dangerous zones, it will be necessary to
depressurize the aquifer by placing large-diameter dewatering
wells in the subsurface and enhance the water-resistance ca-
pacity of the aquitard.

Comparison with the PNN model

For comparison, the PNN model was also used for the risk
assessment. PNN is a feed-forward neural network proposed
by Specht in 1990. It is a neural network for classification and
parallel estimation of probability density (Specht 1990, 2002).
It adopts the estimation method of union probability-density
distribution and a Bayesian optimization rule based on the
Gauss function (Iounousse et al. 2015; Singh et al. 2013).
The main idea of PNN is to separate the decision space in
the multidimensional input space by using the Bayes decision
rule (Iounousse et al. 2015; Tabatabaei 2016). It is a widely
used artificial neural network, and it is simple in structure and
easy in training; therefore, PNN not only has the superior
characteristics of general neural networks, but also learns
quickly.

In this study, the PNN model was constructed using the
same training data aforementioned. The radial basis function
was adopted to generate a cycle-training algorithm program in
the model because of its simple structure, fast convergence,
and the ability of approximating any nonlinear function. After
repeated operation, the PNN model achieved optimal perfor-
mance when the distribution density of the radial basis func-
tion and the spread value were determined as 0.1 and 0.5. The
water-inrush risk assessment map based on PNN is shown in
Fig. 8b.

Table 3 Confusion matrix of the RF model (model overall accuracy 88.89%)

Risk grades Safe Relatively safe Transitional Relatively dangerous Dangerous Row total User’s accuracy

Safe 12 1 0 0 0 13 92.31%

Relatively safe 1 13 1 0 0 15 86.67%

Transitional 0 1 20 2 0 23 86.96%

Relatively dangerous 0 0 1 19 1 21 90.48%

Dangerous 0 0 0 2 16 18 88.89%

Column total 13 15 22 23 17 90 –

Producer’s accuracy 92.31% 86.67% 90.91% 82.61% 94.12% – –

Table 2 Risk grading areas for the RF and PNN models (%)

Model
Risk grades

Safe
Relatively
safe Transitional

Relatively
dangerous Dangerous

RF 32.3 12.8 19.5 12.3
23.1

PNN 31.8 14.3 21.8 11.2
20.9
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By comparison of the two assessment results in Fig. 8, it
could easily be found that the two model results are practically
consistent, with the exception of some small differences in
certain local regions. The correlation coefficient of the two
zoning maps is 0.84, which indicates that the results from
the two models are similar in the majority of the areas, and
both of the models are reasonable for the water inrush
assessment.

The percentages of grading area for the RF and PNN
models are shown in Table 2. The main differences between
the two results are mainly concentrated in the fourth and fifth
grade (dangerous and relatively dangerous areas). For the RF
model, the relatively dangerous and dangerous areas are 12.3
and 23.1%, respectively, while for the PNN model, they are
11.2 and 20.9%, respectively. This indicates that more areas
were classified as relatively dangerous and dangerous in the
RF model, especially in the areas where the geological struc-
tures are relatively developed.

In fact, according to the detailed analysis of the geological
structure map and the risk zoning map by the RF, it is found
that the areas in which there are fault lines, structural end-
points and endpoints located, are most likely to be classified
as dangerous, and that the RF model is effective in describing
the effect of these structures on the coal-floor water inrush. For
example, the areas around boreholes P503 and PZK804 are
classified as dangerous in the RF model, while they are clas-
sified as transitional grade in the PNNmodel. Just as shown in
the geological structures map (Fig. 1) and structural thematic
maps (Figs. 3a–h), the structures in these areas are highly

developed; however, what is worse, is that the water pressure
is up to 5.2 MPa, while in these areas the aquitard effective
thickness (30 m) and the brittle-rock thickness (20 m) are the
lowest of the whole study area. Because there tends to be
water inrush in these areas, the risk grade should be classified
as dangerous, just as the RF model has shown. This demon-
strates that besides the water pressure and aquitard thickness,
the geological structures also have a great influence on the
occurrence of coal-floor water inrush, as is consistent with
previous conclusions (Wu et al. 2013, 2017). Compared with
the PNN model, the RF model is more applicable for areas
with developed structures, especially when considering point
and linear elements, such as faults lines and the structural
intersections and endpoints.

