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Abstract This study targets two challenges in groundwater
model development: grid generation and model calibration for
aquifer systems that are fluvial in origin. Realistic
hydrostratigraphy can be developed using a large quantity of
well log data to capture the complexity of an aquifer system.
However, generating valid groundwater model grids to be
consistent with the complex hydrostratigraphy is non-trivial.
Model calibration can also become intractable for groundwa-
t e r mode l s t h a t i n t end t o ma t ch t h e comp l ex
hydrostratigraphy. This study uses the Baton Rouge aquifer
system, Louisiana (USA), to illustrate a technical need to cope
with grid generation and model calibration issues. A grid gen-
eration technique is introduced based on indicator kriging to
interpolate 583 wireline well logs in the Baton Rouge area to
derive a hydrostratigraphic architecture with fine vertical
discretization. Then, an upscaling procedure is developed to
determine a groundwater model structure with 162 layers that
captures facies geometry in the hydrostratigraphic architec-
ture. To handle model calibration for such a large model, this
study utilizes a derivative-free optimization method in parallel
computing to complete parameter estimation in a few months.
The constructed hydrostratigraphy indicates the Baton Rouge
aquifer system is fluvial in origin. The calibration result

indicates hydraulic conductivity for Miocene sands is higher
than that for Pliocene to Holocene sands and indicates the
Baton Rouge fault and the Denham Springs-Scotlandville
fault to be low-permeability leaky aquifers. The modeling
result shows significantly low groundwater level in the
B2,000-foot^ sand due to heavy pumping, indicating potential
groundwater upward flow from the B2,400-foot^ sand.
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Introduction

Numerical models have been widely used in recent decades to
study groundwater flow in subsurface systems. However, de-
veloping groundwater models has never been an easy task for
fluvial-in-origin subsurface systems owing to their inherent
structural heterogeneity (Galloway 1977). The first challenge
in developing a groundwater model is to adequately charac-
terize the subsurface systems. The literature shows many
methods to model hydrofacies for different heterogeneity
scales using various input data sets (e.g., well logs, pumping
test, and seismic data). Among them, widely used methods in
hydrogeology are the two-point variogram statistics, such as
indicator geostatistics (Journel 1983; Johnson and Dreiss
1989; Johnson 1995; Proce et al. 2004); transition
probability-based indicator geostatistics (Carle and Fogg
1996; Lee et al. 2007; Koch et al. 2014); and multiple-point
simulation (MPS) (Strebelle 2002; Journel 2005;
dell’Arciprete et al. 2012). Reviews of these methods can be
found in Koltermann and Gorelick (1996), de Marsily et al.
(2005), and Hu and Chugunova (2008). While the applica-
tions of these methods are site specific and are subject to user
preference and expertise, it has been well understood that

* Frank T.-C. Tsai
ftsai@lsu.edu

Hai V. Pham
hpham28@lsu.edu

1 Department of Civil and Environmental Engineering, Louisiana State
University, 3526D Patrick F. Taylor Hall, Baton Rouge, LA 70803,
USA

2 Department of Civil and Environmental Engineering, Louisiana State
University, 3526B Patrick F. Taylor Hall, Baton Rouge, LA 70803,
USA

Hydrogeol J (2017) 25:601–615
DOI 10.1007/s10040-016-1532-6

http://crossmark.crossref.org/dialog/?doi=10.1007/s10040-016-1532-6&domain=pdf


different hydrofacies methods generate significantly different
spatial distributions of hydraulic properties (Alabert and
Modot 1993; Gómez-Hernández and Wen 1998; Western
et al. 2001; Zinn and Harvey 2003; Zhang et al. 2006; Lee
et al. 2007; Bianchi et al. 2011; Berg and Illman 2015) and
consequent flow and solute transport responses.

The second challenge in developing a groundwater model,
besides the estimation of spatially variable hydraulic parame-
ters, is to construct better model grids that are consistent with
the geometries of modelled hydrofacies. Errors from inaccu-
rate model grids that fail to capture hydrofacies geometries
may result in incorrect estimated hydraulic parameters during
model calibration. The literature shows two approaches com-
monly used to construct a computational grid from well log
data: the solid approach and the pre-defined grid approach.
Before implementing either approach, one needs to obtain
geological information (e.g., lithology, bed boundary eleva-
tion, formation dip, etc.) from well logs. Readers are referred
to some classic books for well log interpretation techniques
(Schlumberger 1972; Hilchie 1982; Bassiouni 1994), which
were used to interpret well logs for this study.

Using the solid approach, one needs to manually cor-
relate well logs and label distinct hydrofacies for each
well log. Once the well log correlation is established,
interpolation methods are applied to generating surfaces
of the same types of hydrofacies. These surfaces represent
the hydrofacies boundaries and result in a solid model.
Jones et al. (2002) and Lemon and Jones (2003) devel-
oped a grid generator to generate computational grids for
groundwater models from solid models. The beauty of
this approach is the creation of non-uniform computation-
al layers that match well the generated hydrofacies sur-
faces, including pinch-outs.

The biggest challenge in using this approach is performing
manual correlation between well logs, which is subjective and
can become laborious and impractical when dealing with a
huge number of well logs in areas known to be highly com-
plex. (e.g., fluvial depositional environments). Manually cor-
relating well logs often results in inconsistencies with geolog-
ical deposition, forces correlation of unrelated hydrofacies,
and produces erroneous hydraulic connections of discontinu-
ous hydrofacies.

