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Abstract

Major element concentrations and stable (5'*0 and 5°H) and radiogenic (*H and '*C) isotopes in groundwater have proved useful
tracers for understanding the geochemical processes that control groundwater mineralization and for identifying recharge sources
in the semi-arid region of Sfax (southeastern Tunisia). Major-ion chemical data indicate that the origins of the salinity in the
groundwater are the water—rock interactions, mainly the dissolution of evaporitic minerals, as well as the cation exchange with
clay minerals. The 5'%0 and 5°H relationships suggest variations in groundwater recharge mechanisms. Strong evaporation
during recharge with limited rapid water infiltration is evident in the groundwater of the intermediate aquifer. The mixing with old
groundwater in some areas explains the low stable isotope values of some groundwater samples. Groundwaters from the
intermediate aquifer are classified into two main water types: Ca-Na-SO, and Ca-Na-Cl-SOy. The high nitrate concentrations
suggest an anthropogenic source of nitrogen contamination caused by intensive agricultural activities in the area. The stable
isotopic signatures reveal three water groups: non-evaporated waters that indicate recharge by recent infiltrated water; evaporated
waters that are characterized by relatively enriched §'®0 and 6°H contents; and mixed groundwater (old/recent) or ancient
groundwater, characterized by their depleted isotopic composition. Tritium data support the existence of recent limited recharge;
however, other low tritium values are indicative of pre-nuclear recharge and/or mixing between pre-nuclear and contemporane-
ous recharge. The carbon-14 activities indicate that the groundwaters were mostly recharged under different climatic conditions
during the cooler periods of the late Pleistocene and Holocene.
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Introduction resource evaluation and management in the future. The salinity
of water resources has been intensively studied during the past
few decades, particularly in coastal aquifers, stimulated by both
scientific interest and social need (Custodio 1987; Richter and

Kreitler 1993; Petalas and Diamantis 1999; Fedrigoni etal. 2001;

Understanding the processes and factors that control the evolu-
tion of the mineralization in aquifers over the years is an academic
challenge and has important practical implications for water
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Vengosh 2003; Vengosh et al. 2005, 2007). In Tunisia, particu-
larly in the south of the country, groundwater is the main water
resource and is used by all the sectors. The Sfax region, located on
the southeast coast of the country, has a groundwater aquifer
system featuring a deep confined aquifer, an intermediate aquifer
and shallow aquifers that are delimited by their respective catch-
mentareas. Since 2000, water management authorities have been
facing problems of deteriorating water quality and increasing
water demands due to a rapidly increasing population and the
expansion of agricultural activity. The arid climate coupled with
intensive exploitation of groundwater resources is leading to wa-
ter resource deficits and groundwater quality degradation
(Bouchaou et al. 2008; Yangui et al. 2010). Moreover, the expan-
sion of agricultural irrigation return, the domestic effluents and
the intensive pumping have led to these difficult problems threat-
ening the sustainable groundwater resources particularly in
coastal semi-arid and arid regions. One of the most pronounced
impacts of these anthropogenic processes is the increase in the
nitrate concentrations derived from agricultural return flows
(Hern and Feltz 1998; Hao and Change 2002) and groundwater
salinization. For a better understanding of the hydrodynamic be-
havior, identification of the origin and the recharge mechanisms
of the aquifer, carbon isotopes and stable isotopes in water have
long been used as groundwater tracers (Fontes and Garnier 1979;
Plummeretal. 1976; Aravenaectal. 1995; Clark and Fritz 1997) in
conjunction with chemical data. '*C is the most reliable chro-
nometer of moderately old groundwater (5 =30 ka), although
corrections should account for water—rock interactions. Stable
isotopes have been used to identify possible recharge areas and
mixing within aquifer systems (Trabelsi et al. 2009; Zouari et al.
2011). However, in regional studies, interpretations of stable iso-
tope data can become very complex because their input functions
vary according to a number of different factors, including eleva-
tion, precipitation amount, continentality and long-term climate
change (Clark and Fritz 1997; Dansgaard 1964; Rahoui and
Koshel 1980). Previous hydrogeological studies of this region
(El Batti and Andrieux 1977; Beni Akhy 1994; Maliki 2000;
Fedrigoni et al. 2001; Trabelsi et al. 2005) have shown that the
Sfax plain contains two main aquifers: a shallow aquifer (Plio-
Quaternary) overlying a deep aquifer (Miocene) that is
overexploited. Recently, several hydrogeological studies
(Gassara and Ben Marzouk 2009; Hchaichi 2008; Ben Ali
2011; Hchaichi et al. 2013) had demonstrated the existence of
an intermediate aquifer in the detrital Mio-Pliocene deposits. The
isotopes commonly employed in groundwater investigations are
the stable isotopes of the water molecule, ’H and "0, and the
radioactive isotopes tritium and carbon-14. Groundwater re-
sources in the southern part of Tunisia play an important role in
providing water for domestic, industrial, and agricultural uses. In
the present work, combined chemical and isotopic approaches
have been developed to study the groundwater from the Sfax
aquifer system by identifying groundwater flow paths and re-
charge areas, and revealing the main processes controlling the
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evolution of water for achieving proper management and protec-
tion of these important resources.

Geological and hydrogeological setting

The Sfax region, located in the east coast of Tunisia, is the second
biggest urban area after Tunis. The Sfax basin is bounded by the
Mediterranean Sea in the eastern part. The western partis occupied
by the north—south (N-S) axis (Jebel J. Gouleb: 736 m, J.
Zebbouz: 541 m, J. Boudinar: 716 m, J. Goubrar: 622 m, J.
Krechem el Artsouma: 655 m) and the southern by the Skhira area
(Fig. 1). The studied area has a semi-arid Mediterranean climate
with an average annual precipitation and temperature of 226 mm
and 19 °C, respectively (CRDA Sfax 2015). The geology of the
area was investigated by Castany (1953), Burollet (1956) and
Z¢€bidi (1989). The Sahel in the Sfax area is characterized by a
monotone topography of small hills, separated by wide basins
occupied by sabkhas. The geology of the study area is dominated
by outcrops of Mio-Pliocene and Quaternary deposits. Most of the
outcrops were controlled by the major tectonic phases that have
occurred in theregion (Ben Akacha2001). The study area contains
long-wavelength anticlines with relief of less than 200 m
(Belgacem et al. 2010). The lithology includes the Souar
Formation, which is attributed to the Eocene age and is formed
by marine sediments (Bouaziz 1994). The Oligocene sediments
feature a lower marine unit and an upper continental sandy unit.
The Miocene thick deposits are composed of an alternation of clay,
sand and sandstone. These deposits are divided into three units
from the bottom to the top (Tayech 1984): the Ain Ghrab
Formation (Burdigalian, lower Miocene), consisting primarily of
limestone interbedded with gypsum; the Oum Douil Formation
(Langian to Tortonian: upper Miocene), containing variable pro-
portions of silt and clay; and the Segui Formation (Messinian),
consisting of alternating continental sand, silt and clay. Pliocene
marl deposits discordantly overlie the older formations. The re-
gional superficial aquifer system is located in the upper Miocene,
Pliocene and Quaternary deposits mainly formed by sands and
silty clays. This multilayered aquifer is interbedded with semi-
permeable layers (Hchaichi et al. 2013; Ayadi et al. 2016). The
aquifer system of Sfax is composed of three aquifers.

