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Abstract The effects of rainfall and the El Niño Southern
Oscillation (ENSO) on groundwater in a semi-arid basin of
India were analyzed using Archimedean copulas considering
17 years of data for monsoon rainfall, post-monsoon ground-
water level (PMGL) and ENSO Index. The evaluated depen-
dence among these hydro-climatic variables revealed that
PMGL-Rainfall and PMGL-ENSO Index pairs have signifi-
cant dependence. Hence, these pairs were used for modeling
dependence by employing four types of Archimedean cop-
ulas: Ali-Mikhail-Haq, Clayton, Gumbel-Hougaard, and
Frank. For the copula modeling, the results of probability
distributions fitting to these hydro-climatic variables indicated
that the PMGL and rainfall time series are best represented by
Weibull and lognormal distributions, respectively, while the
non-parametric kernel-based normal distribution is the most
suitable for the ENSO Index. Further, the PMGL-Rainfall pair
is best modeled by the Clayton copula, and the PMGL-ENSO
Index pair is best modeled by the Frank copula. The Clayton
copula-based conditional probability of PMGL being less than
or equal to its average value at a given mean rainfall is above
70% for 33% of the study area. In contrast, the spatial varia-
tion of the Frank copula-based probability of PMGL being
less than or equal to its average value is 35–40% in 23% of
the study area during El Niño phase, while it is below 15% in
35% of the area during the La Niña phase. This copula-based
methodology can be applied under data-scarce conditions for

exploring the impacts of rainfall and ENSO on groundwater at
basin scales.
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Introduction

Groundwater contributes to one-third of the global freshwater
supply, which supports a population of over 2 billion
(Gorelick and Zheng 2015). In India, groundwater is a source
of water supply for more than 80% of the rural and 50% of the
urban populations, and for 50% of irrigation demand, which
contributes to 70–80% of irrigated production (Mall et al.
2006). There is a consensus among climate scientists that
global warmingwill intensify, accelerate, or enhance the water
cycle, which will have important consequences for the world’s
freshwater resources (UNESCO 2009). Although the effects
of climate change on water resources are already visible
worldwide, the greatest concern of water experts is its impact
on groundwater as this is a more dependable source of water
supply for domestic, irrigation and industrial sectors (e.g.,
Holman 2006; Gurdak et al. 2009; Gorelick and Zheng
2015). Groundwater is affected by climate through major hy-
drological processes such as precipitation, evapotranspiration,
and runoff as well as through interaction with surface-water
bodies. The extremes of climate (droughts and floods) are
often related to the drivers of climate variability, i.e., large-
scale climatic patterns/oscillations such as the North Atlantic
Oscillation (NAO), Arctic Oscillation (AO), Pacific Decadal
Oscillation (PDO), El Niño Southern Oscillation (ENSO), etc.
These large-scale and long-term climatic cycles can have the
most discernible impacts on groundwater due to slow aquifer
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recharge processes and long aquifer response times (Russo
et al. 2014); however, proper assessment of climate-change
impacts on groundwater is challenging due to its complex
relations with hydro-climatic variables (Mishra and Singh
2010). This challenge is further complicated for data-scarce
developing countries.

In the recent past, several researchers ascertained the con-
nection between groundwater and large-scale climate patterns
across the world (e.g., Jones and Banner 2003; Fleming and
Quilty 2006; Hanson et al. 2006; Luque-Espinar et al. 2008;
Gurdak et al. 2009; Tremblay et al. 2011; Perez-Valdivia et al.
2012). Fleming and Quilty (2006) studied this link in the
aquifer of southwest British Columbia, Canada, and reported
that the groundwater of the area has a significant correlation
with seasonal ENSO-related precipitation anomalies, i.e.,
groundwater levels are higher during La Niña years and
lower during El Niño years. Using wavelet and coherence
analysis, Tremblay et al. (2011) investigated the links of cli-
matic oscillations (NAO, AO, PDO, Pacific-Northern-
America-Pattern, and multivariate ENSO Index) with the
groundwater levels of three unconfined aquifers in Canada
and concluded that the inter-annual cycles observed in large-
scale climatic patterns were also found in groundwater levels,
thereby suggesting substantial influence of these climatic pat-
terns on groundwater. All of these studies confirm that there
exists a definite linkage between groundwater levels and long-
term climatic cycles occurring thousands of kilometers away
from the area/basin under study.

India receives around 70–90% of its rainfall from the
southwest monsoon and its interannual variability is
mostly influenced by the large-scale climatic pattern of
ENSO (Revadekar et al. 2012). The ENSO is a climatic
phenomenon, which affects global climate variability
owing to the interaction between the tropical Pacific
Ocean and its surrounding atmosphere. It has two
phases, El Niño and La Niña, which are linked to sea
surface temperatures and approximately alternates every

2–7 years (IRI 2017). During the warm phase (El Niño),
the sea surface temperature is anomalously warm, while
in the cool phase (La Niña), it is anomalously cool. In a
recent study, it was found that 10 out of the past 13
droughts in India had a high correlation with the El
Niño phase (Singh 2014). A study conducted in an arid
region of Western Rajasthan (India) revealed that the
droughts during El Niño phases were more severe than
La Niña phases (Ganguli and Reddy 2013). In another
study, Reddy and Ganguli (2012b) applied bivariate
copulas and reported that during La Niña (El Niño),
there was higher (lower) precipitation and shallow
(deeper) groundwater levels in the Manjra River basin
of western India.

The preceding reviews suggest that the association
between hydro-climatic variables can be studied using
emerging tools and techniques. One of such techniques
is copula functions, which have been extensively used
in hydro-meteorological studies (ICSH 2017). The cop-
ula technique has salient features, which are helpful in
hydrological studies: (1) it derives joint distributions
independent of the marginal, (2) along with the compos-
ite likelihood approach, it reduces uncertainty in the
estimates of frequency distribution parameters, and (3)
it handles non-linearity for modeling dependence be-
tween random variables (Genest and Favre 2007;
Chowdhary and Singh 2010). Although the copula-
based bivariate, trivariate and quadravariate analyses
have been used for the frequency analysis of extreme
events (Salvadori and De Michele 2004; Shiau et al.
2007; Kao and Govindaraju 2008; Karmakar and
Simonovic 2009; Wong et al. 2010), the use of bivariate
analysis is mostly preferred due to its simplicity (Klein
et al. 2011).

