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Abstract
Knowledge of groundwater contamination sources is critical for effectively protecting groundwater resources, estimating risks,
mitigating disaster, and designing remediation strategies. Many methods for groundwater contamination source identification
(GCSI) have been developed in recent years, including the simulation–optimization technique. This study proposes utilizing a
support vector regression (SVR) model and a kernel extreme learning machine (KELM) model to enrich the content of the
surrogate model. The surrogate model was itself key in replacing the simulation model, reducing the huge computational burden
of iterations in the simulation–optimization technique to solve GCSI problems, especially in GCSI problems of aquifers con-
taminated by dense nonaqueous phase liquids (DNAPLs). A comparative study between the Kriging, SVR, and KELMmodels is
reported. Additionally, there is analysis of the influence of parameter optimization and the structure of the training sample dataset
on the approximation accuracy of the surrogate model. It was found that the KELM model was the most accurate surrogate
model, and its performance was significantly improved after parameter optimization. The approximation accuracy of the surro-
gate model to the simulation model did not always improve with increasing numbers of training samples. Using the appropriate
number of training samples was critical for improving the performance of the surrogate model and avoiding unnecessary
computational workload. It was concluded that the KELM model developed in this work could reasonably predict system
responses in given operation conditions. Replacing the simulation model with a KELM model considerably reduced the com-
putational burden of the simulation–optimization process and also maintained high computation accuracy.
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Introduction

Dense nonaqueous phase liquids (DNAPLs), which have
caused serious environmental and health hazards around the
world (Fernandez-Garcia et al. 2012), have low solubility,
high toxicity, high interfacial tension, and a high tendency to
sink in water (Qin et al. 2007). There are many difficulties in
DNAPL-contaminated aquifer remediation such as low con-
taminant removal rates, long remediation durations, and high
remediation costs. Thus, selecting a reasonable and efficient

remediation strategy based on information about the DNAPL
contamination source in the aquifer is critical.

However, one of the characteristics of groundwater con-
tamination is concealment, and the discovery of groundwater
contamination usually lags behind the contamination event or
events, which results in minimal knowledge about the ground-
water contamination sources, including their number, loca-
tion, and release history (Atmadja and Bagtzoglou 2001;
Sun et al. 2006; Sun 2009), thus making groundwater contam-
ination source identification (GCSI) especially important.

GCSI is accomplished by inversely solving a simulation
model that describes contaminant transport in the aquifer
based on limited groundwater contamination monitoring data.
GCSI can be used to take effective action in protecting
groundwater resources, estimating risks, mitigating disaster,
and designing remediation strategies (Mirghani et al. 2012).

There have been several comprehensive reviews of GCSI
(Atmadja and Bagtzoglou 2001; Michalak and Kitanidis 2004;
Bagtzoglou and Atmadja 2005). Among the proposed
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solutions, the simulation–optimization method (Ayvaz and
Karahan 2008; Mirghani et al. 2009; Ayvaz 2010; Datta et al.
2011; Zhao et al. 2016) and the Bayesian method (Michalak
and Kitanidis 2003; Wang and Jin 2013; Zeng et al. 2012;
Zhang et al. 2015, 2016) are effective tools for solving GCSI
problems. The effectiveness of the simulation–optimization
method on programming and identification has been con-
firmed in many fields; however, running a multiphase flow
numerical simulation model of DNAPL-contaminated aquifers
is time consuming. The high computational burden that results
from invoking the numerical simulation model repeatedly
limits the applicability of GCSI simulation–optimization
modeling at DNAPL-contaminated sites.

Previous studies (e.g., Mirghani et al. 2009, 2010) have
mostly relied on parallelization and grid computing to de-
crease the computation time of the simulation model. The
emerging surrogate model, which has a similar input and out-
put relationship to the simulation model, can be computed
several orders of magnitude faster than the simulation model
(Queipo et al. 2005; Sreekanth and Datta 2010).

The most crucial requirement of the surrogate model is its
approximation accuracy, because it greatly influences the reliabil-
ity of the simulation–optimization model. Many surrogate model
techniques have been applied to groundwater remediation strat-
egy optimization problems such as polynomial regression (He
et al. 2008), radial basis function artificial neural networks
(RBFANN; Bagtzoglou and Hossain 2009; Luo et al. 2013),
the Kriging algorithm (Hou et al. 2016), and support vector re-
gression (SVR; Hou et al. 2015).