The pre-defined grid approach usually generates uniform,
relatively coarse layers directly to be used for flow and trans-
port modeling. Examples of this approach include using T-
PROGS (Carle 1999) and geostatistical tools—e.g., GSLIB
(Deutsch and Journel 1997). This approach does not force
generating surfaces of hydrofacies, and therefore, avoids the
issues caused by manual correlation; however, the greatest
concern of using pre-defined grids is to lose the vertical reso-
lution of hydrofacies geometries if layers are not fine enough.
Using very fine layers intuitively can improve vertical resolu-
tion of hydrofacies geometry, but will significantly increase

computation time since pre-defined grids are directly used for
flow simulation.

The third challenge when developing a groundwater model
is model calibration; for complex aquifer systems, model cal-
ibration can be very time consuming. Without advanced
search algorithms and computing resources, searching for bet-
ter parameter values can end prematurely; moreover, grid error
amplifies parameter estimation error. Model calibration may
result in over-parameterization and unrealistic model parame-
ter values in order to compensate model structure error due to
an invalid grid.

This study presents a general procedure to develop com-
plex groundwater models for siliciclastic aquifer systems and
to overcome the challenges raised by grid generation and
model calibration. The study first introduces a grid generation
technique that maintains high vertical resolution of
hydrofacies geometries with a reasonable number of non-
uniform boundary-fitted layers. Second, the study adopts the
covariance matrix adaptation-evolution strategy (CMA-ES;
Hansen and Ostermeier 2001; Hansen et al. 2003) in parallel
computing to calibrate complex groundwater models. Third,
the grid generation and model calibration techniques are ap-
plied to developing a three-dimensional (3D) groundwater
model for the fluvial-in-origin aquifer system underneath the
Baton Rouge area, southeastern Louisiana.

Methodology

The flowchart in Fig. 1 presents major steps to develop a
groundwater model for applications: data collection, model
construction, model calibration, and model application. The
first step is to collect and analyze pertinent data for the area of
interest. The data include geological and geophysical data as
well as hydrologic and hydrogeologic data, groundwater use
data, etc. Data are always lacking for groundwater study and
their quantity and quality directly affect the subsequent model
development steps. The second step is to construct a concep-
tual groundwater model based on the collected data. Modelers
often face decisions of whichmodel components are fixed and
which model components are to be adjusted in the model
calibration phase. In model construction, hydrostratigraphy
is the backbone of a groundwater model and directly controls
the development of a computational grid for a numerical
method. Hydrostratigraphy construction for an aquifer system
is the key step to transfer known geological information from
well logs to a groundwater model. This step is actually ex-
tremely difficult for a complex aquifer system such as the
siliciclastic groundwater system in this study, but is often
overlooked and overly simplified. The challenge leads to this
study to address the question of how to use a large amount of
well logs with highly irregular sand-clay sequences to gener-
ate a proper computational grid for groundwater modeling.
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Model calibration is a necessary step to ensure model integrity
before a groundwater model can be applied to its applications.
It involves tuning physical parameters (e.g., hydraulic conduc-
tivity, specific storage, etc.) and adjusting model components
such that groundwater model output is close to observed data.
For complex aquifer systems, model calibration can be time
consuming.

This section focuses on two challenges in groundwater
model development: grid generation and model calibration.
The discussions in the following are mainly for siliciclastic
sedimentary depositional environments, which are applicable
to this case study demonstration.

Well log interpretation

The primary sources of information used to establish
hydrofacies geometries are wire-line spontaneous potential
(SP) and electrical resistivity logs for boreholes.
Spontaneous potential and resistivity log responses are
controlled largely by the ratio of sand to clay minerals and
they have long been used to interpret sedimentary
depositional environments. Galloway (1977) used SP and
resistivity curve morphologies to identify fluvial facies for
channel fill, levee, crevasse splay and floodplain, and
established a meandering stream facies. Kerr and Jirik
(1990) adapted Galloway’s (1977) facies model and provided
examples of SP and resistivity responses that match known
fluvial facies for the middle Frio formation, South Texas.
Sands deposited by braided streams produce jagged, wedge-
shaped curve morphologies (Miall 2010). Based on these
established relationships between log responses and fluvial
facies, Chamberlain et al. (2013) used SP and resistivity data
to study depositional environments of siliciclastic sediments
in the Baton Rouge area.

Following Chamberlain et al. (2013) and Elshall et al.
(2013), this study uses SP, resistivity, and gamma ray (when
available) to identify the location of sand facies at depth.
Figure 2 shows a typical SP-resistivity log for saturated for-
mations in the Baton Rouge area. Based on deviations from a
visually estimated shale baseline, boundaries of sands can be
drawn on inflection points of SP curves. A cutoff value that
generally fell between 10 and 35 ohm-m for resistivity curves
is assigned to determine boundaries of sands. Low long-

normal resistivity generally indicates the occurrence of salty
water. Low gamma ray response generally indicates a sand
facies. Sand boundaries can be well identified by correlating
SP, resistivity and gamma ray curves (Schlumberger 1972;

Fig. 1 Flow chart for developing
a groundwater model

Fig. 2 Interpretation of fluvial facies for a well log. Legend: A
amalgamated braided channel-fill with brackish water, B channel-fill
point bar sand with brackish water, C stacked/amalgamated channel-fill
with very salty water, D floodplain, and E natural levee (Kerr and Jirik
1990; Miall 2010). SN short normal resistivity (dashed line); LN long
normal resistivity (solid line). 1,000 ft = 304.8 m
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Hilchie 1982; Bassiouni 1994)—for example, seven sand fa-
cies are picked and many thin sands are ignored as shown in
Fig. 2. Non-sand intervals are assumed to be clay (shale or
mudstone) facies.