It is also apparent from the aforementioned review that
to date, only one study (Reddy and Ganguli 2012b) has
applied copula models for the risk assessment of changes

Table 1 Copula cumulative distribution functions, their generator function φθ, and the relation of Kendall’s tau (τ) with parameter θ

Family C(u, v) φθ Relation of Kendall’s tau (τ) with θ

Ali-Mikhail-Haq
u;vð Þ

1−θ 1−uð Þ 1−vð Þ½ � ln 1−θ 1−tð Þ½ �
t

� �
3θ−2
3θ

� �
− 3θ−2

3θ

� �
ln 1−θð Þ

Clayton
(u−θ + v−θ − 1)−1/θ

1
θ

� �
t−θ−1
� �

θ
θþ2ð Þ

Gumbel-Hougaard
exp − −lnuð Þ½ð θ þ −lnvð Þ θ�1θÞ (−ln t)−θ

θ−1ð Þ
θ

Frank

− 1
θ

� �
ln 1þ e−θu−1ð Þ e−θv−1ð Þ

e−θ−1ð Þ

� �
−ln e−θt−1ð Þ

e−θ−1ð Þ

� 	
1þ 4

θ

� �
D1 θð Þ−1½ �

Note: Dk(x) is Debye function; for any positive integer k, Dk xð Þ ¼ k=xk ∫x0 tk et−1ð Þ dt
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in hydro-climatic variables on groundwater; however, this
study considered only one observation well as a represen-
tative for the entire river basin (143.32 km2), which is not
practically appropriate because the findings of the study
may not be useful for the entire basin. To address this
shortcoming, the present study was conceived to explore
the applicability of the copula technique at a larger scale
(e.g., basin/sub-basin scale) so as to ensure more realistic
findings for the area under study. Also, the studies on
groundwater linkage with the ENSO phenomenon are
very limited in developing countries in general and the
Indian subcontinent in particular (Reddy and Ganguli
2012b; Susilo et al. 2013; Seeboonruang 2014). Given

these research gaps and increasing drought incidences in
India, this study was carried out to address some of the
aforementioned research gaps considering the Sina River
basin as a study area, which is located in the semi-arid
region of Maharashtra, western India, and it comes under
the ‘chronically drought-prone area’ (PACS 2004). As a
result, frequent droughts occur and water scarcity is a
serious problem in the area (Chary et al. 2010; DTE
2016; News World India 2016). In addition, to the best
of the authors’ knowledge, no scientific study has been
conducted so far in the study area and the present study is
first of its kind in the area. The specific objectives of this
study are: (1) to evaluate dependence among hydro-
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climatic variables, (2) to model joint dependence between
hydro-climatic variables using suitable Archimedean cop-
ulas, and (3) to explore the effect of hydro-climatic vari-
ables (rainfall and ENSO phenomena) on groundwater
using copula-based conditional distributions. The method-
ology used to fulfill these objectives is an extension of
that reported by Reddy and Ganguli (2012b).

Overview of copulas

A copula is a multivariate probability distribution having uni-
form marginal distribution of random variables. It can repre-
sent and model dependence between associated random vari-
ables irrespective of their marginal distributions. Sklar’s theo-
rem (Sklar 1959) states that every joint distribution F can be
expressed as:

FX 1;X 2::…X n x1; x2;…; xn
� �

¼ C FX 1 x1ð Þ; FX 2 x2ð Þ; :…; FXn½ � ð1Þ

where FX 1;X 2::…X n x1; x2;…; xn
� �

stands for the joint cumula-
tive distribution function (CDF) with continuous marginal
distributions FX 1 x1ð Þ; FX 2 x2ð Þ; :…; FXn of the random vari-
ables X1,…, Xn and C is a copula, i.e., a CDF whose margins
are uniform on the interval (0, 1).

Fig. 2 Locations of raingauge
stations and areas of their
Thiessen polygons

Table 2 Number of observation wells, area and percentage of total area
under the Thiessen polygons of nine raingauge stations

Name of station No. of observation wells Area (km2) Area (%)

Alni 16 1,827.75 15

Chinchondipatil 23 1,814.56 15

Jamked 39 2,992.47 24

Kasegaon 18 1,625.90 13

Tembhurni 21 1,683.57 14

Supa 4 501.48 4

Solapur 5 1,055.50 9

Kolgaon 3 507.98 4

Bandalgi 3 235.23 2
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This study focuses on two variables at a time, i.e., n = 2.
These variables are denoted X and Y; their joint distribution
FX,Y can be expressed in terms of their CDFs FX and FY as
follows:

FX ;Y x; yð Þ ¼ C Fx xð Þ; Fy yð Þ
 � ¼ C u; v½ � ð2Þ

where C is unique whenever FX and FY are continuous, else
uniquely estimated by range FX × range FY.

Archimedean copulas

In general, the copula C in Eq. (2) is assumed to come
from a parametric class. Archimedean copulas, elliptical
copulas, and extreme-value copulas families have been
applied in hydrological studies. However, Archimedean
copulas are most frequently used due to their flexibility
and simplicity (e.g., Genest and MacKay 1986; Zhang
and Singh 2006; Klein et al. 2011) and, hence, this type
was selected for this study. A bivariate copula C is said
to be Archimedean if it can be written in the following
form:

C u; vð Þ ¼ ϕ−1 ϕ uð Þ þ ϕ vð Þð Þ ð3Þ
where the generator ϕ is a function ϕ: [0, 1] → [0, ∞]
which is convex, decreasing and such that ϕ(1) = 0. Its

pseudo-inverse is denoted ϕ−1. Various parametric clas-
ses of Archimedean copulas are listed in Table 1, in
terms of their CDF, generator function and other prop-
erties. For more information about copulas and their
application, the interested reader can refer to Salvadori
and De Michele (2007), Genest and Nešlehová (2012a,
b) or Genest and Chebana (2016).