The shallow aquifer

The shallow aquifer is an unconfined superficial unit located in
the Quaternary and Mio-Pliocene deposits, comprising sand and
silty clay layers that are separated by sandy clays (Hajjem 1980;
Maliki 2000). Its thickness varies from 8 to 60 m. The substratum
ofthe reservoir is composed of a clayey-sandy unit of continental
origin. It is characterized by alternations of unrefined natural
sands and conglomerates, with beds of red sandy marls and clays.
The main direction of groundwater flow is from NW to SE
(Takrouni et al. 2003). The aquifer is recharged by direct
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Fig. 1 Location and geological map of the study area, including Sebkha (S.) and Jbel (J.) (From the geological map of Tunisia at 1/500,000)
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infiltration through the permeable layers of sand and sandy clay
with permeability values between 4 x 10°® and 68 x 10™* m/s
(Ben Brahim et al. 2011). Based on pumping tests, the transmis-
sivity was estimated to 1.5 x 10> m*/s (Maliki 2000).

The intermediate aquifer

The intermediate aquifer (Fig. 2), situated between the shallow
and deep aquifers, has been identified at depths between 70 and
200 m. Itconsists of Pliocene and Quaternary sand and sandy clay
deposits. It is characterized by its multi-layered feature, com-
posed of several units of detrital sediments separated by clay-
rich strata, producing heterogeneity in this aquifer. As shown in
Fig. 2, the intermediate aquifer presents significant lateral and
vertical variation in facies and in thickness. The measured trans-
missivities are in the range of 1 x 10 to 4.32 x 10> m%/s
(Hchaichi 2008, Hchaichi et al. 2013). The water resources of
the middle aquifer were estimated to be 11.3 Mm?*/year (CRDA
Sfax 2015). A piezometric map of the intermediate aquifer in
Stax (Fig. 3) was conducted using the piezometric measurements
of 28 boreholes and 5 piezometers taken during 2014 (CRDA
Sfax 2015). The piezometric mapping was performed with the
aid of the ArcMap 10.3 program with natural neighbor interpo-
lation. This map shows that the main groundwater flow direction
is NW-SE towards the Mediterranean Sea, which forms the nat-
ural discharge area. Indeed, the highest values are found in the
north and northwest and decrease towards the south and

southeast. This may indicates that the recharge of the intermedi-
ate aquifer of Sfax occurs in the northwestern and western parts.

Miocene deep aquifer

The Miocene deposits host the deepest aquifer. It constitutes a
primordial source for the water supply of the region. This
aquifer is located at depths between 200 and 700 m, its aver-
age thickness is 150 m, and it covers an area of approximately
15,000 km?. It is logged as sand and sandstones interbedded
with clay. The pumping tests show that the transmissivity
values vary between 0.123 x 10> and 130 x 10> m%/s with
an average of 23.32 x 10> m?/s. The maximum thickness is
observed in the central part of the basin and decreases towards
the Skhira region to be minimal at the Kerkennah Island
(Trabelsi et al. 2006). The groundwater flow direction is gen-
erally towards the southeast, implying discharge to the
Mediterranean Sea, the natural outlet (Trabelsi et al. 20006).

Methodology, groundwater sampling
and analytical procedures

The sampling campaign (Fig. 4) was carried out on the Sfax Plain
from September 2012 to May 2016. Samples from 116 sites were
collected from deep wells of the intermediate aquifer whose
depth varied from 60 to 450 m and were characterized using
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Fig. 4 Sampling sites of groundwater from the intermediate aquifer of Sfax

chemical and isotope analyses. It was a one-time sampling for
each analyzed groundwater; therefore, no seasonal effect can be
indicated. Water temperature, electrical conductivity (EC) and
pH values were determined in the field. Bicarbonate content
was measured by titration with 0.1 N-HCI. Chemical and isotopic
analyses were conducted at the Laboratory of Radio-Analyses
and Environment of the National Engineering School of Sfax
(ENIS, Tunisia). The major cation (Ca, Mg, Na and K) and anion
(Cl, SO4 and NO3) concentrations were determined by liquid-ion
chromatography (ILC). The chromatograph was equipped with
IC-Pak TM CM/D columns for cations, using EDTA and nitric
acid as eluent, and CI SUPER-SEP columns for anions, using
phthalic acid and acetonitrile as eluent. The ionic balance is with-
in +5%. An analysis is considered valid if the value of its ionic
balance is within £5%. These values guarantee the reliability of
the chemical results. Isotopic analysis was performed witha LGR
DLT 100 Laser Absorption Spectrometer and the 5'*0 and §°H
results are reported in the usual d notation relative to the Vienna
Standard Mean Ocean Water (V-SMOW) standard, where
& = [(R/Rv-smow) — 11/1,000 (R represents either the '*0/'°0 or
the 2H/'H ratio of the sample, and Ry.gvow is the 80/1%0 or
“H/'H ratio of the V-SMOW standard; Coplen 1996).

The precisions of the measurements for stable isotopes anal-
yses were £0.1 and £1%o for §'%0 and 5?H, respectively. In total,
64 samples were selected for tritium content analysis using the
electrolytic enrichment and liquid scintillation techniques
(Taylor 1976). The *H concentration is expressed in tritium units

10 1"

(TU). One TU is defined as the isotope ratio *H/'H=10""5.
Fourteen groundwater samples were analyzed for carbon-14 dat-
ing activity. Precipitation of BaCOj3; from groundwater samples
was carried out in the Laboratory (ENIS, Tunisia). Radiocarbon
activities were determined by using benzene synthesis and liquid
scintillation spectrometry (Fontes 1971; Stuiver and Polach
1977). The results are reported as percent of modern carbon
(pmc) with an analytical uncertainty of£1 pme. The geochemical
program PHREEQC software, version 2.10.0.0 (Parkhurst and
Appelo 1999), with the thermodynamic dataset wateq4f.dat, was
employed to evaluate the saturation status of minerals in well
water samples. The saturation index (SI) indicates the potential
for chemical equilibrium between water and minerals and the
likelihood of water—rock interactions (Wen et al. 2008). The
chemical analyses are given in mg/L. The formula used for
converting from mg/L to meq/L is provided here for the interpre-
tation of some diagrams: concentration (meq/L) = concentration
(mg/L)/molar mass x ionic charge of the chemical element.

Results and discussion
Hydrochemistry
The major ion concentrations and physico—chemical charac-

teristics of the analyzed water samples are presented in
Table 1. The temperature of groundwater samples from the
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intermediate aquifer range from 14.5 to 26.2 °C. The pH of
these groundwater samples ranges from 5.85 to 8.13. The
electrical conductivity (EC) value of the groundwater samples
varies from 640 to 13,320 uS/cm. The salinity measurements
show a total dissolved solids (TDS) content within the range
0f451-10,106 mg/L, implying that the high salinity values are
chiefly governed by the high concentrations of sodium, calci-
um and sulfate, followed by chloride, which are the dominant
constituents in the water samples, leading to the dominance of
the Ca-Na-SO, and Ca-Na-CI-SO, water types.