Asher et al. (2015) present a review of surrogate models
and their application to groundwater modeling. The surrogate
modeling techniques fall into three categories: data-driven,
projection, and hierarchical-based approaches. The techniques
mentioned before are all data-driven surrogates, which ap-
proximate a groundwater model through an empirical model
that captures the input–output mapping of the original model,
and were most widely used. Artificial neural networks
(ANNs) are the most popular tool used as a surrogate of the
numerical simulation model for GCSI problems (Singh et al.
2004; Rao 2006; Mirghani et al. 2012; Srivastava and Singh
2014, 2015); however, they suffer from instability and
overfitting problems that are difficult to solve. Zhao et al.
(2016) applied the Kriging model to GCSI problems and test-
ed the accuracy, calculation time, and robustness of the
Kriging model in three cases. However, the applicability of
the Kriging model in GCSI of DNAPL-contaminated aquifers
has not previously been reported; furthermore, there are few
applications of other surrogate models in GCSI problems.

This study therefore proposes utilizing the SVR and kernel
extreme learning machine (KELM) models to enrich the con-
tent of the surrogate model for solving GCSI problems, espe-
cially for DNAPL-contaminated aquifers. Additionally, the
report examines the effectiveness of the proposed model with

a comparative study between the Kriging, SVR, and KELM
models, and finds that the disparities in applicability and ap-
proximation accuracy between these models for solving
DNAPL-contaminated aquifer solute migration and transfor-
mation problems is significant. It is therefore necessary to
select a best-fit surrogate model for the target problem.

In addition to the modeling method, the parameters and
training sample dataset structure of the surrogate model also
strongly impact its approximation accuracy to the simulation
model; however, these aspects have been insufficiently inves-
tigated. Previous work has generally determined the parame-
ters and the number of training samples empirically (Mirghani
et al. 2012; Luo et al. 2013; Jiang et al. 2015; Zhao et al.
2016). As an extension of previous studies, this paper presents
another two comparative studies analyzing the influence of
these factors on the approximation accuracy of the surrogate
model—first, there is an examination of the differences in the
surrogate models with and without parameter optimization,
and then it examines surrogate models built with different
numbers of training samples.

Methodology

Multiphase flow numerical simulation model

Any meaningful approach to GSCI problems must obey the
flow and transport principle. The simulation model is the prin-
cipal part of the simulation–optimization model, in which the
simulation model is set as an equality constraint (Datta et al.
2011). An overview of this process is shown in Fig. 1.

The fundamental mass conservation equation for eachmul-
tiphase flow component can be written as follows (Hou et al.
2015; Jiang et al. 2015):

∂ ϕ~Ckρk
� �

∂t
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where k is a component index and l is a phase index including
water and oil. The initial and boundary conditions were inte-
grated with the mass conservation equation to build the math-
ematical model, which was solved by UTCHEM.

Kriging

Kriging was denoted as the sum of two components: the linear
model and a systematic departure (Hemker et al. 2008). The
basic formulation can be expressed as (Bagtzoglou et al. 1991,
1992)

y xð Þ ¼ fT xð Þβþ Z xð Þ ¼ ∑
k

j¼1
f j xð Þβ j þ Z xð Þ ð2Þ
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where f(x) = [f1(x), f2(x),⋯, fk(x)]
T are determinate regression

functions and β = (β1, β2,⋯, βk)
T denotes the matrix of re-

gression coefficients to be estimated from the training sam-
ples. Z(x) is the local deviation from the regression model. A
detailed introduction to the Kriging method can be found in
Hou et al. (2015) and Zhao et al. (2016).