Methodology

Study area

For the present study, the Sina River basin was selected as the
study area. This basin is located inMaharashtra, western India
(Fig. 1), between 17° 28′ N and 19° 16′ N latitude, 74° 28′ E
and 76° 7′ E longitude. The basin has an area of 12,244 km2,
with the topographic elevation ranging from 420 to 964 m
(above mean sea level; MSL). It comprises four districts,
namely Ahmednagar, Beed, Osmanabad and Solapur, but
the largest portion (42%) of the basin falls in Solapur district.
The 19 smaller subdivisions, i.e., blocks, for these four admin-
istrative districts are shown by different colors in Fig. 1. The
average maximum and minimum air temperatures are 40.5 °C
in the month of May and 10.5 °C in the month of December,
respectively. The rainy season extends from mid-June to the

Table 3 Expressions of probability density function and parameter estimation for parametric and non-parametric distributions used in the study

Distribution Probability density function Parameter estimation

Parametric distributions

Gamma
f xð Þ ¼ 1

βαΓ αð Þ x
α−1 e−x=β ; x > 0

α ¼ shape parameter;β ¼ scale parameter

A ¼ ln xð Þ− ∑ln xð Þ
n ,β ¼ 1

4A 1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

4A

qh i
;α ¼ β

x

Lognormal

f X xð Þ ¼ 1

x
ffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2

y

q exp −
1

x
ffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2

y

q
0
B@

1
CA; x > 0

Y ¼ ln Xð Þ and − ∞ < μy < ∞
μy ¼ mean ; σy ¼ standard deviation

μy ¼
∑yi
n

σ2
y ¼ ∑yi

n

Weibull
f X xð Þ ¼ αxα−1β−αexp −x=βð Þα½ �; x≥0;α;β > 0
α ¼ shape parameter ; β ¼ scale parameter

Estimated by iterative procedure

Nonparametric kernel density-based distributions

Normal
K xð Þ ¼ 1ffiffiffiffi

2π
p exp −x2=2ð Þ ;−∞ < x < ∞

K(•) = Kernel density function
Optimal bandwidth ¼ σ 4


3n

� �1=5

Quadratic
K xð Þ ¼ 3 1−x2ð Þ

4 for xj j≤1; otherwise K xð Þ ¼ 0
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end of October. The average annual rainfall of the study area is
644 mm; most of the rainfall occurs due to the southwest
monsoon.

Geologically, the study area is underlain by Deccan basalts,
which are composed of vesicular amygdaloidal basalt and
fraction jointed basalt (Deolankar 1980). The water-bearing
formations are generally shallow unconfined or semi-
confined aquifers in the cover of weathered or fractured upper
portions of Deccan basalts, along with a patch of local alluvi-
um. The depth of weathered/fractures zones under unconfined
conditions ranges from 7.2 to 22.5 m below the ground level.
Specific yield (effective porosity) of the unconfined aquifers
ranges from 0.010 to 0.026, which indicates relatively low
storage capability of the aquifers.

Data

Hydro-meteorological data used in this studywere collected from
various government organizations/agencies. Daily rainfall data of
nine raingauge stations for the period of 1985–2009 were col-
lected from India Meteorological Department (IMD), Pune and
State Data Storage Center, Hydrology Project (HP), Nashik,
India. It should be noted that the World Meteorological
Organization recommendation of 1 rainfall station per 600–
900 km2 for plain areas could not be met, so the rainfall data
were supplemented by data from stations in the vicinity (outside)
the study area, to better represent the spatial average rainfall
within the study area. Pre-monsoon (May month) and post-
monsoon (October month) groundwater-level data of 132 sites
(observationwells) over the basin for the 1985–2009 periodwere
also acquired from the Groundwater Survey and Development
Agency (GSDA), Pune, India. These data are from unconfined
aquifers, which are predominant in the study area. The locations
of observation wells and raingauge stations are shown in Fig. 1.
Groundwater-level data for many sites and for some years are
missing from the 1985–2009 dataset; this is a common problem
in most developing nations of the world. As a result, the appli-
cation of time-series analysis techniques under limited-data con-
ditions becomes a challenging task for the researchers of devel-
oping nations; therefore, considering the low availability and
continuity of time-series groundwater-level data in the study area,
the present study was carried out under data-scarce conditions. In
this study, 17 years (1990–2006) of groundwater-level and rain-
fall data have been used to investigate the applicability of the
copula technique at larger scale. Thiessen polygons were created
using the rainfall stations available in the study area (Fig. 2). The
areas of the Thiessen polygons and the number of observation
wells falling within each Thiessen polygon are given in Table 2.
It is worth also mentioning that in some of the recent studies on
copula modeling, limited datasets (15–18 years) have been used
(e.g., Durocher et al. 2016; Reddy and Ganguli 2012a).

The impacts of hydro-climatic factors on groundwater are
reflected in recharge and discharge processes occurring in a
groundwater basin. However, detailed information about these
processes are often lacking at a basin scale, especially in the
developing world. Generally, groundwater level is monitored
and, hence, it is easily available data compared to other com-
ponents of groundwater. In fact, spatio-temporal variations of
groundwater levels in a basin are the outcome of spatially and
temporally varying recharge and discharge processes occur-
ring in the basin. Given this fact and the unavailability of other
groundwater-related data in the study area, the effects of
hydro-climatic factors on groundwater have been explored
in this study using groundwater-level data.

The ENSO phenomenon is well represented by a recent
index known as ‘multivariate ENSO Index (MEI)’. MEI is
defined using the first un-rotated principal component of six
observed variables—sea-level pressure, zonal and meridional

Fig. 3 Temporal variation of mean monthly rainfall for a upper, b
middle, c lower part stations of the study area during 1990–2006 period
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Fig. 4 Pre-monsoon and post-
monsoon groundwater-level fluc-
tuations for a upper, b middle, c
lower parts of the study area dur-
ing 1990–2006 period
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components of the surface wind, sea surface temperature, sur-
face air temperature and total cloudiness fraction of the sky
over the tropical Pacific (Wolter and Timlin 2011). Monthly
MEI values for the study period (1990–2006) were obtained
from the database provided by the National Oceanic and
Atmospheric Administration (NOAA 2017).

Dependence among the hydro-climatic variables

Before evaluating dependence, the data independency in all the
time series was checked by an auto-correlation test (Ljung-Box
Q-test). For evaluating dependence, rank-based (and hence scale-
free) measures of dependence, such as Spearman’s rho (ρ) and
Kendall’s tau (τ) are preferred over Pearson’s correlation coeffi-
cient, given that they do not rely on any assumption of linearity
between the random variables and are not affected by outliers
(Klein et al. 2011). In this study, Spearman’s ρ was used to
evaluate dependence among hydro-climatic variables at all the
nine raingauge stations for the 17 years period (1990–2006). The
elevation of post-monsoon groundwater levels (PMGL)was con-
sidered instead of depth to groundwater below the ground surface
in order to maintain a common datum for all the groundwater-
monitoring sites.