Well log interpretation is inevitably subjected to an individ-
ual’s experience and the purpose of the work. This study does
not intend to discuss the uncertainty of computational grids due
to different log interpretations. Moreover, it is possible to use
the established relationships between log responses and fluvial
facies from Galloway (1977), Kerr and Jirik (1990), and Miall
(2010) to infer different fluvial facies—for example, Fig. 2
shows some identified fluvial facies based on the established
relationships. This study does not intend to identify specific
fluvial facies, but focuses on aquifer system construction using
identified sand and clay facies from well logs.

Indicator kriging for hydrostratigraphy construction

To construct hydrostratigraphy based on the aforementioned
well log interpretation of sand-clay sequences, well logs are
first transformed into binary indicator values. The indicator
value for sand facies is 1 and for clay facies is 0. The indicator
kriging (Johnson and Dreiss 1989) is suitable for handling
bimodal heterogeneity. By using a regional geological dip to
correlate well logs as shown in Fig. 3a, indicator kriging is
performed on inclined surfaces where indicator data are ob-
tained at the intersections with well logs. To make it easier for
operating indicator kriging, all well logs are translated verti-
cally to a non-dipping domain. To do so, the vertical transla-
tion distance depends on the dip angle and the distance from
well log location to a strike line that serves as a pivot as
illustrated in Fig. 3b. Then, indicator kriging is performed
on horizontal surfaces given horizontal discretization, which
can be done by any methods available in the literature. The
same horizontal discretization is applied to all horizontal sur-
faces at different depths. A detailed 3D hydrostratigraphic
architecture can be achieved by assembling a large number
of horizontal surfaces with fine intervals. This study conducts
indicator kriging at horizontal surfaces with one-foot intervals.

Finally, the 3D hydrostratigraphic architecture is transformed
to a dipped architecture that follows the dip direction.

It is noted that the grid generation technique in this study is
not limited to indicator kriging. Any geostatistical method can
be used to estimate hydrofacies for a surface. The resulting
indicator data from horizontal surfaces are used to compute
experimental variograms. Then, a variogram model can be
derived by fitting to the experimental variograms.

The expected value of the indicator at an unobserved loca-
tion is obtained by

v x0ð Þ ¼
XS

i¼1

λi I xið Þ ð1Þ

where v(x0) is the expected value at unobserved location x0, S
is the number of well logs for a horizontal surface, and λi are
the indicator kriging weights. Indicator kriging has been well
documented in the literature. Readers are referred to Olea
(1999) for more information.

The expected value of indicator function represents the
probability that facies at a location x0 fall into sand facies or
clay facies. By giving a cutoff α as follows, distributed sand
and clay facies on a horizontal surface can be achieved:

I x0ð Þ ¼ 1 : sand if v x0ð Þ≥ α
0 : clay if v x0ð Þ < α

�
ð2Þ

Determination of a defensible cutoff value is challenging.
A value of 0.5 is commonly used for a neutral selection.
However, a better cutoff can be determined in a calibration
process where facies estimates are subject to additional infor-
mation, e.g., driller’s logs, total volume of sand or clay facies
from electrical logs, etc. (Elshall et al. 2013).

Upscale hydrostratigraphic architecture to a model grid

The MODFLOW model (Harbaugh 2005) uses a structured
grid where cells are rectangular in the two-dimensional plane.
The 3D model domain is discretized into rows, columns, and
layers, ordered in a Cartesian coordinate system. Each grid

Fig. 3 Translation of well log positions from a a dipping surface to b a non-dipping surface. cAn illustration of bed boundary projection for the vertical
column (i, j) of a grid. Bed boundaries of neighboring vertical columns are projected to the vertical column (i, j)
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cell (except for those at model boundaries) is connected to six
surrounding cells. Unlike the unstructured grid version of
MODFLOW-USG (Panday et al. 2013) that has more flexi-
bility for domain discretization, the challenge for conventional
MODFLOW models is that all computational layers in the
structured grid must be continuous throughout the model do-
main. Once a hydrostratigraphic architecture with very fine
vertical discretization is generated by indicator kriging, the
following two steps are developed to upscale the
hydrostratigraphic architecture to a MODFLOW structured
grid by merging the same hydrofacies in the vertical direction
to reduce the number of layers.