The hydrochemical facies of the groundwater were studied by
plotting the concentrations of the major cations and anions as a
Pipertrilinear diagram (Fig. 5). Based on the dominance of major
cationic and anionic species, five hydrochemical facies have
been identified in the study area (Table 2): (1) Ca-Na-SOy is the
predominant water type (~ 51% of samples), with a relative en-
richment of Na versus Ca in most samples; followed by (2) a
mixed Ca-Na-CI-SO, type corresponding to 31% of the samples;
(3) Na-HCO3-SO4 type is present in 9% of the water samples; (4)
Na-C1-SO, and (5) Ca-Na-HCOj; as minor water facies account
for 7 and 3% of the groundwater samples, respectively (Fig. 6).
These minor water types are observed in the recharge area (west-
ern part), where the groundwater salinity values are all less than
1,500 mg/L, likely originating from the dissolution of carbonates,
or influenced by rain water infiltration or dissolution of the atmo-
spheric CO,. The predominant Ca-Na-SO,4 water type reflects
that the aquifer formations are dominated by evaporate minerals
such as halite, gypsum and anhydrite. Additionally, sulfate-rich
rocks are commonly associated with dolomite, calcite and clays.
In contrast, the Ca-Na-CIl-SO, water type is especially dominant
in the northern part of the Sfax basin, particularly in Menzel
Chaker and Djebeniana regions (see Fig. 3) where groundwater

Hydrochemical facies
1: Ca-Na-SO 4

2: Ca-Na-CI-SO4
3: Na-HCO,-SO,
4: Na-Cl-SO4

5: Ca-Na-HCO,

Cl+NO3
Fig. 5 Piper diagram of the analyzed groundwater

salinity is high. This higher level of salinity could be related to
Na-Cl dissolution or to cation exchange process for the coastal
groundwater samples particularly in Djebeniana (Nos. 100 and
102) where borehole depths are 65 and 70 m respectively
(Table 2). This pattern may suggest descendant water migration
from the shallow aquifer to the intermediate aquifer. This migra-
tion of shallow water—where cation exchange through the clay-
ey layers, separating the shallow and the intermediate aquifer, is
occurring—Ileads to diverse typical facies such as Na-Cl-SO4 and
Ca-Na-SO, facies. The different hydrochemical facies mainly
reflect the presence of high concentrations of Na* and Ca®* for
the cations and C1” and SO,>~ for the anions, representing the
main contributors to the groundwater chemistry due to the disso-
lution effect. Generally, the hydrochemical composition of fresh
groundwater in the Sfax aquifers is typically dominated by Ca**,
Na*and HCOj5 ions, as observed in certain samples (Nos. 17,18,
20,32, 52,81, 87, and 92), and are located in the western part of
the basin (Bir Ali ben Khalifa region). This area constitutes the
recharge area and presents high piezometric levels, which ex-
plains the low salinities of the samples due to rapid infiltration
of the water. The rapid infiltration is ensured by the wadi Chaal,
located in the eastern part of Bir Ali Ben Khalifa region, and
explains the low mineralization due to the limited water—rock
interaction. The depletion in Ca®* content relative to SO,* con-
centration could be related to several processes: (1) cation ex-
change reactions in which Ca* ions are adsorbed on clay min-
erals with simultaneousrelease of Na* ions, which may justify the
excess of Na* contents, (2) dissolution of thenardite (Na,SOs,
and/or of mirabilite (Na,SO4 10H,0), characteristic of confined
evaporitic zone. IfNa" ions are derived from dissolution of evap-
orative minerals, they should balance Cl ion content. The cation
exchange could be confirmed through the plot of (Na + K) — Cl
versus [(Ca+Mg) — (SO4 + HCO3)] (Fig. 7), which reveals a
release of Na* jons with respect to a decrease of Ca®* ions. The
sampled groundwaters that are located in the downstream part,
represent an excess of Na* with respect to CI™. This excess could
be explained by cation exchange reactions (type I) which absorb
Ca®* on the clay fraction as Na* is released, while significant
deficit of Na* is observed in the sampled groundwaters situated
in the upstream (the left side of Fig. 7). This might stem from the
second type (type 1I) of cation exchange where Na* ions are
removed from the solution and are replaced by Ca”* ions. The
calculated saturation indices with respect to various mineral
phases (i.e., calcite, dolomite, gypsum and halite) of the ground-
water samples are shown in Table 2. The positive and negative SI
values represent the thermodynamic potential for precipitation
and dissolution, respectively. Dissolution of evaporites is also
confirmed by the saturation indices (Table 2). They show that
almost all samples are undersaturated with respect to halite. The
sulfate minerals of thenardite and/or mirabilite are characteristic
of an arid area and are formed in a confined evaporitic depres-
sions, which is in good agreement with the studied area. On the
other side, the saturation indices show that almost all samples are
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s .
%,3 R RELLIINR U2 NSD undersaturated with respect to Na,SO, and/or of Na,SO,4 10H,O
Z|cccsscscccssssSose minerals (SI < 0), indicating their dissolution (Table 2).
3 The results of geochemical modeling suggest that most of
3| BESRRRALEEETLAETER R the well water samples from the intermediate aquifer are sat-
@] Sooc o ocococ oS oo S oSS R K
B urated to undersaturated with respect to calcite (Table 2).
< NSRS eaRTT Y Figure 8a,b shows a comparison of calcite and dolomite satu-
|-~~~ SSSesScsesss~cS<S ration indexes of all water samples as a function of HCO;
gq concentration. Calcite precipitation may occur systematically
8 esxeocmyILaS SRS for all groundwater samples, which implies the limited contri-
T |Sccecessse-sSsss3sss bution of carbonate minerals in the groundwater evolution;
Qr hence, the proportions of Ca and HCO; decrease. In fact, the
- o0 > Voo MnNnonon o <t . g .
glegndnsgrEaganaas = values of SI for calcite are close to equilibrium (SI=0), rang-
5 ing from —0.67 to 0.32, and for dolomite show an
E L& ASEEZRIER[]AGSER undersaturation state. The saturation of the groundwater sam-
o ples with respect to calcite and the undersaturation of ground-
= water samples with respect to dolomite may be explained by
E the incongruent dissolution of dolomite and gypsum with si-
= | ARR4SERIETRREI8R . - - : -
ol AR AR R A multaneous precipitation of calcite, which provide evidence
° for the depletion in Ca®* content relative to SO,>~ concentra-
"g tion. The occurrence of dedolomitization reactions in the stud-
8 ied aquifer has a large potential for substantial modification of
E|Sas2Igggaggdeg=s - i -
e R R R R the C isotope signature of the DIC pool formed in the recharge
. area. The saturation of the groundwater samples with respect
2= to calcite and dolomite is explained by the outgassing of CO»,
G| Y y g g
T | 29878238 =8x28:282 Cq . . .
| TR RIS FILT which 1p most hydrological systems is the primary process
5 responsible for the supersaturation of the analyzed groundwa-
2 ters with respect to carbonate mineral (Edmunds et al. 2003).
(=7 . .
S|rzasgngasgzgse =3 The samples are undersaturated with respect to fiolomlte.
B TTTTTTTTTTTTTSTT About 28% of all groundwater are undersaturated with respect
E to dolomite with SI <—1, which is observed in water samples
‘_E Nos. 4,13, 14, 17,18, 19,20,21,22,24, 32,37, 44, 45,52, 53
B 3928392805325 88 and 64, among others (Table 2), indicating probably the sig-
@A TTTTTTTT I TTTTTIT nificance of dolomite dissolution in this system, thereby
£ adding Ca**, Mg®*, and HCO;  to the solution. They are
5 —m QMM 0= T oA — attributed to different hydrochemical facies. Almost all of this
g==Ss-gsddg==2=1 i
B | STTTTTSTTTTTTTTT entire water group (61%) belongs to the Ca-Na-SO, water
2 type, with 24% indicating Na-HCO;-SO,4 water type. All
§D groundwater samples exhibit a state of equilibrium to
g 28NIS8 588585 8] undersaturation with respect to gypsum and anhydq'te, wh.ich
@ | TTTTTTSTTTTTTTTT confirms the role of gypsum and/or anhydrite dissolution
2 (Fig. 8c). In contrast, all the sampled waters are undersaturated
“é with respect to halite (Fig. 8d), which implies that consider-
Sloevwgsanuunrsoarwoos —amn able dissolution causing strong mineralization along the
<]l oI LTdCdAaFTAR T A . ) 3
» | TTTTTTTTTTTTTTTT groundwater flow paths may occur. The high dissolution rate
¢ % 3 N N for evaporate rocks allows waters close to saturation with
o | 900 009239 o o
& AL SSE L2322 S5338 respect to gypsum. This indicates that the groundwater has
| 2234423203222 4%2 th ity to dissol d halite along the fI
B5|22222222825222:2 e capacity to dissolve gypsum an zzijeaoig e+ ow
TlIE|SSSSSSSSE2S2SESSS paths; hence, the concentrations of Ca“", SO4~, Na" and
E S CI' in the solution increase (Stumm and Morgan 1996). In
§ ~ addition, the ionic composition may be caused by several
: £ factors, including water—rock interaction, ionic exchange,
= % etc.; hence, it is necessary to use ionic ratios to identify the
=| = | 8838858322z x22 . . .
Elwm | E22=22=2=2=2=2222222C2 factors responsible for the hydrochemical composition of the
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intermediate aquifer. Bivariate diagrams of ionic constituents
have been developed (Na/Cl vs Cl, SO4/Cl vs Cl, HCO5/Cl vs
Cl, and Ca/Na vs Cl) and are presented in Fig. 9. Generally, if
halite dissolution is responsible for sodium and chloride, the
Na/Cl molar ratio should be approximately one (Meybeck
1987). The Na/Cl ratios of water samples range from 0.67 to
6.06 (Table 2). The majority of the samples corresponding to
78% have molar ratios greater than or equal to one, which
indicate that the increase in Na* ions could be linked to (1)
ion exchange and/or (2) evaporate minerals dissolution as
demonstrated previously; however, some water samples