Fig. 6 Variation of standardized
values of ENSO Index, post-
monsoon groundwater levels
(PMGL) and monsoon rainfall for
the 1900–2006 period at rainfall
stations: a Alni, b
Chinchondipatil, c Jamkhed, and
d Kasegaon

Table 4 Summary of Spearman’s rho (ρ) values for the pairs of PMGL-
Rainfall, PMGL-ENSO Index, and Rainfall-ENSO Index

Name of station Spearman’s rho (ρ)

PMGL-
Rainfall

PMGL-
ENSO Index

Rainfall-
ENSO Index

Alni 0.86 *
(p ≤ 0.01)

−0.43
(p = 0.09)

−0.51**
(p = 0.04)

Chinchondipatil 0.78*
(p ≤ 0.01)

−0.47
(p = 0.06)

−0.29
(p ≥ 0.10)

Jamked 0.68*
(p ≤ 0.01)

−0.53**
(p = 0.03)

−0.29
(p ≥ 0.10)

Kasegaon 0.70*
(p ≤ 0.01)

−0.47
(p = 0.06)

0.68*
(p ≤ 0.01)

Tembhurni 0.76*
(p ≤ 0.01)

−0.54**
(p = 0.03)

−0.40
(p ≥ 0.10)

Supa 0.59**
(p = 0.02)

−0.28
(p ≥ 0.10)

−0.58**
(p = 0.02)

Solapur 0.63**
(p = 0.01)

−0.53**
(p = 0.03)

−0.32
(p ≥ 0.10)

Kolgaon 0.86*
(p ≤ 0.01)

−0.39
(p ≥ 0.10)

−0.45
(p = 0.07)

Bandalgi 0.33
(p ≥ 0.10)

−0.66**
(p = 0.05)

−0.17
(p ≥ 0.10)

Note: Values in brackets show p-value; values with * indicate significant
dependence at 1% level of significance; values with ** indicate signifi-
cant dependence at 5% level of significance
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In standard climatology, variables affected by large-scale cli-
matic patterns should be averaged over the area (Fleming and
Quilty 2006); hence, to study the effect of monsoon rainfall and
the ENSO phenomenon on groundwater levels, post-monsoon
groundwater levels for the observation wells of a particular
Thiessen polygon were averaged. To perform this analysis, the
cumulative monsoon rainfall and the average of monthly MEI
values for the period June to October were used. The presence of
dependence between each pair of hydro-climatic variables was
examined at the 1 and 5% levels of significance based on the p-
values of the standard two-tailed t-test. It is worthmentioning that
to reject the null hypothesis, the p-value should be less than or
equal to the level of significance (α). For a visual illustration, the
variation of hydro-climatic variables over their standardized val-
ue was also plotted.

Fitting marginal distributions to hydro-climatic variables

After evaluating the dependence, marginal distributions were
fitted to each of the variables. For PMGL and rainfall, the most
popular parametric distributions were used, namely gamma

(GM), lognormal (LN) and Weibull (WB); however, for the
ENSO Index, non-parametric kernel-density-based normal
and quadratic distributions were considered because paramet-
ric distributions do not fit climate indices properly (Reddy and
Ganguli 2012b). The probability density functions and param-
eter estimates for the parametric and non-parametric kernel-
density-based distributions are shown in Table 3. In all cases,
the estimates were obtained using the method of maximum
likelihood. The best distribution was selected based on select-
ed univariate statistical indicators—root mean square error
(RMSE), Akaike information criterion (AIC), and
Kolmogorov-Smirnov (KS) test—and a graphical indicator
(cumulative distributive function plot).

Archimedean copulas for modeling dependence

A priori, the choice of parametric Archimedean copulas fam-
ilies as possible models for the dependence between hydro-
climatic variables is guided by the range of association they
allow. The Clayton and Gumbel-Hougaard copulas are used if
the dependence is positive, whereas Ali-Mikhail-Haq and

Fig. 7 Cumulative distribution
function of gamma, lognormal,
and Weibull distributions fitted to
post-monsoon groundwater levels
(PMGL) in the zones of rainfall
stations: a Chinchondipatil and b
Jamkhed

Table 5 Performance evaluation of different probability distributions fitted to PMGL

Name of station AIC RMSE KS-test

GM LN WB GM LN WB GM LN WB

Alni −57.51 −57.54 −58.09 0.07299 0.06905 0.07817 0.1561 0.1497 0.1748

Chinchondipatil −69.83 −69.85 −68.83 0.07309 0.07020 0.07425 0.1582 0.1541 0.1889

Jamked −63.77 −63.81 −62.72 0.08630 0.08271 0.08328 0.1599 0.1532 0.1604

Kasegaon −64.84 −64.87 −66.04 0.06652 0.06328 0.06643 0.1271 0.1218 0.1235

Tembhurni −70.38 −70.38 −72.75 0.06409 0.06137 0.08117 0.1560 0.1495 0.1545

Supa −69.67 −69.70 −69.89 0.06911 0.06519 0.07549 0.1348 0.1290 0.1364

Solapur −72.67 −72.72 −70.80 0.04160 0.04280 0.05189 0.1159 0.1104 0.1042

Kolgaon −66.80 −66.83 −66.28 0.05566 0.05361 0.05448 0.1584 0.1548 0.1051

Bandalgi −71.60 −71.63 −72.21 0.06895 0.06581 0.08279 0.1699 0.1627 0.1568

Note: KS critical value at 5% level of significance = 0.330; italic value indicate the best value for particular evaluation criteria
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Frank copulas are applied for modeling both positive and neg-
ative dependence. The Frank copula can model the entire
range of dependence values [−1, +1], whereas the Ali-
Mikhail-Haq family of copulas is only suitable for weakly
dependent variables (Nelsen 2006). There exists a connection
between a rank-based non-parametric measure of dependence
called Kendall’s τ and Archimedean copulas generators,
which is given as follows (Genest and MacKay 1986):

τ ¼ 1þ 4

Z
ϕ tð Þ
ϕ0 dt ð4Þ

where ϕ′ denotes the derivative of ϕ with respect to t. This
relation can be used to estimate the parameter θ of an
Archimedean copula by the method of moments, which con-
sists of replacing τ by an estimate thereof in Eq. (4) and solv-
ing for θ for any given choice of Archimedean copulas; thus,
paired random variables can be modeled through copulas by
preserving their mutual dependence. In this study, four fami-
lies of Archimedean copulas (Clayton, Gumbel-Hougaard,
Ali-Mikhail-Haq and Frank) were applied. The expression of

the generator function for each copula family with its deriva-
tive, together with the relation of Kendall’s τ with copula
parameter θ, are presented in Table 1. Copula modeling was
performed using MATLAB software.