Step 1. Project neighboring bed boundaries. To account for
the continuity of MODFLOW layers throughout the
model domain, Fig. 3c illustrates bed boundary pro-
jection for each vertical column of a grid. A vertical
column (i, j) of a grid in Fig. 3c originally has four
bed boundaries and has direct connections to its
neighboring vertical columns which have different
bed boundary positions. The bed boundaries of the
neighboring vertical columns are projected to the
vertical column (i, j) and increase bed boundaries
of the vertical column (i, j) to 12. Bed boundary
projection is applied to all vertical columns of the
grid. By doing so, each vertical column of the grid
possesses information of bed boundary positions of
its neighboring vertical columns. Bed boundary pro-
jection is an important step in order to preserve the
continuity of flow pathways, especially through geo-
logical faults, pinch-out areas, or narrow
connections.

Step 2. Determine model layers. Given a desired number of
model layers, this study introduces a Bruler^ algo-
rithm to assign MODFLOW layer indices to each
vertical column. Again, the layer boundaries are re-
quired to match the bed boundaries. As shown in
Fig. 4a, the start and end of the ruler match the top
and bottom boundaries of a vertical column, respec-
tively. The number of major ticks in the ruler repre-
sents the number of MODFLOW layers. The num-
ber of layers up to a bed boundary for a vertical
column is obtained by comparing its bed boundary
location to the ruler—for example, a bed boundary
located between 0 and 1.5 in the ruler indicates one
layer up to the bed boundary, between 1.5 and 2.5
indicates two layers up to the bed boundary, between
2.5 and 3.5 indicates three layers up to the bed
boundary, and so forth. When the thickness between
consecutive bed boundaries is small, the ruler algo-
rithm is likely to assign two or more bed boundaries
with the same number of layers up to their bed
boundaries as shown in Fig. 4b. In this case, the ruler

algorithm will adjust the numbers to make sure that
each bed boundary has a distinct layer index. In the
last step, equal thickness of layers is given to seg-
ments that need to be divided into two or more layers
based on the final assignment of the layer indices to
the bed boundaries.

Model calibration using parallel computing

Model calibration is the process of adjusting model parameter
values until a satisfactory fit between model outputs and field
measurements (e.g., heads, concentrations) is achieved.
Traditionally, model calibration is performed manually based
on trial-and-error methods. This approach is easy to apply, but
is laborious and time-consuming; furthermore, trial-and-error
methods may not guarantee finding the best solutions because
different user’s manipulations may produce dissimilar
solutions.

Automatic model calibration using optimization
methods is efficient due to their ability to handle a high
number of model parameters and the accuracy of solu-
tions. Optimization methods can be classified as
derivative-based and non-derivative-based search methods
(global search methods). Derivative-based methods con-
verge quickly, but solutions may be trapped to local opti-
ma. Global search methods have potential to find near
global solutions as well as handling non-differentiable
and discontinuous functions. Popular global search
methods applied to groundwater model calibration include

Fig. 4 Illustration of the ruler algorithm: a a vertical column of a grid
with a distinct number of layers up to each bed boundary, and b a vertical
column of a grid with two bed boundaries having the same number of
layers. A refers to the number of layers up to a bed boundary and Bmodel
layer indices
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genetic algorithms (El Harrouni et al. 1996; Wang 1997;
Karpouzos et al. 2001), simulated annealing and tabu
search (Zheng and Wang 1996), ant colony optimization
(Abbaspour et al. 2001), particle swarm (Gill et al. 2006;
Krauße and Cullmann 2012), and shuffled complex evo-
lution (SCE) (Vrugt et al. 2003). The common disadvan-
tage of global search methods is that a large number of
model runs and iterations are needed in order to reach a
near global solution. For a computationally expensive
simulation model, this method may become impractical;
this problem, however, can be solved efficiently by paral-
lel computing. Reviews and comparisons of methods for
model calibration can be found in many books and arti-
cles (Cooley 1985; Sun 1994; Hunt et al. 2007; Hill and
Tiedeman 2007; Vrugt et al. 2008; Hendricks Franssen
et al. 2009; Fienen et al. 2009; Doherty 2015; Yeh
2015). Popular software for automatic groundwater model
parameter estimation include PEST (Doherty et al. 1994),
UCODE (Poeter and Hill 1999), or MGO (Zheng and
Wang 2003).

This study adopts CMA-ES (Hansen and Ostermeier 2001;
Hansen et al. 2003) as a global search method to calibrate a
groundwater model and estimate model parameters for three
key reasons. First, CMA-ES has the capability of obtaining a
near global solution and avoiding entrapment in local optima.
Second, CMA-ES provides a full covariance matrix of esti-
mated parameters, which can be used to assess parameter es-
timation and prediction uncertainty. Third, CMA-ES can be
implemented in a high-performance computing system to
overcome the prohibitive computational cost (Elshall et al.
2015).

Construction of Baton Rouge aquifer system,
southeastern Louisiana

The Baton Rouge aquifer system shown in Fig. 5 is part of the
Southern Hills regional aquifer system, southeastern
Louisiana, USA. The Baton Rouge aquifer system consists
of a succession of south-dipping siliciclastic sandy units and
mudstones of Miocene through Holocene age, extended to a
depth of 3,000 ft (914 m; Meyer and Turcan 1955), and is
highly complex as a result of f luvial deposit ion
(Chamberlain et al. 2013). Eleven freshwater aquifers under-
neath Baton Rouge are the Mississippi River Alluvial Aquifer
(MRAA), the B400-foot^ sand, the B600-foot^ sand, the B800-
foot^ sand, the B1,000-foot^ sand, the B1,200-foot^ sand, the
B1,500-foot^ sand, the B1,700-foot^ sand the B2,000-foot^
sand, the B2,400-foot^ sand, and the B2,800- foot^ sand.
These aquifers were named by their approximate depth below
ground level in the Baton Rouge Industrial District (Meyer
and Turcan 1955). The depth of the MRAA in the model
domain is similar to the B400-foot^ sand. The sand deposition
is non-uniform due to spatial and temporal variations in fluvial
processes as well as a large amount of missing sand possibly
due to erosional unconformity. From the region-scale study of
Griffith (2003), the Baton Rouge aquifer system dips south
towards the Gulf of Mexico.