Support vector regression

SVR is a support vector machine (SVM)-based multiple re-
gression method that balances fitting accuracy and prediction
accuracy (Hu et al. 2014; Zhang et al. 2014). For training input
X = [x1, x2,⋯, xm]

T (where each element represents an N-di-
mensional input vector xi = (xi, 1, xi, 2,⋯, xi,N), i = 1, 2⋯,m)
and output Y = (y1, y2,⋯, ym)

T, the nonlinear regression func-
tion can be expressed as:

f xið Þ ¼ w;Φ xið Þh i þ b ð3Þ

where 〈w,Φ(xi)〉 denotes the dot product of fitting coefficients
w = (w1,w2,⋯,wN) and xi, b is the fitting error. The goal is to
find a function f(xi) that has at most ε deviation from the target
output yi for all training inputs; the norm of w(‖w‖) should be
as small as possible.

A kernel function is applied to project the samples from
low-dimensional space to high-dimensional space:

k x; x
0

� �
¼ exp ‐

x‐x
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ð4Þ

The regression problem can be expressed as an optimiza-
tion problem:

minimize
1

2
wk k2 þ C ∑

m

i¼1
ξi þ ξ*i
	 


subject to
yi− w;Φ xið Þh i−b≤εþ ξi
w;Φ xið Þh i þ b−yi≤εþ ξ*i
ξi; ξ

*
i ≥0

8<
:

ð5Þ

where constantC determines the trade-off between the flatness
and the maximum tolerable number of the samples whose

deviation is larger than ε, and ξi and ξ
*
i are the upper and lower

limits of the slack variables. The optimization problem in Eq.
(4) is often solved in its Lagrange dual form (Smola and
Scholkopf 2004; Hou et al. 2015):

w ¼ ∑
m

i¼1
αi−α*

i

	 

Φ xið Þ ; f xð Þ ¼ ∑

m

i¼1
αi−α*

i

	 

k xi; xð Þ þ b ð6Þ

where αi and α*
i are Lagrange multipliers. Fitting error b can

be computed by exploiting the Karush-Kuhn-Tucker (KKT)
conditions.

Kernel extreme learning machine (KELM)

KELM generalize extreme learning machines (ELM) by
transforming their explicit activation function to an implicit
mapping function (Shi et al. 2014; Chen et al. 2014). Given N
training samples (xj, tj), j = 1,⋯,N, the KELM is expressed
as an optimization model:

min
1

2
βk k2 þ C

2
∑
N

i¼1
ξ2j

� �
subject to m x j

	 
T⋅β ¼ t j−ξ j
ð7Þ

where β denotes a vector in the feature space F, C denotes the
regularization coefficient, m(xi) maps the input xj to a vector
in F, and ξj denotes the error (Wang and Han 2014).

OptimizationModel

Surrogate Modeling Method

Training Sample Inputs

New Inputs

Simulation Model

Minimize Error

Higher Fitness

Observed Outputs

Modeled Outputs

Modeled  Outputs

Trained Surrogate Model

Objective FunctionFig. 1 Flow chart of the proposed
GCSI solution process
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The optimization problem can be transformed into
Lagrange dual (LD) form

LD ¼ 1

2
βk k2 þ C

2
∑
N

j¼1
ξ2j− ∑

N

j¼1
θ j m x j

	 
T⋅β−t j þ ξ j
� �

ð8Þ

where θj is the jth Lagrange multiplier. This problem can be
computed by exploiting the KKToptimality conditions (Jiang
et al. 2015).

The kernel matrix of the ELM can be defined as

KELM ¼ MMT ð9Þ
and

KELM i; jð Þ ¼ m xið ÞT⋅m x j
	 
 ¼ K xi; x j

	 
 ð10Þ

where M is the mapping matrix of training sample inputs in
the feature space F.

Finally, the KELM output function can be written as

f xð Þ ¼ m xð ÞTMT MMT þ I
C

� �−1

T ¼
K x; x1ð Þ

⋮
K x; xNð Þ

2
4

3
5
T

KELM þ I
C

� �−1

T

ð11Þ

Case study

Site overview

To analyze the practical application of different surrogate
models for DNAPL-contaminated aquifer GCSI problems, a
hypothetical chlorobenzene-contaminated site was set up as a
case study. The site was located in the saturated zone of a 20-
m-deep aquifer with a complex mixture of clay and sand de-
posits in which the groundwater flowed in a right-left direction.
There are three potential contamination sources at the site. The
goal was to simultaneously identify the actual single source,
release strength, and release duration, and estimate the aquifer
parameters. Five observation wells were set at the lower
reaches of the groundwater gradient of the potential sources
to obtain groundwater quality data (Fig. 2).