50 -
. 40 -

Na<Cl . dissolution

Ca+Mg>HCO,+SO0, ".,_io,- /

50 40 30 -20 10 \.:1& 20 30 40 50

Ca + Mg-HCO,-SO, (meq/l)

Na>Cl
Ca+Mg<HCO,;+S0O,

.50 4
Na+K-Cl(meq/l)
Fig. 7 Plot of (Ca+ Mg) — (HCO3+ SOy) vs. Na+ K-Cl in meqg/L

10 1"

(Nos. 1, 5,6, 12, 14, 29, 33, 41, 56, 65 and 66, among others)
mainly belong to the group of Ca-Na-Cl-SO4 type, showing
Na/Cl molar ratios less than 1. This indicates possible mixing
with saline water, through a vertical leakage, likely originating
from the shallow groundwater or from a deep saline adjacent
aquifer level. This group of samples, which are enriched in C1™
contents, features salinity values ranging from 3,135 to
10,106 mg/L. The plot of Na/Cl and SO,/CI ratios versus
CI" concentrations suggests that these ratios increase with
decreasing salinity and vary between water types (Fig. 9a,b).
The HCO5/CI ratios provide a clear picture of the relative
concentrations of chloride and bicarbonate; thus, this ratio
can be a good indicator for salinization. The ratios of HCO3/
Cl, indicative of freshwater recharge, are high (> 1) in samples
Nos. 17, 18, 20, 32, 45, 52,53, 81, 87, 88, 90, 91, 92 and 109
located in the western part of the study area (recharge areas),
where salinities are less than 2,000 mg/L; however, the ma-
jority of the groundwater samples belonging to the mixed Ca-
Na-Cl-SOy4 type have lower HCO3/Cl ratio values, indicating
possible mixing with salt water. During the mixing process,
the groundwater becomes enriched in Cl, which leads to a
decrease in the value of the HCO3/Cl ratio (Fig. 9c). This
mixing process may be the result of the groundwater interac-
tion between the aquifers (Ayadi et al. 2016), and further af-
fects the amount and type of dissolved solids in the ground-
water. In this case, the samples located in the northern part of

@ Springer
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Sfax, nearest to the sabkhas, have the highest total dissolved
solids, which can reach 10,000 mg/L (sample No. 1), belong-
ing to Na-CI-SO, type. These water samples also show a large
range of Ca/Na ratios (0.13—4.54). These ratios increase with
reduced salinity and vary between water types. For the
groundwater with high Ca/Na molar ratios, i.e., much greater
than 1, the prevailing processes in the aquifer matrix are car-
bonate dissolution and/or depletion of Na (Fig. 9d).

Isotopic study
Stable isotope analysis of the groundwater

The isotopic composition (5'%0 and 5°H) and the calculated
deuterium excess values of groundwater samples are present-
ed in Table 3. The stable isotope composition of the ground-
water samples from the intermediate aquifer varies within a
wide range from —6.86 to —2.97 %o for §'%0 and from —44.2 to
—22.4 %o for 5>H. For the isotopic characterization of the
samples from the intermediate aquifer of Sfax, the isotope data
of sampled waters were plotted in the binary diagram of
5?H-5'0 (Fig. 10). The Global Meteoric Water Line
(GMWL; Craig 1961), and the local meteoric water line for
Sfax (LMWL; Maliki et al. 2000) are also plotted on the same

@ Springer

diagram. The equations describing the relationship between
the 6'®0 and 6°H values are the following:

GMWL : 8D = 8 x 3'80 + 10 (1)

LMWL : 8D = 8 x 580 + 13.5 (2)

The relatively high value of the deuterium excess (d), 13.5,
reflects the participation of condensing vapor of Mediterranean
air masses (Maliki 2000). The points representing the groundwa-
ter, when plotted on the §°H-5"%0 diagram, define a regression
line: 8D =4.01 x §'%0 — 13.62. The value of the slope, 4.01, is
lower than the slope of the GMWL (8), demonstrating that the
groundwater experienced the evaporation effect, which produces
isotopic enrichment of the surface water through the unsaturated
zone or on surface before infiltration. Indeed, the deuterium inter-
cept value (—13.62) is substantially lower than 10, confirming the
evaporated aspect of the water before infiltration. This significant
rate of evaporation in the study area is chiefly linked to the aridity,
which is characteristic of the North Africa climate. The points that
show this phenomenon are those located below (or to the right of)
the GMWL, and this group of groundwater samples comprises
waters relatively enriched in stable isotope contents with respect
to the GMWL. In the investigated area, the long-term flood
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Fig. 9 Relationship between a Cl and Na/Cl; b Cl and SO,/CI; ¢ Cl and HCO3/Cl; d Cl and Ca/Na