The Baton Rouge aquifer system consists of the east–west
trending Baton Rouge fault and the Denham Springs-
Scotlandville fault. The faults crosscut the aquifer/aquitard
sequence in the study area (McCulloh and Heinrich 2013).
The Denham Springs-Scotlandville fault is generally thought
to have no significant effect on groundwater flow. The

Fig. 5 Map of the study area,
boreholes of well logs (circles),
and US Geological Survey
groundwater observation wells
(triangles). The coordinate
system is UTM (meters), Zone
15, NAD83
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historical groundwater data suggests the Baton Rouge fault to
be a horizontal flow barrier that separates the freshwater to the
north and the saline water to the south. The source of saline
water is likely from the expulsion of over-pressured brine
fluids, extending vertically upward above the top of Gabriel
salt dome all the way to the water table (Anderson et al. 2013).
Bense and Person (2006) suggested the Baton Rouge fault to
be a conduit-barrier fault. Recent study (Elshall et al. 2015)
suggested the Baton Rouge fault and the Denham Springs-
Scotlandville fault to be low-permeability leaky faults.

Groundwater naturally flows southward; however, exces-
sive groundwater withdrawals in the area between two faults
have caused significant declines of groundwater levels north
of the Baton Rouge fault. The two largest pumping areas that
cause themost significant drawdown are the Industrial District
and the Lula pump station. The pumping wells at the
Industrial District were screened from the B400-foot^ sand to
the B2,000-foot^ sand. The B2,000-foot^ sand is the most
heavily pumped by the industrial wells. The Lula pump station
heavily pumps the B1,500-foot^ sand for public supply. The
declines of groundwater level caused land subsidence
(Whiteman 1980) and reversed the flow direction in the vicin-
ity of the Baton Rouge fault to cause saltwater intrusion
(Morgan and Winner 1964; Whiteman 1979; Tomaszewski
1996). Observed chloride concentrations are generally much
less than a few thousand mg/L (Lovelace 2007). To better
understand the impacts of the geological faults and the
groundwater withdrawals on groundwater level decline, this
study applied the proposed methodology to develop a Baton
Rouge groundwater model, which covers the 11 sands.

Saltwater intrusion modeling and subsidence modeling
were not conducted in this study. To the best of authors’
knowledge, the extent of subsidence does not affect ground-
water flow in the Baton Rouge area. However, potential sim-
ulation errors in groundwater levels may occur near or in the
south of the Baton Rouge fault where high chloride concen-
trations are present. Since this study used the developed
groundwater model to investigate groundwater budget and
flow patterns, the errors due to the density effect would not
be significant. Nevertheless, saltwater intrusion modeling and
subsidence modeling are important to the Baton Rouge area
and will be the focus of future studies.

Results and discussion

Well log interpretation and hydrostratigraphic
architecture

Using the method in sections ‘Well log interpretation’ and
‘Indicator kriging for hydrostratigraphy construction’, the
study analyzed wireline well logs from 583 boreholes
(Fig. 5). The result of binary well log interpretation is shown

in Fig. 6a. The number of sand and clay segments in well
logs ranges from 3 to 59. It is impractical to manually build
correlations between boreholes. The model domain in the
planar direction is discretized into 93 rows and 137 columns
with a cell size 200 × 200 m, resulting in 12,741 grid cells.
Ind i ca to r k r ig ing was adop ted to cons t ruc t a
hydrostratigraphic architecture with a dip angle 0.29° and a
cutoff value 0.40 from a prior study (Elshall et al. 2013).
After translating all well logs vertically to a non-dipping
domain, indicator kriging was conducted on horizontal sur-
faces of 1 ft (0.304 m) intervals from land surface to –
2,890 ft (–881 m) below NGVD29 that covers the 11 sands.
This study adopted an isotropic exponential variogram mod-
el (nugget = 0.084, range = 8,600 m, and sill = 0.223) for the
indicator kriging (see Fig. 6b). The modeling area was di-
v i d ed i n t o t h r e e r eg i on s by two f au l t l i n e s .
Hydrostratigraphic architecture for each region was con-
structed by the indicator kriging; then, the three
hydrostratigraphic architectures were put together as shown
in Fig. 6b. The presence of a large number of small facies
thickness indicates a fluvial deposition environment, involv-
ing a wide mixture of grain sizes (e.g., from gravel to clay),
a broad range of grain-size sorting (e.g., from poorly sorted
to nearly homogeneous facies), and a wide-ranging intercon-
nectivity between lithostratigraphic facies (e.g., at scales
ranging from tens of meters to centimeters; Bowling et al.
2005). Figure 6b reveals the complexity of the Baton Rouge
aquifer system, such as unconformity of sand units, inter-
bedded clays, isolated sands, coalescences, and pinch-outs.