Multiphase flow numerical simulation model

A three-dimensional (3D) multiphase flow numerical model
was developed in which the aquifer is homogeneous and it
was assumed that the initial and boundary conditions are
known. The left and right boundaries of the site were set as
first-type boundary conditions, while other boundaries were
no-flux boundaries. The horizontal hydraulic gradient was set
to 0.0112. The simulation domain was discretized into 10
vertical layers, each of which was further discretized into
40 × 20 grid cells.
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Fig. 2 Locations of potential contamination sources (S1, S2, S3) and
observation wells (O1–O5)
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Surrogate models of the multi-phase flow numerical
simulation model

In order to identify the DNAPL source, an optimization model
was established that uses the minimal deviation between ac-
tual observations and model predictions as its objective func-
tion; this model will be demonstrated in future research, as this
study focuses on the surrogate model. The size of the surro-
gate model output should be matched to the actual
groundwater-quality-observation data. There were two sets
of actual groundwater-quality-observation data with an inter-
val of 6 months between them. Each set of observation data
contained five constants, i.e. the chlorobenzene concentra-
tions at the middle of the aquifer in five observation wells
(Fig. 3).

The middle aquifer was chosen as an observation object
because there may be an oil phase while sampling at the bot-
tom of an aquifer in real-world situations, and the sampling
proportion of water and oil is random, leading to significant
deviation between the experimental analysis results and the
actual volume fraction of oil in the groundwater at the bottom
of the aquifer. Thus, the output variables of the surrogate
model were the chlorobenzene concentrations at the middle
of the aquifer in five observation wells at two observation time
points, for a total of 10 elements.

The release strengths and duration of the three potential
DNAPL sources were treated as controllable input variables

when building the surrogate model. In addition, calibration
and verification cannot be carried out without contaminant
source information; thus, the contaminant source and aquifer
parameters should be identified simultaneously (Starn et al.
2015). Finally, the input vectors of the surrogate model consist
of eight elements: the release durations and strengths of
sources S1, S2, and S3; porosity; aqueous phase dispersivity;
oleic phase dispersivity; and permeability.

Four groups of training samples and 20 testing samples in
feasible regions of input variables were obtained using Latin
hypercube sampling (LHS; Hossain et al. 2006). Each training
sample group consisted of 30 samples. The release strength
and duration were uniform distribution variables in (0,
1.5 m3 day−1) and (600, 900 days), respectively. The aquifer
parameters obey the normal distribution while LHS sampling
and the distribution characteristics of porosity, dispersivity,
and permeability were taken as N (0.3, 0.0001), N (1 m,
0.01), and N (8,500 md, 100,000), respectively. As the study
case was hypothetical, the distribution characteristics of aqui-
fer parameters were assumed. The corresponding outputs of
the 140 sets of input vectors were obtained for the developed
simulation model runs.

There are three factors that affect approximation accuracy:
surrogate modeling method, number of training samples, and
surrogate model parameters. To analyze the influence of each
of these factors, three comparative studies of different surro-
gate models were conducted.

Fig. 4 Boxplot of relative errors of different surrogate models

Table 1 Performance evaluation
of different surrogate models Performance

evaluation indices
Certainty coefficient R2 Mean relative error (%) Max relative error

(absolute value) (%)

Kriging 0.9719 5.1828 39.9035

SVR 0.9779 4.4636 25.8954

KELM 0.9793 4.2053 18.2611
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Comparison between surrogate models built using different
methods

In this experiment, the Kriging, SVR, and KELM models
were built with the same training samples and the uncertain
parameters of the surrogate models were optimized with a

genetic algorithm (GA) to improve their approximation accu-
racy to the simulation model (Hou et al. 2015). The three
models were then compared using test samples. The Kriging
and KELMmodels were built in MATLAB. The Libsvm tool-
box (Chang and Lin 2001) was used to train and test the SVR
model (Hou et al. 2015). The comparison results showed that

Fig. 5 Distributions of relative errors for different surrogate models. a
Distribution of relative errors in different intervals; b relative error
cumulative frequency curve

Fig. 6 Boxplot of relative errors of KELM models with and without parameter optimization

Fig. 7 Distributions of relative errors for KELMmodels with andwithout
parameter optimization. a Distribution of relative errors in different
intervals; b relative error cumulative frequency curve
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the KELM model performed best, so only the KELM model
was chosen as the research object in the BComparison between
surrogate models with and without parameter optimization^
and BComparison between surrogate models built with differ-
ent number of training samples^ sections.