irrigation practices have created favorable conditions for the iso-
topic fractionation of water before infiltration related to partial
evaporation. Additionally, partial evaporation at the water table
cannot be excluded due to the aridity of the climate, especially
when the well/borehole depths are restricted. The water samples
Nos. 17, 18, 20, 21, 23,26, 32,45, 74,79, 87, 89, 91, 92, 98, 99,
100, 101, 102, 103, 104, 105 and 108 are scattered between the
GMWL and the LMWL. The deuterium excess values for these
water samples (22% of all groundwaters) include the range from
10%o for global precipitation to 14%o. for the western
Mediterranean area indicating the significance of the
Mediterranean as a moisture source for the study area. This second
group of groundwater indicates that the precipitation responsible
for the recharge of the Sfax aquifer may have originated from a
mixture of oceanic and Mediterranean vapor masses (Celle-
Jeanton et al. 2001; Montoroi et al. 2002). The similarity in isoto-
pic composition between the groundwaters and local precipitation
(6'%0: —4.6%0 VSMOW) indicates that they are not significantly
affected by evaporation, implying direct recharge by rapid infil-
tration of rainwater. On the contrary, almost all groundwater sam-
ples showing low d-excess values suggest the participation of
Atlantic air masses (d-excess = 10%o). The third group is com-
posed of several groundwater samples (Nos. 52, 53, 55, 56, 63,
80, 84,93,94,96,97,106, 111 and 116), located particularly in the
Northwestern parts of the basin, that plot on the extreme left side,

revealing a relative depletion in their isotope contents (5'*O
values vary between—5.76 and —6.86 %o), probably due to mixing
with old groundwater through a leakage process. The mixing
process suggests an upward leakage flow from the deep
Miocene groundwater into the shallowest Miocene-Quaternary
aquifers (Ayadi et al. 2016). The upward leakage of the deep
aquifer is confirmed by the mixing proportion calculations, in
which the contribution to the intermediate aquifer can reach
100% in the northwestern part of the basin (Ayadi et al. 2016).
These groundwaters were probably recharged under different cli-
matic conditions than the present day. The presence of an old
component is supported by the radiogenic *H analyses, as low
or undetectable *H contents were measured in some samples (0
TU in well Nos. 52 and 53; 0.12 TU in well No. 56; 0 TU in well
No. 97), which implies an absence of recent water infiltration. The
values of the deuterium excess (d) of the groundwater samples,
which are indicative of the origin of the vapor masses generating
the precipitation, were calculated using the following equation:
d=28D-8x38"0 (3)
The relationship between the §'*0 and 5°H values in the
groundwater samples differs in both the slope and the deu-
terium excess compared to the global and local meteoric
water lines. The calculated d values in the study area vary
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Table 3  Isotope composition, deuterium excess (d c..ss) Values and calculated recharge elevations (AZ)

Site/sample No. ~ Sample name H (%0 vs SMOW) B0 (%0 vs SMOW)  degeess (%)  AZ (masl) *H(TU) 'C (pmc)
1 Hafedh Jarraya 1 -28.34 —3.68 1.11 - 1.85 -

2 Hafedh Jarraya 3 -30.45 —4.48 5.37 - - -

3 Med Chabchoub 1 —34.49 —4.97 5.26 - 1.21 47.00
4 Med Chabchoub 2 -34.07 —4.45 1.50 - - -

5 Mahdi Jarraya —34.56 —4.28 —0.30 - - -

6 Nabiha Charfi —34.43 —4.49 1.49 - 0.75 -

7 OTD Essalema -36.81 —4.83 1.80 - - -

8 Tarak Fourati -37.59 —4.73 0.28 - - -

9 Zied Fourati 2 —35.27 —4.48 0.59 - 0.60 -

10 Emna Fourati2 —35.88 —4.87 3.09 - - -

11 Zied Fourati 3 —34.45 —4.22 -0.70 - - —

12 Hafedh Jarraya 2004 (attoura) -37.72 —4.61 —0.81 — - —

13 Med Dziri —23.50 -3.36 335 - - -

14 Nasr Eddeli —26.65 —4.22 7.08 - 0.86 -

15 Forage PF 83 -36.59 -5.18 4.84 193 0.65 -

16 Forage PF 100 -35.03 -5.07 5.52 156 - -

17 Chaal 1 -31.04 —5.34 11.65 245 3.35 -

18 Forage Nejah haj Ltaief -32.24 -5.26 9.81 218 0.87 -

19 F. Mourad Ellili —33.87 —4.95 5.69 - - -

20 F. mostfa belhaj Itaief -31.77 —5.55 12.66 318 4.27 -

21 Ahmed Zribi -34.00 -5.37 8.98 258 0.20 -

22 Ali Chouket -37.06 -5.57 7.54 325 0.97 -

23 Sahbi Jirjir —33.51 —5.56 11.00 321 2.28 -

24 Mohamed Zribi (2010) —32.54 —4.84 6.16 - 0.00 -

25 Abdellatif Frikha -34.90 -5.38 8.12 260 1.01 -

26 Forage Nabiha Kolsi —32.56 -5.65 12.65 - 0.47 76.00
27 F. Ali B.Salem -35.97 -5.13 5.06 176 1.30 -

28 F. Med Khaled Ellouze —37.38 -5.19 4.16 197 - 29.00
29 F. Ali Abouda -38.90 -5.42 4.50 275 0.73 -

30 F. Jilani Ltaief —38.34 -5.17 2.99 189 - 21.20
31 F. Moez Mezghani —35.26 —5.40 791 265 0.47 56.70
32 F. Abdelhafith Bougueffa —33.48 -5.32 9.06 239 - 58.00
33 F. Limaya —34.47 —4.84 4.25 - - -

34 Mourad Nouri -36.40 —5.47 7.40 - 0.68 55.00
35 F. Haj Gacem -38.23 -5.03 2.02 291 1.36 -

36 Othmen Maalej 1 -26.07 —4.39 9.02 144 - -

37 Othmen Maalej 2 -35.93 —4.89 3.18 - 1.04 -

38 Ltaif Mezghanni -37.73 —4.96 1.93 - 0.20 -

39 Zouhir Mziou 1 -35.79 —5.18 5.63 192 0.60 -

40 Zouhir Mziou 2 —36.38 —5.57 8.14 - - -

41 Mustapha Frikha (1) 2013 - - - - - -

42 Mustapha Frikha (2) 2013 - - - - 0.49 -

43 Sfax Zeliana -36.86 -5.17 4.54 192 0.67 -

44 Hedi Ellouze -30.73 —4.72 7.04 - 0.20 -

45 Mahmoud Mezghanni -27.27 —4.77 10.92 58 0.95 -

46 Hsan Maktouf —22.38 -2.97 1.37 - 0.00 -

47 Tarek Hammemi —32.59 -3.47 —4.84 - 0.26 -

48 F. Hmed Mlawah -29.23 -3.91 2.08 - - -

49 F.Med Adwani -27.59 —4.02 4.55 - 1.04 -

50 F.Jarbouii -27.56 -3.76 2.52 - 0.50 -

51 F.Merkez Kammoun -30.07 -3.95 1.53 - 0.18 -

52 Khlifa Gdarat -34.06 -6.17 15.29 - 0.00 -

53 TaherRahal —33.24 —6.14 15.86 - 0.00 -

54 Med Masmoudi —33.62 -5.28 8.63 227 0.00 -

55 CFJR —44.18 —6.86 10.71 - 1.07 -

56 Hafedh Jarraya (Ksar Irrih) —38.12 -6.30 12.28 - 0.12 -

57 Mustapha Frikha No. 1 - - - - - 12.70
58 Jamel Laarif —33.49 -5.37 9.51 258 0.21 -

59 Khalil Ennouri —37.51 -5.04 2.78 145 - -

60 Mohamed Ben Omor —32.01 —4.64 5.11 - 0.25 -

61 Hamada -32.32 -5.07 8.26 158 - 10.40
62 Henchir Gara -32.60 —4.90 6.61 - 1.56 -

63 Fawzi Mseddi —40.14 -5.76 5.94 - - 15.50
64 Forage Agareb - - - - - -

65 F. Neila Eleuch (debut de ’essai) -37.71 —5.04 2.64 148 - -
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Table 3 (continued)