Goodness-of-fit tests for selecting copulas

Goodness-of-fit tests can be used to check whether a specific
copula family fits the data at hand. In this study, both graphical
and statistical indicators were used to assess the fitness of
Archimedean copulas.

Graphical diagnostics

In order to assess the fit of a given Archimedean copulas
family Cθ, 1,000 observations were generated from Cθ after
estimating its parameter. These pseudo-observations were
then transformed back into the variables’ original units using
the inverses of the marginal distribution FX and FY. The scatter
plot of the resulting pairs was then visualized and compared to
the original data. Algorithms to generate random pairs from
different copula families (Cθ) can be found in Whelan (2004)
and Genest and Favre (2007).

Statistical indicators

Apart from the graphical diagnostics, three statistical indica-
tors for bivariate copulas were used in this study, namely
RMSE; AIC; and KS goodness-of-fit test. Detailed descrip-
tions of these statistical indicators can be found in Klein et al.
(2011).

Effect of rainfall and the ENSO phenomenon
on groundwater

In order to study the impacts of rainfall and the ENSO phe-
nomenon on groundwater, the copula-based conditional dis-
tribution probabilities of PMGL ≤ PMGLavg for average and
non-average monsoon rainfall scenarios as well as for ENSO

Table 6 Parameters of the probability distributions fitted to PMGL

Name of station GM LN WB

α β μ σ α β

Alni 145,269.9 0.0039 6.333 0.0027 432.5 563.8

Chinchondipatil 87,448.2 0.0072 6.442 0.0035 356.8 628.4

Jamked 99,977.8 0.0056 6.331 0.0033 386.4 562.4

Kasegaon 70,408.9 0.0069 6.187 0.0039 289.4 487.2

Tembhurni 54,545.3 0.0092 6.221 0.0044 243.1 504.5

Supa 95,811.4 0.0068 6.483 0.0033 356.8 654.9

Solapur 40,973.9 0.0114 6.146 0.0051 250.1 468.1

Kolgaon 99,020.4 0.0062 6.415 0.0033 370.4 611.8

Bandalgi 40,987.5 0.0110 6.115 0.0051 228.8 453.7

Fig. 8 Cumulative distribution
function of gamma, lognormal,
and Weibull distributions fitted to
rainfall at stations: a
Chinchondipatil and b Jamkhed
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phases were determined from the following equation (Zhang
and Singh 2006; Reddy and Ganguli 2012b):

FX j Y ≤ y ¼ CU j V ≤ v ¼ C u; vð Þ
v

ð5Þ

Further, the spatial variation of these probabilities over the
study area was analyzed by generating probability maps using
ArcGIS software.

Results and discussion

Preliminary data analysis

Rainfall characteristics

The monthly variation of rainfall for stations in upper, middle,
and lower parts of the study area is shown in Fig. 3a–c.
Maximum amount of rainfall in the study area is confined to

five monsoon months, i.e., from June to October. For all rainfall
stations, amongmonsoonmonths, themaximum amount of rain-
fall is received in the month of September. In upper, middle, and
lower parts of the study area, the maximum rainfall is received
for Chinchondipatil, Alni and Solapur stations, respectively. The
variation of the monthly rainfall over the period of 25 years for
that particular month is shown by standard error bars in Fig. 3a–
c. All stations have the highest standard error in the month of
September, except Kasegaon station, which has it in month
August. Minimum standard errors are found in the months of
January and February at all the stations.

Groundwater characteristics

The pre- and post-monsoon groundwater-level elevation time
series data for Chinchondipatil, Jamkhed and Kasegaon

Table 7 Performance evaluation of different probability distributions fitted to rainfall

Name of station AIC RMSE KS-test

GM LN WB GM LN WB GM LN WB

Alni −231.3 −229.5 −235.9 0.1006 0.08619 0.1238 0.1733 0.1519 0.2200

Chinchondipatil −225.3 −226.8 −225.2 0.05393 0.06218 0.05915 0.1337 0.1694 0.1424

Jamked −221.3 −219.9 −225.0 0.1038 0.09247 0.1139 0.2152 0.2022 0.1998

Kasegaon −231.3 −230.6 −233.7 0.07418 0.06115 0.09350 0.1458 0.1227 0.1805

Tembhurni −221.1 −221.2 −222.3 0.04689 0.04316 0.05545 0.09304 0.1027 0.08620

Supa −205.9 −205.3 −208.5 0.07675 0.07048 0.09537 0.1708 0.1510 0.2057

Solapur −227.8 −226.7 −230.7 0.07545 0.06410 0.09496 0.1422 0.1251 0.1851

Kolgaon −213.5 −214.0 −213.6 0.07007 0.06337 0.07461 0.1387 0.1484 0.1426

Bandalgi −220.3 −219.3 −223.5 0.07467 0.06638 0.08815 0.1379 0.1266 0.1469

Note: KS critical value at 5% level of significance = 0.3298; italic values indicate the best value for particular evaluation criteria
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Fig. 9 Cumulative distribution function of non-parametric normal and
quadratic distributions fitted to the ENSO Index

Table 8 Parameters estimated of the probability distributions fitted to
rainfall

Name of station GM LN WB

α β μ σ α β

Alni 8.756 86.162 6.568 0.3359 2.658 848.1

Chinchondipatil 4.048 111.452 5.983 0.5574 2.235 510.0

Jamked 10.160 59.220 6.350 0.3153 3.019 673.3

Kasegaon 5.571 110.483 6.330 0.4401 2.323 696.7

Tembhurni 7.303 70.521 6.174 0.3910 2.868 578.5

Supa 10.338 37.331 5.906 0.3201 3.200 430.5

Solapur 7.348 85.465 6.373 0.3765 2.628 707.9

Kolgaon 5.536 65.816 5.805 0.4572 2.645 411.5

Bandalgi 10.578 56.291 6.341 0.3121 3.150 664.8
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stations representing, respectively, the upper, middle, and low-
er parts of the study area are plotted in Fig. 4a–c along with the
annual rainfall time series data. The pre-monsoon groundwa-
ter-level elevations for Chinchondipatil, Jamkhed and
Kasegaon stations are 616.09–626.73, 549.99–566.16,
479.52–493.07 m MSL, and the post-monsoon groundwater-
level elevations are in the range of 622.73–630.39, 558.45–
564.09, 483.38–489.71 m MSL, respectively. These values
clearly show the response of post-monsoon groundwater-level
elevation to the variation of rainfall, i.e., post-monsoon
groundwater-level elevation increases with increase in rainfall
and vice-versa. In case of pre-monsoon groundwater-level el-
evation, a sudden peak is observed in year 1999 for Jamkhed
and Kasegaon stations, which is attributed to recharge from
the maximum rainfall in the previous year (i.e., 1998).