Comparison between surrogate models with and
without parameter optimization

The KELM models with and without parameter optimization
were compared using testing samples to analyze the improve-
ment of the surrogate model after parameter optimization. The
KELMmodel was optimized by establishing a model using the
minimal sum of the relative error by threefold cross-validation
with 90 training samples as its objective function. The regular-
ization coefficient in Eq. (7) and the kernel parameters served
as decision variables and the constraints were the range of
parameters. A GAwas used to solve the optimization model.

Comparison between surrogate models built with a different
number of training samples

To analyze the influence of training sample dataset structure on
the approximation accuracy of the surrogate model, three
KELMmodels were built and compared. The number of train-
ing samples for the three surrogate models were 60, 90, and
120. The parameters of the three surrogate models were

optimized by a GA. LHS was used to obtain four groups of
30 training samples; thus, the training sample datasets of three
surrogate models consisted of different training sample groups.

Surrogate model performance evaluation indices

Three indices were applied to evaluate the performance of
surrogate models:

1. Certainty coefficient R2

R2 ¼ 1−
∑
n

i¼1
∑
m

j¼1
yi; j−ŷi; j

� �2

∑
n

i¼1
∑
m

j¼1
yi; j−y

� �2 ð19Þ

where n is the sample number, m is the dimension of the
simulation model output vector, yi, j is the jth element of the
ith simulation model output vector, ŷi; j is the jth element of the

ith surrogate model output vector, and y is the average of the
simulation model outputs. The surrogate model is better when
the R2 is closer to 1.

2. Mean relative error (MRE)

MRE ¼
∑
n

i¼1
∑
m

j¼1

yi; j−ŷi; j




 


,
yi; j

n
ð20Þ

Fig. 8 Boxplot of relative errors of KELM models built with different training sample datasets

Table 2 Performance evaluation
of KELM models with and
without parameter optimization

Performance evaluation
indices

Certainty coefficient R2 Mean relative error (%) Max relative error
(absolute value) (%)

Unoptimized KELM 0.9615 5.9290 41.2639

Optimized KELM 0.9793 4.2053 18.2611
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3. Maximum relative error

max
yi; j−ŷi; j




 


,
yi; j

ð21Þ

Results and discussion

The outputs of 20 testing samples obtained using the
trained surrogate models (a total of 200 values) were
compared with those obtained using the developed simu-
lation model. Figure 4 shows boxplots of the relative
error metrics corresponding to the three different surro-
gate models.

The transport of organic contaminants in multiphase flow
is complicated and the solubility of chlorobenzene in water is

particularly low, making it difficult to follow the relationship
between the inputs and outputs of the simulation model. The
relative errors of the three surrogate models were higher than
those of the same surrogate models applied to other problems
(Luo et al. 2013; Hou et al. 2015, 2016; Zhao et al. 2016).

Figure 4 clearly shows that the number of relative errors
larger than 20% for the Kriging model are much larger than
those of the other twomodels, and themax relative error for the
Kriging model is 39.9035%. These findings illustrated that the
Kriging model performance was unstable with respect to this
problem. Three surrogate models were also evaluated using the
three indices previously described (Table 1). The closer the
certainty coefficient R2 is to 1, the more accurate the surrogate
model. Table 1 shows that the accuracy of the KELM and SVR
models is higher than that of the Kriging model. Furthermore,
the KELMmodel was better than the SVRmodel in all indices,
and themax relative error for KELMmodel was less than 20%;
thus, it is concluded that the KELM model is an acceptable
method for creating a surrogate model.

Figure 5 illustrates the distribution of the relative errors of
the surrogate models. The relative error values concentrated
between 0.5 and 7%, andmost of the relative error values were
less than 12%. The KELM and SVR models were significant-
ly superior to the Kriging model, according to the relative
error cumulative frequency curves.