Site/sample No.  Sample name 2H (%0 vs SMOW) 80 (%0 vs SMOW)  deyeess (%0) AZ (masl) *H(TU) 'C (pme)
66 F. Neila Eleuch (fin de I’essai) -37.90 —5.37 5.06 256 - -
67 Gargouri Anouar - - - - - 2.80
68 Mohamed Eddib —34.89 -5.17 6.45 189 1.04 -
69 Noamen Mhadbi -30.32 —4.89 8.76 95 0.60 -
70 Mbarek Neyli -34.91 -5.38 8.11 - 0.40 -

71 Omor Ben Salah -31.77 —4.85 7.05 - 0.75 39.00
72 Mongi Ben chibéni —33.65 —4.92 5.69 - 0.98 -

73 Mohamed Kthiri - - - - 0.55 -
74 Hédi Démi -28.90 -4.97 10.87 124 0.55 17.10
75 Mohsen Mayeh —34.60 -5.22 7.20 208 0.93 -

76 Khalifa Lazzez —33.37 —4.73 4.46 - 0.55 -

77 Ferjani yamina -35.96 -5.10 4.84 - 0.40 3.60
78 Moncef Gdoura - - - - - -
79 Mahdi Trabelsi -31.60 -5.20 10.00 200 - -
80 Fawzi Msidi 2 —40.80 —6.00 7.20 - - -

81 Chaal 7 bis —34.98 —6.13 14.06 - 0.00 -
82 Fraj Ghribi -26.10 -3.80 430 - - -
33 Rajab El Hedi -35.45 —5.44 8.07 - - -

84 Sofiene Kallel —40.93 —6.12 8.05 - - -

85 Med Chabchoub 3 -29.43 —4.62 7.54 - 0.00 -
86 Mouldi Bilayedi Ben Ali —40.38 —5.38 2.63 - - -

87 Hamad Belhaj Ltaief —35.38 —5.83 11.26 - 2.53 -
88 Abouda Zribi —32.64 =5.06 7.85 154 1.24 -

89 Forage Taoula (Zribi) -36.09 =5.90 11.10 - 1.15 -

90 Abdelkader Belhaj Ltaief -33.09 —4.88 5.95 - - -

91 Mohamed Ben Nasr —35.52 =5.79 10.78 - - -
92 Noemen Belhaj Ltaief —33.02 -5.90 14.15 - 476 -
93 Salah Oued Rkham —39.58 -6.29 10.78 - - -
94 Belgacem Fatnassi —42.16 -5.93 5.25 - 1.07 -

95 Belgacem Mabrouki - - - - - -
96 Belgassem Mabrouki No. 2 -39.70 —6.20 9.90 - - -
97 Belgassem Mabrouki No. 3 —41.75 —6.71 11.93 - 0.00 -
98 Mounir El ghali -31.50 —5.46 12.15 285 0.77 -
99 Naceur ben Ali —35.42 —5.63 9.62 - - -
100 Salem Baccouche -31.98 —5.54 12.31 312 0.00 -
101 Hakim Bouzayene -35.39 -5.99 12.51 - - -
102 Forage Hzag -31.39 -5.41 11.87 269 0.61 -
103 Naceur Thkir —34.24 —5.63 10.77 - - -
104 Med Mansouri -29.14 -5.23 12.71 210 0.39 -
105 Med Maaoui -30.99 -5.30 11.42 234 - -
106 Sté El Itha (Abdelaziz Makhloufi) —42.10 —6.40 9.10 - - -
107 Forage Rami - - - - - -
108 Sadok Rwag (AGIL) —34.27 =555 10.13 - - -
109 Bechir Haj Ltaief —35.24 —5.37 7.72 - - -
110 Amor Mezghanni —35.26 —491 4.02 - - -
111 Amor Mezghanni (Societe el baraka) —38.21 —6.06 10.27 - - -
112 Mustapha Frikha 2 -37.12 —4.94 2.40 - - -
113 Jamil Triki —24.21 -3.17 1.15 — - —
114 Abdel Majid Ben Mansour —34.58 —4.89 4.54 - - -
115 Fakhreddine Ben Kridis -31.76 —4.81 6.72 - - -
116 Lazhar Bali -38.29 -5.86 8.59 - - -

within a range of —4.84 %o in sample No. 47 to +15.86 %o
in sample No. 53 (Fig. 11; Table 3). Some of these values
fall within the range between 10 (global precipitation) and
13.5 (the local precipitation), indicating the significance of
the local rainfall as a moisture source for Sfax. However,
most of the groundwater samples have low deuterium ex-
cess values (below 10 %o), suggesting that the groundwater
was recharged from precipitation that experienced strong
evaporation during its fall or on the surface (Fig. 11). This

indicates that the majority of the samples that form this line
experienced evaporation and/or mixed with evaporated
water, which explains the increase in the stable isotope
contents of this group of water. Furthermore, several
groundwater samples with the lowest d values (from
—4.84 t0 2.99 %o) are isotopically more enriched, recording
a stronger evaporation effect. This may be related to cli-
mate aridity but may also be related to the depth and dura-
tion of the water—rock interaction during water infiltration,
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which would suggest strong mineralization. A d value of
approximately 10 %o indicates that the water has not been
significantly evaporated, and plots on the GMWL and
close to the LMWL. The water samples that plot below
the GMWL show low deuterium excess values (< 10%o),
indicating that the groundwater is isotopically different
from its original isotopic composition due to evaporation.
To locate the isotopic contents of the groundwater points in
the regional isotopic context, local variations with altitude
should be considered. This relationship, based on the ther-
mal dependence of stable isotope contents, leads to the
interpretation that when altitude increases, the isotopic
contents are increasingly depleted as the average air tem-
perature becomes lower. For the 5'%0 altitudinal gradient
(G), a depletion varies from —0.15 to —0.5 %0 /100 m, cor-
responding to a deuterium depletion of —1 to —4 %0 /100 m
(Clark and Fritz 1997). The estimated aquifer recharge

20

-5
580 %o vs V-SMOW

-4 -3 -2

altitude (AZ) varying between 58 and 325 m.a.s.l
(Table 3) are calculated using the following equation:

AZ =100 x (8" Ogroundwater—8'*Owmrs) /G (4)

The theoretical 5'*0 gradient is about 0.3 %o per 100 m
(G=0.3; Zuppi et al. 1974; Blavoux 1978; Maliki et al. 2000);
the 5'%0 of the weighted mean precipitation in Sfax station
(WMPS) is —4.6 %0 VSMOW.