Moreover, facies displacement at the faults and hydraulic
connection across the faults can also be identified. It was
found for deeper sands that the vertical offset of the Baton
Rouge fault is about 80 m at the B1,200-foot^ sand and about
100 m at the B2,000-foot^ sand. The vertical offset of the
Denham Springs-Scotlandville fault at the B1,200-foot^ sand
is about 35 m and at the B2,000-foot^ sand is about 70 m
(Elshall et al. 2013). The offsets increase with depth.
Figure 7 presents the architectures of the Baton Rouge fault
and the Denham Springs-Scotlandville fault. White areas
show potential hydraulic connections formed by juxtaposition
of sand units at the faults. The figure indicates complex sand
deposition and erosion through the fluvial process and the
faulting process.

Model grid

It is obvious that a highly complex 3D MODFLOW grid is
necessary in order to represent the Baton Rouge aquifer sys-
tem. Using the proposed method in section 2.3, a grid of 162
model layers was cons t ruc ted by upscal ing the
hydrostratigraphy. There are 808,078 active computational
cells shown in Fig. 8. The model grid accurately matches the
hydrostratigraphic architecture (Fig. 6a) and preserves layer
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continuity. Each cell is 200 × 200 m with the cell thickness
ranging from 3.05 to 30.5 m. The average thickness of the
layers is 5.2 m. With this grid generation technique, the
pumping wells are correctly positioned in their corresponding
sands. Updating the model grid is straightforward when new
well logs become available.

Groundwater model conceptualization

Using the generated MODFLOW grid, this section develops a
groundwater model for the Baton Rouge area. The conceptual
model structure is based on Fig. 8. The simulation period is
from January 1, 1975 to December 31, 2014. The historical

Fig. 7 The architecture of a the
Denham Springs-Scotlandville
fault and b the Baton Rouge fault.
Red and cyan areas indicate clay
facies at the north and the south of
each fault, respectively. White
areas are potential hydraulic
connections. The faults lines in
the model domain are shown in
Fig. 5

Fig. 6 Construction of hydrostratigraphic architecture from well logs: a
distribution of sand and clay segments in boreholes as the result of well
log interpretation, b exponential indicator variogram model. Black dots

are experimental indicator variograms, and c hydrostratigraphic
architecture. The vertical exaggeration is 10
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groundwater head data in the simulation period were collected
from 42USGeological Survey observation wells (Fig. 5). The
historical groundwater head data were used to derive a
groundwater head distribution for January 1, 1975 as the ini-
tial condition for the groundwater model. The historical
groundwater head data were also used to derive groundwater
head values at the model boundaries as the time-varied spec-
ified head boundary condition for the groundwater model. The
monthly stress period and monthly time step were adopted
owing to available monthly pumpage records (1975–2014)
for the study area; therefore, there are 480 stress periods.
Surficial recharge in the model domain was neglected due to
a confining unit on the top of the MRAA and the B400-foot^
sand.

The MODFLOW well package (MNW2; Konikow et al.
2009) was used to model pumping wells screened in a single
sand or multiple sands. The time-variant specified head

(CHD) package was used for the boundary condition, which
is assigned to all boundary active cells. The Baton Rouge fault
and the Denham Springs-Scotlandville fault are considered as
horizontal flow barriers and their permeability is characterized
by the hydraulic characteristic (HC; Hsieh and Freckleton
1993). The two faults were simulated using the horizontal
flow barrier (HFB) package. The PCGN solver (Naff and
Banta 2008) was used. The model parameters to be estimated
are hydraulic conductivity, specific storage, and fault hydrau-
lic characteristic.

Model calibration results and estimatedmodel parameters

The parallel CMA-ES (Elshall et al. 2015) was implemented
to minimize the root mean square error (RMSE) between the
calculated and observed groundwater heads. Parallel compu-
tation was carried using a supercomputer at Louisiana State

Fig. 8 Conceptual groundwater
model for the Baton Rouge
aquifer system, including 11
aquifers, two geological faults,
and pumping and injection wells
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University, which has 382 compute nodes. Each compute
node is equipped with two 10-core 2.8GHz Intel Ivy Bridge-
EP processors. Hansen and Ostermeier (2001) and Hansen
et al. (2003) recommended a good population size for CMA-
ES to be tenfold of unknown variables. Since the number of
model parameters to be estimated is 38, the study used a pop-
ulation size of 380. To maximize the efficiency of parallel
computing, the number of processors is equal to the popula-
tion size; therefore, 19 compute nodes were used to conduct
model calibration using the parallel CMA-ES.

Given that the algorithm parallelization time is less than 1 s
per iteration, the speedup of the parallel CMA-ES is roughly
equal to population size. Running the Baton Rouge ground-
water model takes about 18 h and using 380 processors for
model calibration takes 75 days with 100 iterations. It would
need 78 years without parallel computing. The parallel CMA-
ES significantly reduced calibration time.