ENSO Index

The monthly variation of the ENSO index during 1990–2006
period is shown in Fig. 5. For the ENSO phases during the
considered period, the top 30th percentile of ENSO index
values represents El Niño years, whereas the bottom 30th per-
centile of ENSO Index values represents La Niña years, and
the remaining as neutral years (Wolter and Timlin 2011).
Accordingly, 1995–1996 and 1998–2000 years indicates La
Niña years; 1990 and 2001–2006 years denote neutral years
and the remaining 5 years, i.e., 1991–1994, 1997, were El
Niño years.

Evaluating dependence among the hydro-climatic
variables

The auto-correlation test revealed that there is no significant
time autocorrelation at the 5% level of significance, thereby
suggesting that each time series is independent during the
study period. However, it is apparent from Fig. 6a–d that all
the hydro-climatic variables, i.e., PMGL, rainfall and ENSO
Index are cross-correlated to one another. For brevity, the
graphs of four selected stations are shown in Fig. 6a–d as an
example and the dependence measured using Spearman’s ρ is
presented in Table 4. The evaluation of dependence indicated
that there is positive dependence in the PMGL-Rainfall pair,
which means increase in rainfall increases the PMGL. On the
other hand, PMGL-ENSO Index and Rainfall-ENSO Index
are negatively associated with each other. These relationships
suggest that there will be a decrease in the PMGL as well as
rainfall with increase in the ENSO Index values.

For the PMGL-Rainfall pair, a high level of dependence
was found to be significant for all the stations, except at the
Bandalgi station, which is located in the downstream portion
of the study area. This lower dependence between PMGL and
Rainfall at the Bandalgi station could be attributed to concen-
trated runoff (overland flow) at the downstream end. For the
PMGL-ENSO Index pair, only Jamkhed, Tembhurni, Solapur
and Bandalgi stations, which cover 49% of the study area
(6,185 km2), exhibited statistically significant negative depen-
dence (Table 4). There is no statistically significant depen-
dence for the remaining five stations and, hence, in the areas
covered by these stations, the relationship between PMGL and
ENSO can only be used for qualitative predication (high or
low PMGL). This insignificant dependence may be attributed
to other climatic oscillations (Jones and Banner 2003). For the
Rainfall-ENSO Index pair, only three stations (Alni,
Kasegaon and Supa) that cover 32% of the study area showed
statistically significant negative dependence; hence, this pair
was not considered in subsequent analyses.

Identifying marginal distribution for fitting
hydro-climatic variables

The performance evaluation for the distribution fitting of
PMGL at all the stations was carried out using cumulative
distribution function (CDF) plots and statistical indicators as
shown in Fig. 7a,b and Table 5, respectively. Table 6 summa-
rizes the estimated parameters of GM, LN, and WB distribu-
tions. Upon visually assessing CDF fit for the PMGL time
series (Fig. 7a,b) for different stations and AIC criteria
(Table 5), it can be seen that the WB distribution provides a
better fit than GM and LN distributions. For the rainfall time
series, CDF plots (Fig. 8a,b) and RMSE values (Table 7) sug-
gest that it is better represented by the LN distribution com-
pared to WB and GM distributions. The parameter estimates

Table 10 Parameters of different copulas fitted to PMGL-Rainfall pairs

Name of station Clayton Frank Gumbel-Hougaard

Alni 4.476 11.019 3.238

Chinchondipatil 2.973 7.871 2.486

Jamked 2.075 5.907 2.038

Kasegaon 2.387 6.602 2.194

Tembhurni 2.857 7.624 2.429

Supa 2.000 5.736 2.000

Solapur 2.000 5.736 2.000

Kolgaon 4.182 10.411 3.091

Bandalgi 0.519 1.920 1.259

Table 9 Performance evaluation of different probability distributions
fitted to ENSO Index

AIC RMSE KS-test

Normal Quadratic Normal Quadratic Normal Quadratic

−32.54 −32.44 0.05989 0.06200 0.1249 0.1297

Note: KS critical value at 5% level of significance = 0.3298; italic values
indicate the best value for particular evaluation criteria
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for the GM, LN, and WB distributions, fitted rainfall time
series are given in Table 8.

Moreover, the CDF plot for the ENSO Index is depicted in
Fig. 9, which reveals that both the non-parametric kernel-

based normal and quadratic distributions performed nearly
the same; the KS-test also supports both the distributions
(Table 9). However, the statistical evaluation confirmed that
the ENSO Index is best fitted by the ‘non-parametric kernel-
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Fig. 10 Scatter plots of observed (black dots) versus 1,000 simulated (gray dots) samples using Clayton, Frank and Gumbel-Hougaard copulas for the
PMGL-Rainfall pair at a Alni, b Chinchondipatil, and c Jamkhed stations. In this figure, Kendall’s tau (τ) value is shown for simulated samples
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based normal distribution’ with lower values of AIC (−32.54)
and RMSE (0.05989) as shown in Table 9. The optimal band-

width is the only parameter for the two non-parametric kernel-
based distributions and its value is estimated as 0.4455.