Groundwater samples showing very high AZ values are rela-
tively more depleted in stables isotope contents than the weighted
mean values of §'%0 and 5°H observed at the Sfax station. This in
turn suggests that this water group has been recharged at altitudes
higher than the elevation of the local rainfall station (10 m a.s.1.).
The calculated values coincide with the elevation of the aquifer
outcrops in the study area. This calculation pattern excludes

Fig. 11 Plot of deuterium excess
(d excess) values of water
samples
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significantly depleted and enriched groundwater samples, affect-
ed either by paleoclimatic effect and/or by recent evaporated
effect, respectively. The distribution of the 5'*0 values of sam-
pled waters shows aremarkably gradual decrease with increasing
recharge elevation (Fig. 12). The lowest recharge elevations are
found in samples Nos. 45, 69 and 74, located in Bir Ali Ben
Khalifa and Skhira regions, for which & 180 content is lower than
—5%0 VSMOW. The recent infiltrated water is confirmed by tri-
tium contents observed in these samples (F45: 0.95 TU; F69:
0.60 TU; F74: 0.55 TU), located in Bir Ali Ben Khalifa (F45)
and Skhira (F69 and F74) regions. However, the highest eleva-
tion values are measured in the samples Nos. 20, 22, 23 and 100
(Table 3), which are relatively more depleted in '*0 and *H con-
tents (5'%0 >—5.5%0 VSMOW) and are particularly located in
Bir Ali Ben Khalifa, the western part of Sfax. The outcrops of Bir
Ali Ben Khalifa and Menzel Chaker constitute the recharge areas
of the aquifer. The samples—Nos. 52, 53, 55, 87, 88, 89, 90, 91
and 92—are characterized by low TDS concentrations (<
2,000 mg/L), indicating low mineralization/short residence time
and short groundwater flow paths (Table 2). In contrast, sample
No. 56 (depth: 180 m), depleted in both 80 and °H contents,
shows the highest TDS concentration (TDS: 8,852.7 mg/L),
which may be related to the enhanced water—rock interaction
along the groundwater flow path, leading to halite dissolution
(Na-Cl1-SO,4 water type) and a long residence time (Mg/Ca ~ 1).
The evaporate minerals dissolution would explain its high min-
eralization, and the slow water infiltration through the low trans-
missivities of the saturated zone layers would explain the long
groundwater residence time. Based on the isotopic gradients, the
recharge areas in the study area are located mainly in the north-
western part of the basin, and water infiltrates via direct infiltra-
tion, which indicates enhanced interaction with the permeable
layers of sandstones and clayey sands located in this area.
These findings suggest short groundwater flow paths, short res-
idence times (Mg/Ca ~ 0.66) and low TDS concentrations (<
2,000 mg/L). This pattern is supported by the measured tritium

contents of the analyzed samples in this area. The *H values range
from 0.00 to 4.76 TU (Table 3), indicating the presence of local
modern recharge in the groundwater from the intermediate aqui-
fer. However, some groundwater samples have low or
undetectable *H concentrations (< 0.5 TU), which are indicative
of the absence of recent water infiltration. These low values are
found particularly in water samples from great depths and from
zones of low transmissivity in the aquifer formations that contrib-
ute to slower water infiltration in the saturated zone. This pattern
is also observed in several samples located in the coastal areas of
Djebeniana and Skhira towards the Mediterranean Sea (dis-
charge area). The absence of *H concentrations in samples locat-
ed near the coast could be related to long groundwater flow paths
(long residence time) and/or a mixture with groundwater that
formed under past climate conditions.

Carbon isotope content and groundwater age dating

Tritium is a dating isotope of young waters. The occurrence of
tritium in groundwater indicates the extent of migration of mod-
ern post-1950s recharge. Its short half-life of about 12.43 years
does not provide an exact dating for the old waters. In this case,
the radiocarbon isotope is used as an excellent tracer for ground-
waters with medium and long residence time. The groundwater
dating by the radiocarbon isotope is conjoined with the *H con-
tents, to confirm the groundwater age via old/recent waters.
Radiocarbon allows the determination of water residence time
over timescales to 30 ka (Clark and Fritz 1997).

The evolution of groundwater in the intermediate aquifer
has been described for an area that is completely arid today but
which is known from past climatic records to have been wetter
in the late Pleistocene and Holocene. The radiocarbon activity
has been determined for 14 boreholes and shows data within a
range of 2.8-76 pmc (Fig. 13; Table. 3), indicating the com-
plexity of the groundwater dynamics. These data can be used
to classify the groundwater into different groundwater

Fig. 12 Plot of 5'30 values of AZ (m)
analyzed water samples versus
aquifer recharge altitude (AZ) 45 0 510 190 15:)0 290 2?0 3?0 350
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Fig. 13 Radiocarbon activities of 80
the groundwater samples 70 -
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recharge periods, indicating old and young groundwaters. The
groundwater isotopic evidence in different places records
strong variations in the humidity of the air masses supplying
moisture across the continent at different times over the past
30,000 years. Similar to the relationships between carbon-14
(%) and infiltration period (age) plotted by several authors for
the Saharan platform and North Africa (Edmunds et al.1997;
Guendouz et al. 2003), the §'*0 data (%o) are plotted vs.
computed age, years Before Present (BP), for the groundwater
samples in the study area (Fig. 14). Most of the samples (21.2—
58 pmc) correspond to a Holocene recharge period. Three
samples (No. 61, 5'%0: —5.07 %o: No. 74, 5'30: —4.97 %o;
and No. 77, '80: —5.10 %), located in the southern coastal
area of the basin (Skhira area) correspond to the late
Pleistocene period. In contrast, a younger water sample (No.
26) with a high radiocarbon activity of 76 pmc, located in the
western study area, corresponds to modern recharge (—5.65
%a; Fig. 14). The 5'*C analyses carried out was in the TDIC
range from —11.01 to —8.04 %o (Table 4). Seven correction
models based on the chemical evolution and/or isotope

Sample No.

dilution of 3C/"2C derived from soil CO, through interactions
with aquifer carbonates were adopted to estimate the ground-
water age. It is highlighted that ages proposed by Ingerson and
Pearson (1964), Evans et al. (1979), Eichinger (Eichinger
1983) and Fontes and Garnier (1979) are globally in good
agreement and provide very similar ages. The models of the
International Atomic Energy Agency (IAEA; Salem et al.
1980) and Tamers (1975) suggest greater ages than the previ-
ous models. The Mook models (Mook 1980) tend to give rise
to over-estimations of groundwater residence times. The C
activities were corrected using the Pearson model. The com-
puted ages varies from the actual to 21,000 years BP. These
results confirm the complexity of the recharge process inferred
from stables isotopes and chemical analysis. These data can
classify the groundwaters into three groups: (1) ages between
modern and 3000 years BP corresponding to local recent infil-
trated waters; (2) ages between 4500 and 10,000 years BP, such
as F61 and F74, which indicates the relatively old origin of the
water, resulting from the long groundwater flow path probably
linked to the low permeability of the sandy clay levels, and/or

Fig. 14 The computed age/5'%0 -4.5
relationship
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Table 4 Calculated ages of selected groundwater samples. Ages are expressed in years Before Present (BP)