The groundwater model was calibrated using 10,393 tran-
sient groundwater heads from 42 US Geological Survey

observation wells (Fig. 5) from January 1, 1975 to
December 31, 2014. Model calibration found a good match
between observed and calculated groundwater heads shown in
Fig. 9. The RMSE is 3.76 m. The estimated parameter values
of hydraulic conductivity, specific storage and fault hydraulic
characteristic are given in Table 1. The calibration result indi-
cates that the Holocene aquifer (MRAA) to the Pliocene aqui-
fer (B1,700-foot^ sand) have relatively lower hydraulic con-
ductivity than that of Miocene aquifers (B2,000-foot^ sand to
B2,800-foot^ sand). Specific storage is between 10−4 and 10−5

m−1 for all sands. Hydraulic characteristic for the faults varies
across seven orders of magnitude. The calibration result indi-
cates very low permeability for the Denham Springs-
Scotlandville fault at the B2,000-foot^ sand, which implies
very limited freshwater flow across the fault. The calibration
result also indicates very low hydraulic characteristic for the
Baton Rouge fault at the B600-foot^ sand, which limits
groundwater flowing from south of the fault. In general, the
calibration result supports the previous study (Elshall et al.
2015) that the Baton Rouge fault and the Denham Springs-
Scotlandville fault are low-permeability leaky faults that re-
strict horizontal flow.

Groundwater flow simulation and budget analyses

Simulated groundwater levels in December 31, 2014 are pre-
sented in Fig. 10 using the estimated parameters in Table 1.
The low groundwater level in the aquifers between the faults is
caused by the heavy pumping. Groundwater levels decrease in
depth indicating more groundwater withdrawal from deep
sands. The B2,000-foot^ sand has the lowest groundwater lev-
el due to heavy pumping in the Industrial District. The down-
ward head difference between the shallow sands and the deep
sands warrants the purpose of the connector well EB-1293
(Fig. 8) that connects the B800-foot^ sand and the B1,500-
foot^ sand in order to raise groundwater level in the B1,500-
foot^ sand (Dial and Cardwell 1999).

Fig. 9 Scatter plot for observed groundwater level vs. calculated
groundwater level

Table 1 Estimated model
parameters for the Baton Rouge
aquifer system. K hydraulic
conductivity, SS specific storage,
DSS Denham Springs-
Scotlandville, BR Baton Rouge;
HC hydraulic characteristic

Seriesa Aquifer K (m/day) SS (1/m) HC of DSS Fault
(1/day)

HC of BR Fault
(1/day)

Holocene MRAA 25.0b 1.96E-05 5.99E-03 8.99E-05
Pleistocene B400-foot^ sand 25.0b 1.96E-05 5.99E-03 8.99E-05

B600-foot^ sand 5.0 6.24E-05 9.00E-02b 3.00E-07b

Pliocene B800-foot^ sand 21.5 3.13E-05 4.45E-03 5.26E-03
B1000-foot^ sand 35.6 3.42E-05 4.28E-01 8.69E-03
B1200-foot^ sand 15.6 3.80E-05 9.00E-02b 2.68E-03
B1500-foot^ sand 22.2 3.79E-05 1.53E-02 2.40E-03
B1700-foot^ sand 22.2 8.32E-05 1.15E-01 1.97E-03

Miocene B2000-foot^ sand 100.0 2.81E-05 1.00E-06b 4.47E-03
B2400-foot^ sand 55.0 9.00E-05b 8.48E-04 9.11E-04
B2800-foot^ sand 60.0 5.68E-05 − −

a Source: Tomaszewski (1996)
b Bound value
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Moreover, Fig. 10 indicates potential flow from the B2,400-
foot^ sand to the B2,000-foot^ sand due to upward head differ-
ence. The simulation result indicates that the B2,400-foot^ sand
may recharge the B2,000-foot^ sand through four pumpingwells
(EB-150, EB-151, EB-733, and EB-1253) (Fig. 10), which were
screened in both sands, when pumps are not running.

The distinct head differences across the faults shown in
Fig. 10 are due to low permeability of the faults that restrict

horizontal flow. Nevertheless, regarding the concern of salt-
water intrusion (Morgan and Winner 1964; Whiteman 1979;
Tomaszewski 1996; Lovelace 2007), the modeling result in-
dicates the Baton Rouge fault to be a leaky fault that permits a
certain amount of salty groundwater flow northward through
the fault.

Analyses of 1975–2014 water budget shown in Fig. 11a–d
estimate about 580,000 m3/day of groundwater flow annually

Fig. 10 Simulated groundwater
level in December 31, 2014 in 11
aquifers. Vertical lines are
pumping wells. EB-150, EB-151,
EB-733, and EB-1253 are
screened in both the B2,000-foot^
sand and the B2,400-foot^ sand

Fig. 11 Simulated groundwater budget for the aquifers between the
Baton Rouge fault and the Denham Springs-Scotlandville fault. Inflow
and outflow (m3/day) through a east boundary of model domain, b west
boundary of model domain, cDenham Springs-Scotlandville (DSS) fault,

and d Baton Rouge (BR) fault. e Annual pumping rate (m3/day) and
annual groundwater storage change (million m3) with respect to the
beginning groundwater storage of 1975
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into the aquifers between the two faults. About 70% of the
total inflow comes from the east and west boundaries of the
model domain, about 17% of the total inflow comes through
the Denham Springs-Scotlandville fault, and about 13% of the
total inflow comes through the Baton Rouge fault. About
581,300 m3/day of annual groundwater outflow is estimated,
which is greater than the annual total inflow. The majority of
the total outflow is groundwater pumping, accounting for
about 59% of the total outflow. Groundwater outflow through
the east and west boundaries of the model domain is estimated
at about 39% of the total outflow. Groundwater outflow
through the faults is very limited. In average, about 100 m3/
day of groundwater annually flows southward through the
Baton Rouge fault, and about 9,800 m3/day of groundwater
annually flows northward through the Denham Springs-
Scotlandville fault.