Selecting suitable copula for modeling dependence

As mentioned in the previous section, the PMGL and rainfall
time series followed different distributions and hence, the tra-
ditional bivariate distribution cannot be used for dependence
modeling. Even if in the case of samemarginal distribution for
the PMGL and rainfall time series, copula function is pre-
ferred to the traditional bivariate distribution due to its better
performance (Ganguli and Reddy 2012). Hence, the depen-
dence between PMGL and rainfall is modeled using a copula
function, because it does not need the condition of random
variables to follow the same marginal distribution family. As
the pair of PMGL-Rainfall exhibited highly positive depen-
dence (p < 0.01), an attempt was made to capture their depen-
dence using Clayton (Cl), Frank (Fr) and Gumbel-Hougaard
(GH) copula models. The estimates of copula model parame-

Table 12 Results of goodness-of-fit tests for different the PMGL-Rainfall copula models

Name of station AIC RMSE KS test

Cl Fr GH Cl Fr GH Cl Fr GH

Alni 22.59 18.22 11.97 0.02386 0.02858 0.02981 0.1521 0.1533 0.1575

Chinchondipatil 10.01 16.79 16.11 0.03309 0.03913 0.03875 0.2240 0.2352 0.2477

Jamked 12.40 10.74 11.77 0.01791 0.02699 0.03126 0.2695 0.2708 0.2798

Kasegaon 7.176 13.74 17.43 0.03895 0.04136 0.04255 0.1164 0.1256 0.1366

Tembhurni 13.00 12.94 13.28 0.02709 0.03420 0.03516 0.1569 0.1588 0.1716

Supa 9.875 10.36 11.85 0.02740 0.03018 0.03161 0.1458 0.1681 0.1826

Solapur 13.45 10.46 15.42 0.02820 0.03759 0.03945 0.1832 0.1861 0.1995

Kolgaon 24.61 26.50 23.18 0.02547 0.03718 0.04262 0.1710 0.1792 0.1810

Bandalgi 2.592 4.044 5.986 0.03326 0.03045 0.02741 0.1544 0.1639 0.1736

Note: KS critical value at 5% level of significance = 0.3298; italic values indicate the best values for corresponding criterion

Table 11 Kendall’s tau (τ) values for the PMGL-Rainfall and PMGL-
ENSO Index pairs

Name of station Kendall’s tau (τ)

PMGL-Rainfall PMGL-ENSO Index

Alni 0.6912 −0.2500
Chinchondipatil 0.5978 −0.3235
Jamked 0.5092 −0.3529
Kasegaon 0.5441 −0.2941
Tembhurni 0.5882 −0.3382
Supa 0.5000 −0.2206
Solapur 0.5000 −0.3529
Kolgaon 0.6765 −0.2500
Bandalgi 0.2059 −0.4412
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Fig. 11 Scatter plots of observed (black dots) versus 1,000 simulated (gray dots) samples using Frank copula for the PMGL-ENSO index pair at a
Jamkhed, b Tembhurni, and c Solapur stations
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ters for the PMGL-Rainfall pair are shown in Table 10. The
scatter plots of observed and simulated data from the three
fitted copula models are shown in Fig. 10a–c, together with
the Kendall’s τ values computed from simulated samples for
the three copula models. It is evident that the random pairs
generated by all three copula models (shown as gray dots) are

well intertwined with the observed data (shown as black dots).
Furthermore, the values of Kendall’s τ for the simulated data
are close to those of the observed data (Fig. 10a–c and
Table 11). However, the Clayton copula better simulates the
trend of the observed data compared to the other two copulas.
In addition, all the statistical indicators (Table 12) also confirm
that the Clayton copula is a better choice among the three
copula families considered. It should be noted from Fig.
10a–c that the upper bound appears for groundwater levels
and rainfall dependence. For this, the estimated non-
parametric upper tail dependence coefficient for all stations
in the study area is found to be varying from 0.30 to 0.72.
Also, at a certain threshold of high rainfall, very weak depen-
dency exists between PMGL and rainfall. In fact, the rate of
recharge is a function of depth to the water table. Hence, when
the water table reaches the threshold value, the recharge rate is
drastically reduced, which causes less dependency on rainfall.

For the PMGL-ENSO Index pair, a negative dependence
was found (Table 4). Therefore, they were only modeled by
using the Frank copula, which is applicable to the entire range
of dependence [−1, +1]. The scatter plots show a good overlap
and close Kendall’s τ values between the observed data and

Table 13 Estimated parameters and KS-test values of the Frank copula
for PMGL-ENSO Index pairs

Name of station Parameter estimated KS-test

Alni −2.372 0.1280

Chinchondipatil −3.189 0.1712

Jamked −3.545 0.2193

Kasegaon −2.851 0.1535

Tembhurni −3.365 0.1636

Supa −2.068 0.2631

Solapur −3.545 0.1136

Kolgaon −2.372 0.1882

Bandalgi −4.758 0.1510

Note: KS critical value at 5% level of significance = 0.3298
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the pseudo-sample generated by the Frank copula for all the
stations (Fig. 11a–c and Table 11). The results of the KS-test
(Table 13) also suggest that the dependence in the PMGL-
ENSO Index pair is adequately captured by the Frank copula.
The estimates of the parameters of the Frank copula fitted to
the PMGL-ENSO Index pair are shown in Table 13. This
choice of copula model corroborates the earlier study reported
by Reddy and Ganguli (2012b) in which depth-to-
groundwater data were considered instead of PMGL.

Impacts of rainfall and the ENSO phenomenon
on groundwater

Impacts of rainfall

In order to study the effects of rainfall on groundwater, the
graphs of the Clayton-copula-based conditional distribution
probabilities of PMGL for given average and non-average
(5th, 25th, 50th, 75th and 95th percentiles) rainfall conditions
were prepared for four rainfall stations as an example (Fig.
12a–d). Obviously, for a given average rainfall, the probability
of PMGLs of lower magnitudes is smaller, whereas that of
PMGLs of higher magnitudes is greater. This can be explained

by considering Chinchondipatil station as shown in Fig. 12b.
The PMGL values of 624 and 628 m are respectively lower
and higher magnitude in the zone/area represented by this
station. For a given average rainfall, the probability of
PMGL being less than or equal to 624 m (MSL) is 15%,
whereas that of PMGL less than or equal to 628 m (MSL) is
nearly 80% (Fig. 12b). These probability values are not sym-
metrical when two different values of PMGL are considered.
However, if only one value of PMGL is considered, then
symmetry (x% and 100–x%) of probability values will ex-
ist—for example, the probability of PMGL being less than
or equal to 624 m (MSL) is 15%, whereas that of PMGL being
greater than 624 m (MSL) is 85%.