Figures 6 and 7 show the results corresponding to the
KELM surrogate models with and without parameter optimi-
zation. The parameters of the KELM model greatly affect its
approximation accuracy. After parameter optimization, all
performance evaluation indices of the KELM model were
significantly improved (Table 2).

Using 20 testing samples, the maximum and average rela-
tive errors of the groundwater contamination monitoring data
predicted by the KELM model without parameter optimiza-
tion (41.2639 and 5.9290%) were far larger than those of the
optimized KELMmodel (18.2611 and 4.2053%). The relative
error cumulative frequency curve of the optimized KELM
model was located below that of the unoptimized KELM
model throughout.

Figures 8 and 9 compare the results corresponding to the
KELM surrogate models built with different training sample
datasets. When the number of training samples increased from
60 to 90, the approximation accuracy of the KELM model
improved significantly. However, the KELMmodel built with

Fig. 9 Distributions of relative errors for KELM models built with
different training sample datasets. a Distribution of relative errors in
different intervals; b relative error cumulative frequency curve

Table 3 Performance evaluation
of KELM models built with
different training sample datasets

Performance evaluation indices Certainty coefficient R2 Mean relative error (%) Max relative error
(absolute value) (%)

KELM-60 training samples 0.9716 5.4856 33.9618

KELM-90 training samples 0.9793 4.2053 18.2611

KELM-120 training samples 0.9770 4.1288 18.2169
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120 training samples performed no better than, or even worse
than, the KELM model built with 90 training samples, as per
Figs. 8 and 9 and Table 3.

The structure of the training dataset affects the approxima-
tion accuracy of the surrogate model; however, the approxi-
mation accuracy does not simply improve with increasing
numbers of training samples. It is necessary to provide suffi-
cient training samples to improve the performance of the sur-
rogate model, while avoiding unnecessary computation.

The optimal number of training samples depends on the
surrogate modeling method, the number of input variables,
the number of output variables, and many other factors. Too
few training samples cannot cover the input variable intervals
well, while too many are unhelpful for improving approxima-
tion accuracy; thus, further research on a technique for esti-
mating the number of training samples required for the KELM
model is needed.

A conventional simulation optimization model required
20,000 runs of the simulation model. The simulation for the
chlorobenzene-contaminated site required nearly 500 s of
CPU time on a 3.2GHz Intel core i5 CPU and 4 GB RAM
PC platform, while each run of the KELM model just takes
0.9 s. Thus, replacing the simulation model with the KELM
model in the optimization process reduced the CPU time from
10,000,000 s (116 days) to 18,000 s (5 h).

Though the approximation accuracy of the surrogate model
was acceptable when the optimal surrogate method and pa-
rameters were selected, the maximum relative error of the
groundwater contamination monitoring data predicted by the
KELM model was greater than 15%. Future studies will be
needed to further improve the approximation accuracy of the
surrogate model and make simulation-surrogate-optimization-
based GCSI results more reliable.

Conclusions

This study demonstrates the applicability of the Kriging, SVR,
and KELM models for optimal identification of unknown
groundwater pollution sources by presenting performance
evaluations for different surrogate models. The proposedmeth-
odology overcomes some of the severe computational limita-
tions of the embedded simulation–optimization approach.

Three comparative studies were carried out to select the
optimal surrogate model and analyze the influence of param-
eters and the structure of the training dataset on the approxi-
mation accuracy of the surrogate model. Several general con-
clusions that can be drawn from this study are summarized in
the following:

1. The KELM model was the most reliable surrogate model
of the Kriging, SVR, and KELM models. The KELM

model reasonably predicted system responses for given
operation conditions.

2. The performance of the KELM model was significantly
improved through parameter optimization. Using 20 test
samples, the maximum and average relative errors of the
groundwater contamination monitoring data predicted by
the KELM model without parameter optimization were
41.2639 and 5.9290%, whereas those of the optimized
KELM model were only 18.2611 and 4.2053%.

3. The structure of the training dataset significantly affects
the approximation accuracy of the surrogate model; how-
ever, additional training samples do not always lead to
higher approximation accuracy. Determining and utilizing
the appropriate number of training samples is critical for
improving the performance of the surrogate model and
avoiding unnecessary computation.
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