Accuracy assessment

For machine-learning models, model validation is necessary
to evaluate the accuracy of the generated model. The RF can
internally estimate the generalization error using OOB error
rate, as shown in Fig. 6. The OOB error estimate is as accurate
as the estimation based on the test subset, while it should be
pointed out that compared with the test estimation used in
traditional machine-learning models, the OOB error estimate
is unbiased (Breiman 2001; Rodriguez-Galiano et al. 2012).
So for the RF model, it is unnecessary to use an independent
test data set to do a test estimation; nevertheless, in this study,
in order to compare the accuracy of the RF and PNN models,
the confusion matrices of risk-classification results for the two

Table 4 Confusion matrix of the PNN model (model overall accuracy 82.22%)

Risk grades Safe Relatively safe Transitional Relatively dangerous Dangerous Row total User’s accuracy

Safe 10 1 0 0 0 11 90.91%

Relatively safe 2 12 1 1 0 16 75.00%

Transitional 1 2 19 1 1 24 79.17%

Relatively dangerous 0 0 2 19 2 23 82.61%

Dangerous 0 0 0 2 14 16 87.50%

Column total 13 15 22 23 17 90 –

Producer’s accuracy 76.92% 80.00% 86.36% 82.61% 82.35% – –

Table 5 Confusion matrix of the actual field-measured samples (model overall accuracy 81.25%)

Risk grades Safe Relatively safe Transitional Relatively dangerous Dangerous Row total User’s accuracy

Safe 3 0 0 0 0 3 100%

Relatively safe 0 1 0 0 0 1 100%

Transitional 0 1 2 0 1 4 50%

Relatively dangerous 0 0 1 1 1 3 33.33%

Dangerous 0 0 0 1 4 5 80%

Column total 3 2 3 2 6 16 –

Producer’s accuracy 100% 50% 66.67% 50% 66.67% – –
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models are presented using the independent test data set as
Tables 3 and 4, respectively. The confusion matrix contains
the information about actual and predicted classification done
by a classification system. It has two dimensions: one dimen-
sion (in rows) is indexed by the actual class of the risk grade,
and the other dimension (in columns) is indexed by the risk
grade that the generated model predicts.

Table 3 shows that the overall accuracy of the RF model is
up to 88.89%, and this is consistent with the OOB error rate of
86% as shown in Fig. 6. On the other hand, the PNN model
performed with a relatively lower overall accuracy of 82.22%
(Table 4). Both RF and PNN classification effects are satisfac-
tory, and the prediction accuracy of the RF is 6.67% higher
than the PNNmodel. Generally, both of them are applicable to
evaluate the risk of coal-floor water inrush. There are 16 field-
measured samples out of the 90 validation samples. To verify
the effectiveness of the RF model more intuitively, the confu-
sion matrix of the actual 16 field-measured samples is shown
as Table 5. The results show that the overall accuracy of the
actual section of the test set is up to 81.25%. It is also demon-
strated that the proposed RFmodel has a satisfactory accuracy,
and the synthetic samples generated by both the SMOTE
method and uniform-distribution random method are relative-
ly reasonable.

Conclusion

Coal-mine water inrush is a prominent problem threatening
coal mine safety. This study proposes a risk assessment model
of coal-floor water inrush based on RF. For the water-inrush
evaluation, there are many objective problems such as the lack
of data or samples and the unbalanced classification of data.
Random forest is a robust machine-learning method with nu-
merous advantages, especially its high classification accuracy,
and it is well suited to problems with unclear prior knowledge
and incomplete data. With regard to the water-inrush problem,
the RF model has finally been demonstrated to be able to
maintain a high degree of accuracy.

The RF model was applied to Panjiayao Coal Mine, North
China. The eight main water-inrush controlling factors were
selected and 300 samples were created for the RF model train-
ing and validation. The water pressure and aquitard effective
thickness are the top two most important out of the eight
variables, according to the importance degree measurement
by the mean decrease in the Gini index and the OOB mean
decrease in accuracy. The results show that the overall risk in
the study area is relatively high, and the entire risk trend grad-
ually increases from the periphery to the center of the study
area. For comparison, the PNN model was used for the risk
assessment based on the same training samples and validation
samples. Confusion matrices were used to compare the per-
formance of the RF and PNNmodels, and the overall accuracy

of the RF and PNN models were 88.89 and 82.22%, respec-
tively. Subsequently, this study analyzed the local differences
of the two results in detail. The results demonstrate that the RF
has a better prediction ability than the PNN. This study shows
the potential of a novel approach to water-inrush risk assess-
ment. Evaluation results provide a reference for coal-floor
water-inrush risk management, prevention, and reduction in
the study area.
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