Site/sample l4c 3¢ BCGa. Eq. Age Age Age Age AgeF. & Age Age Age
No. (pcm) (%0) (%0) Brut Tamers Pearson Mook G. AIEA Evans Eichinger
F31 56.7 -9.39 -199 4,690  Actual Actual 11,154 Actual 2,942 Actual Actual
F32 58 -8.04 —18.2 4,503 Actual Actual 13,909 Actual 1,087 Actual Actual
F34 55 —-8.58 —19.0 4,942 Actual Actual 13,227 Actual 2,234 Actual Actual
F30 21.2 -821 -18.7 12,823 7,324 3,155 21,498 3,258 9,637 3,501 2,854
F26 76 - - 2269 - - - - - - -

F57 12.7 - -9.5 17,059 12,248 - 34,385 - - - -

F28 29 -9.06 -134 10,233 7,342 1,625 - 1272 5,962 964 Actual
F3 47 -11.01 -17.8 6,242 1,847 Actual - Actual 4,181 Actual Actual
F63 15.5 - 1.2 15412 15412 - 37,017 - - - -

F6l 10.4 -886 —16.0 18,710 13,768 9,865 - 9,640 14,127 9,127 9,168
F67 2.8 -9.04 -79 29,558 29,558 20,926 47,200 21,215 27,409 21,215 -

F60 39 -9.16 —18.8 7,784 2,856 Actual 16,205 Actual 5,775 Actual Actual
F74 17.1 -8.09 -17.8 14,600 9,611 4,770 24,553 4,896 11,252 5,126 3,972
F77 3.6 -854 —18.7 27,480 22,202 18,240 36,110 18,337 24,722 18,562 17,756

from a mixture with old water coming from the Miocene deep
groundwater; and (3) the greatest ages (> 10,000 years BP) that
support the paleoclimatic origin of groundwaters. This water
group (samples Nos. 67 and 77) has been recharged under
colder climatic conditions than the present day, during the late
Pleistocene. This is consistent with negligible radiocarbon and
tritium content (F67: 2.8 pmc and F77: 3.6 pmc; 0.4 TU). The
depleted isotopic signature of the majority of water samples
shows that the groundwater was recharged under distinctly
different climatic conditions, during late Pleistocene and early
Holocene (Fig. 14).

It is evident from Fig. 15 that the spatial patterns of mean
residence time and '*C activity in the Mio-Pliocene ground-
water do not follow a unique flow path. The groundwater
characterized by the Na-SO, water type (sample No. 26)

presents a short residence time (age: 2269 years Bp), '*C =
76 pmc and *H = 0.47 TU. From this information, it is appar-
ent that this groundwater sample is composed of a recent water
component. This is in agreement with the 5'%0/5°H diagram,
which shows that the sample is located between the meteoric
water lines (with d=12.65 %o), indicating recent local re-
charge. In contrast, the groundwater characterized by the Ca-
Na-SO,4 water type (sample No. 28) presents a relatively long
residence time (9948 years BP), depth =145 m and '*C =29
pmec. These data imply that this water may be attributed to pre-
nuclear recharge and/or a mixture between pre-nuclear and
contemporaneous recharge. This water sample was recharged
in association with evaporation (d=4.16 %o) that occurred
during its infiltration through sandy clayey and evaporitic
levels that resulted in a high TDS concentration (5,293 mg/

Fig. 15 The '“C/TDS 80
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Fig. 16 Conceptual groundwater
dynamics model showing the
vertical leakage process
contributing to the recharge of the
intermediate aquifer in Sfax basin
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L) and a relatively prolonged groundwater residence time.
Furthermore, the groundwater characterized by the Na-Cl-
SO, water type (sample No. 77) presents a longer residence
time with '*C =3.6% and a high TDS value of 7,952 mg/L
The low "*C content measured in this sample, located in the
southern coastal part of Sfax, can be explained by the long
groundwater flow path due to the dominance of evaporitic
deposits. This water sample was affected by evaporation
(d=4.84 %o). Slower infiltration through the clayey layers,
which are interbedded with sandstones, contribute to delay
the water infiltration in the unsaturated zone and to increase
the groundwater residence time. The groundwaters show a
geochemical evolution between Ca-Na-SO,4, Na-SO,4 and
Na-Cl-SO, water types. The dominance of SO4-Na and Cl
ions probably indicates prolonged water infiltration within
the intermediate aquifer due to the low transmissivities of
the evaporitic and clayey aquifer formations, that contribute
to a prolonged and longer groundwater flow path, i.e., mainly
evaporitic rock dissolution, evaporation and cation exchange,
which can successfully explain the observed changes in HCO;
and TDIC. The groundwater dynamics and the leakage
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process contributing to the recharge of the intermediate aqui-
fer (Fig. 16) is confirmed by the isotope mass balance calcu-
lations (Ayadi et al. 2016), indicating interaction between the
different Sfax aquifer layers. This provides evidence that the
groundwater has recharged during large-scale periods with
variability in recharge mechanisms that lead to variation in
the groundwater residence times, supported by the carbon-
14 contents.

Conclusions

The geochemistry and isotope hydrology of the groundwater
in the intermediate aquifer of the Sfax basin (southeastern
Tunisia) have provided useful insights into the water types,
mineralization processes, origins, recharge mechanisms and
residence times. This detailed investigation is of a particular
importance for sustainable management of these groundwater
resources, especially in arid zones coupled with the increasing
exploitation for irrigation and domestic supply.
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The chemical data showed significant variations in salinity
and evolution in the hydrochemical facies that could be related
to the facies changes in the geological formations of the studied
zone and the tectonic activity. The water chemistry of the studied
groundwater is chiefly governed by several processes: (1) the
dissolution of evaporitic minerals, (2) cation exchange reactions
caused by the interaction with clay minerals, and (3) mixing
processes. The stable isotope data indicate that the groundwater
samples are mostly of a meteoric origin and are derived mainly
from oceanic vapor masses. These isotopic tracers reveal the
existence of three groups of water: (1) non-evaporated ground-
water, suggesting rapid infiltration of unevaporated recharge wa-
ter, (2) evaporated waters, defined by an evaporation-driven de-
viation from the meteoric lines and characterized by an enrich-
ment in heavy isotopes, suggesting the occurrence of partial
evaporation at the surface prior to, during, or after infiltration
through the unsaturated zone or mixing with evaporated infiltrat-
ed water, and (3) mixed water composed of recent and old com-
ponents, depleted in oxygen-18 and deuterium. The radiogenic
(*H) isotope data indicate significant evolution in the groundwa-
ter in terms of old versus recent recharge. These data provide
evidence that the groundwater in the intermediate aquifer repre-
sents a bimodal system: recent groundwater ("H > 1 TU), which
involves modern recharge supplied by a direct and rapid flood-
water infiltration (mainly recorded in the western and northwest-
ern parts of the basin), and old groundwater CH < 1 TU). Low
tritium contents may indicate recharge prior to 1952 and/or a
mixture between pre-nuclear and contemporaneous recharge.
Carbon-14 activities versus &' *C data provide evidence that most
of the groundwater recharged during the Pleistocene and
Holocene periods. The approaches used work towards better un-
derstanding of the groundwater dynamics and quality. They will
constitute a useful tool to protect these important groundwater
resources from declining and from salinization, by aiding man-
agers to elaborate appropriate strategies for exploitation in further
economic development of the Sfax region.
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