Figure 11e shows the estimated annual storage change
with respect to the beginning storage of 1975. The storage

change is strongly corresponding to groundwater
pumping. Groundwater storage was generally increased
before 1995 due to groundwater pumping decrease.
Groundwater storage started to fall below the beginning
storage of 1975 in response to groundwater pumping in-
crease. The study estimates about 18.4 million m3 of
groundwater storage loss in 2014.

Particle tracking

MODPATH (Pollock 2012) was used to track groundwater
flow towards pumping wells and through the Baton Rouge
fault. Four imaginary particles were placed at each pumping
well and at each cell immediately south of the Baton Rouge
fault. By using forward tracking and backward tracking,
Fig. 12 shows the horizontal-plane projections of 40-year
3D flow paths from January 1, 1975 to December 31, 2014.
The longer paths in the B2,000-foot^ sand and the B2,400-

Fig. 12 Particle tracking
simulation from January 1, 1975
to December 31, 2014 for a
MRAA B400–600–800-foot^
sands, b B1,000–1,200-foot^
sands, c B1,500–1,700-foot^
sands, d B2,000-foot^ sand, and e
B2,400-foot^ sand. Squares are
pumping and injection wells. Red
lines and blue lines represent
backward tracking and forward
tracking of particle traces,
respectively
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foot^ sand owing to heavy pumping and high hydraulic con-
ductivity. The long outward flow paths from the pumping
wells EB-150, EB-151, and EB-733 in Fig. 12d indicate
strong recharge from the B2,400-foot^ sand to the B2,000-
foot^ sand. While the model did show recharge from the
B2,400-foot^ sand to the B2,000-foot^ sand in pumping well
EB-1253, the outward flow path from EB-1253 is shortened
by the strong pumping of its nearby wells.The flow paths
across the Baton Rouge fault indicate fault leaky areas. The
simulation result shows the possibility that groundwater south
of the Baton Rouge fault can reach some pumping wells near
the fault within 40 years.

Conclusions

This study presents a general framework to develop ground-
water models for fluvial-in-origin aquifer systems with a focus
on grid generation and model calibration, which are two cru-
cial modeling steps. The developed grid generation technique
can handle a large number of well logs and preserve facies
geometries of complex hydrostratigraphic architecture by
using fine vertical discretization. This includes coalescences,
pinch-outs, and narrow hydraulic connections through faults.
It improves the shortcomings of the solid method and the pre-
defined grid method and reduces model structure error for
groundwater models.

The model development framework is successfully applied
to the Baton Rouge aquifer system. The well log information
and the constructed hydrostratigraphy confirm the complexity
of the fluvial-in-origin aquifer system. Potential leaky areas in
the geological faults are identified. To meet the current struc-
tural complexity, a large number of model layers is needed in
order to model the 11 aquifers underneath Baton Rouge. The
developed groundwater model is very time-consuming. Using
parallel computing is necessary for automatic model
calibration.

The calibration result indicates Miocene aquifers have
higher hydraulic conductivity than Pliocene-Holocene aqui-
fers. The Baton Rouge fault and the Denham Springs-
Scotlandville fault are identified as low-permeability leaky
faults. The estimated hydraulic characteristic of the faults
varies over seven orders of magnitude. Specifically, the cali-
bration result indicates very limit freshwater flow across the
Denham Springs-Scotlandville fault for the B2,000-foot^ sand
and very limit freshwater flow across the Baton Rouge fault
for the B600-foot^ sand.

The model result indicates groundwater level decreasing
with depth. The B2,000-foot^ sand shows the lowest ground-
water level owning to heavy industrial pumping. Potential
groundwater flow from the B2,400-foot^ sand to the B2,000-
foot^ sand is indicated by the upward head gradient between
these two sands.

The water budget analyses for the sands between the geo-
logical faults indicate that 70% of the total inflow comes from
the east and west boundaries of the model domain and about
30% of total inflow comes through the two faults. It is esti-
mated that 13% of the total inflow comes from the Baton
Rouge fault. Groundwater pumping is estimated about 59%
of total outflow. The water budget analyses also indicate that
groundwater storage is significantly depleted since 1995 due
to excessive groundwater pumping. The particle tracking anal-
ysis reveals the location of the leaky areas of the Baton Rouge
fault. The result also indicates that the groundwater south of
the Baton Rouge fault can reach some pumping wells near the
fault within 40 years.

The developed grid generation technique is highly flexible
to include new well logs and to re-generate structured
MODFLOW grids. Future additions in this study may include
new wireline well logs and good-quality driller’s logs to up-
date the constructed hydrostratigraphy. Including more geo-
logical and geophysical data may lead to a more complex
groundwater model. A future study may develop a grid gen-
eration technique for unstructured MODFLOW grids
(MODFLOW-USG) to handle complex hydrostratigraphy
and reduce MODFLOW computation time.
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