Furthermore, based on Fig. 12a–d, a spatial map of the
probability of PMGL ≤ PMGLavg, i.e., probability of non-
exceedance for a given average rainfall scenario, is generated
as shown in Fig. 13. It can be seen from Fig. 13 that for a given
average rainfall, the conditional probability of PMGL ≤
PMGLavg is above 70% for the areas/zones covered by Alni,
Tembhurni and Kolgaon stations, which encompass about
33% of the study area (4,019 km2). It indicates that PMGL
in these areas (Barshi and Madha blocks, and some parts of
nearby blocks) will be much lower than its average value and,

Fig. 13 Probability (P) map of
PMGL ≤ PMGLavg for a given
average rainfall scenario. NS non-
significant dependence
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hence, the groundwater of these areas should bemanaged with
a high priority or an alternative water source should be uti-
lized. In addition, it is recommended to propose rainwater
harvesting and artificial recharge structures in these areas.
The conditional probabilities of PMGL ≤ PMGLavg for a giv-
en average rainfall are found in the range of 65–70% for the
areas (2,316 km2) covered by Chinchondipatil and Supa sta-
tions, which suggests a moderate groundwater scenario under
average rainfall conditions. The groundwater extraction from
these areas should be carefully monitored to protect them from
falling into higher conditional probability areas. Furthermore,
the conditional probability values for a given average rainfall
vary from 60 to 65% in the zones covered by Jamkhed,
Kasegaon and Solapur stations, indicating that post-
monsoon groundwater levels in the southern and central parts
of the study area (46% of the area; 5,674 km2) would be close
to their average values under average rainfall conditions and,
hence, these areas are most favorable zones for groundwater
extraction for domestic and irrigation needs as compared to
other parts of the study area.

Impacts of ENSO phenomenon

For evaluating the effects of ENSO phenomenon on ground-
water, the Frank-copula-based conditional distributions of
PMGL for different phases of ENSO were plotted, which are
illustrated in Fig. 14a–d. For this study, the average of the top
30th percentile of ENSO Index values (1.23) for 1990–2006
period was considered as representative of the El Niño phase,
whereas the average of the bottom 30th percentile of the ENSO
Index values (−0.25) was deemed as representative of the La
Niña phase. This figure reveals that with an increase in ENSO
Index, the probability of PMGL for a particular interval in-
creases at a lower magnitude of PMGL, but it decreases at a
higher magnitude of PMGL. The probability of occurrence of
higher PMGL is greater for a negative ENSO Index (La Niña
phase) than for a positive ENSO Index (El Niño phase)—for
example, at the Jamkhed station (Fig. 14a) for the ENSO
Index value of Z ≤ 1.23 (El Niño phase), the chance of occur-
rence of PMGL less than 563m (aboveMSL) is 74%,whereas
it is about 52% in the La Niña phase (Z ≤ −0.25).
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The conditional probability (PMGL ≤ PMGLavg) values
during ENSO phases are determined for only Jamkhed,
Tembhurni, Solapur and Bandalgi stations (Fig. 15a,b) where
dependence is statistically significant (Table 4). It is found that
during El Niño phase (Fig. 15a), the Tembhurni and Solapur
stations (covering southwestern portions of the study area)
show a higher (35–40%) non-exceedence probability of
PMGL with respect to its average. This suggests that the
blocks under maximum conditional probability (PMGL ≤
PMGLavg) will bemore severely affected during El Niño years
than the other parts of the study area. The affected blocks will
beMadha,Mohal, North-Solapur blocks and some portions of
Parenda and Karmala blocks encompassing an area of
2,739 km2 (23% of the study area). It is also apparent from
Fig. 15a that the minimum probability of non-exceedence of
PMGL during El Niño phase is in the range of 30–35% for
Jamkhed and Bandalgi stations (central part of the study area),
which cover 3,228 km2 (26% of the study area). On the other
hand, in the La Niña phase (Fig. 15b), the non-exceedance
probability of PMGL less than or equal to its average value
is found below 15% for Jamkhed, Bandalgi and Solapur sta-
tions covering an area of 4,283 km2 (35% of the study area);
thus, the central and southern portions of the study area will
benefit by increased PMGL during La Niña years.

Conclusions

In this report, Archimedean copulas were applied under lim-
ited data conditions to assess the effects of the ENSO phenom-
enon and rainfall on the groundwater resource of a semi-arid
river basin of western India.With regard to the availability and
continuity of hydro-climatic time-series data in the study area,
the dataset used in this study comprised monsoon rainfall of
nine stations, post-monsoon groundwater levels (PMGL) at
132 sites, and the ENSO Index for the 1990–2006 period.
Based on the salient goodness-of-fit criteria, marginal distri-
butions were selected to formulate copula-based joint distri-
butions for modeling dependence between hydro-climatic var-
iables. Thereafter, out of the four Archimedean copula fami-
lies, the best-performing copula was used to derive condition-
al probability distributions of groundwater-level time series
with respect to rainfall events and ENSO phases.

The analysis of the results of this study revealed that the
dependence for the PMGL-Rainfall pair is positive, whereas
that for the PMGL-ENSO Index pair is negative. The PMGL
and rainfall time series are best represented respectively by the
parametric Weibull and lognormal distributions, whereas the
ENSO Index time series is best represented by the non-
parametric kernel-based normal distribution. The performance
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evaluation of the Archimedean copulas family indicated that
the Clayton copula is the best for modeling dependence be-
tween PMGL and Rainfall, while the Frank copula is the best
for the PMGL-ENSO Index pair. The spatial variation of the
probability of PMGL ≤ PMGLavg for a given mean rainfall in
the study area suggests that for managing groundwater, the
areas having above 70% probability (33% of the study area
in the eastern and western portions) should be given higher
priority. In addition, the results of the probability of PMGL ≤
PMGLavg during ENSO phases indicated that 23% of the
study area in the southwestern portion will be severely affect-
ed during El Niño years, but 35% of the study area in central
and southern portions will benefit by increased PMGL (great-
er than PMGLavg) during La Niña years.

Finally, it can be concluded that the copula-based approach
is very useful for understanding the impacts of environmental
factors on vital groundwater resources at a basin or sub-basin
scale. The methodology demonstrated in this study can be
replicated for the effective planning and management of water
resources at a basin scale under data-scarce condition, partic-
ularly in the drought-prone regions of Indian subcontinent and
other parts of the world.
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