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Abstract This paper examines the influence of porous media
deformation on water-table wave dispersion in an unconfined
aquifer using a numerical model which couples Richards’
equation to the poro-elastic model. The study was motivated
by the findings of Shoushtari et al. (J Hydrol 533:412–440,
2016) who were unable to reproduce the observed wave dis-
persion in their sand flume data with either numerical
Richards’ equation models (assuming rigid porous media) or
existing analytic solutions. The water-table wave dispersion is
quantified via the complex wave number extracted from the
predicted amplitude and phase profiles. A sensitivity analysis
was performed to establish the influence of the main parame-
ters in the poro-elastic model, namely Young’s modulus (E)
and Poisson’s ratio (ν). For a short oscillation period
(T = 16.4 s), the phase lag increase rate (ki) is sensitive to the
chosen values of E and ν, demonstrating an inverse relation-
ship with both parameters. Changes in the amplitude decay
rate (kr), however, were negligible. For a longer oscillation
period (T = 908.6 s), variations in the values of E and ν result-
ed in only small changes in both kr and ki. In both the short and
long period cases, the poro-elastic model is unable to repro-
duce the observed wave dispersion in the existing laboratory
data. Hence porous media deformation cannot explain the
additional energy dissipation in the laboratory data.
Shoushtari SMH, Cartwright N, Perrochet P, Nielsen P
(2016) The effects of oscillation period on groundwater wave

dispersion in a sandy unconfined aquifer: sand flume experi-
ments and modelling. J Hydrol 533:412–440.
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Introduction

Oceanic forces such as waves and tides can influence the
movement of water-table waves in the aquifers. The propaga-
tion of water-table waves plays an important role in many
coastal processes like mixing seawater and freshwater (e.g.
Li et al. 1999; Robinson et al. 2006; Xin et al. 2010) and also
beach sediment transport (e.g. Elfrink and Baldock 2002; Xin
et al. 2010; Bakhtyar et al. 2011). The water-table propagation
can be described in terms of a complex water-table wave
number (k = kr + kii) where ki is the imaginary part of the
water-table wave number, kr is the real part of the water-
table wave number, and i is an imaginary number; kr and ki
show the decay rate of water-table wave amplitude and the
rate of increase in phase lag respectively. Many studies have
been done to extract theoretical water-table wave dispersion
relationship considering different physical influences such as
vertical flows (non-hydrostatics pressure; e.g. Nielsen et al.
1997), horizontal flows in the unsaturated zone (e.g. Kong
et al. 2013) and capillary effects (Barry et al. 1996; Li et al.
2000). A summary of the existing analytical dispersion rela-
tionships can be found in Shoushtari et al. (2016).

Shoushtari et al. (2016) presented an extensive laboratory
sand flume dataset on the propagation of groundwater waves
in an unconfined sandy aquifer with a vertical boundary sub-
ject to simple harmonic forcing with a wide range of oscilla-
tion period from 10.7 to 909 s. Their data showed a monotonic
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increase in both amplitude decay rate and rate of increase in
phase lag of the water-table waves with increasing oscillation
frequency (increasing nωd/Ksat, where n is the porosity, ω is
the angular frequency, d is the aquifer depth and Ksat is the
saturated hydraulic conductivity) which was in contrast to
existing theories which predict (1) zero phase lag or standing
wave behaviour and (2) an asymptotic decay rate as the fre-
quency increases. Shoushtari et al. (2016) considered possible
influences like sand packing, measurement location, finite
amplitude wave effects, unsaturated zone truncation and mul-
tiple wave mode effects but none of them can explain the
observed discrepancy. They also compared laboratory data
against numerical solutions of hysteresis and non-hysteresis
Richards’ equation (Richards 1931) and in both cases, the
same qualitative behaviour as the analytic solutions described
in the aforementioned was found.

In this paper, the hypothesis was tested that the deformation
of porous media due to periodic water-table motion is the
cause of the model-data discrepancy of Shoushtari et al.
(2016). To examine the influence of porous media deforma-
tion on water-table wave dispersion, a model was developed
that considers saturated-unsaturated water flow in elastic po-
rous solids. Biot’s poro-elastic theory (Biot 1941, 1955, 1962)
is adopted which combines Darcy’s law with solid mechanics
and describes the interaction between fluids and deformation
in porous media. Numerous studies have been carried out to
derive analytical (e.g. Madsen 1978; Yamamotom et al. 1978;
Okusa 1985; Zienkiewicz et al. 1980; Yamamoto 1981;
Yamamoto and Schuckman 1984; Mei and Foda 1981;
Rahman et al. 1994; Cha et al. 2002; Jeng and Cha 2003)
and numerical (e.g. Thomas 1989, 1995; Jeng and Lin 1996,
1997) solutions to Biot’s theory. Biot’s theory has been also
used to analyse different physical systems such as wave-
induced stresses and pore pressure in a porous seabed (e.g.
Jeng and Hsu 1996; Jeng 2003) and wave-seabed-submarine
structures interactions (e.g. Shabani et al. 2009; Zhang et al.
2011a, b). There has been no previous investigation of the
influence of porous media deformation on water-table wave
propagation in an unconfined aquifer. This paper addresses
this gap in knowledge and in doing so tests the hypothesis
that the deformation of porous media due to periodic water-
table motion is the cause of the model-data discrepancy of
Shoushtari et al. (2016). In this paper, a brief description is
given of the experimental data of Shoushtari et al. (2016) used
for model-data comparison, after which a description of the
numerical model and boundary conditions are given, and the
model results are compared with the laboratory data.

Experimental setup and procedures

In this section, a brief outline of the sand flume experiments of
Shoushtari et al. (2016) is presented for ease of reference.

Shoushtari et al. (2016) conducted a series of laboratory tests
in the sand flume which is 9 m long, 1.5 m high and 0.15 m
wide. A simple harmonic wave was applied across a vertical
interface,

Ho ¼ d þ Acos ωtð Þ ð1Þ
where Ho is the driving head [L], d is the mean driving head
[L], A is the driving head amplitude [L], ω = 2π/T is the oscil-
lation frequency [T−1] and T is the oscillation period [T].
Table 1 summarises the driving head parameters used in this
study noting that the two periods examined were selected in
accordance with the shortest and longest periods examined in
the experiments of Shoushtari et al. (2016).

The flume had no-flow boundaries at the ‘landward’ end
and at the bottom. The top of the flume was covered in loose
plastic sheeting which allowed free connection of the aquifer
with the surrounding atmospheric pressure but can be consid-
ered a no flow boundary in terms of moisture transport. The
sand in the flume was well-sorted quartz sand whose proper-
ties were examined in detail by Nielsen and Perrochet (2000a,
b; Table 2). Horizontal piezometers inside the sand at different
locations along the sand flume were used to measure the hy-
draulic head.

Numerical modeling

To consider the water flow in elastic porous solids, Biot’s
poro-elastic theory (Biot 1941, 1955, 1962) is used. This the-
ory is the combination of Darcy’s law with solid mechanics
and describes the interaction between fluids and deformation
in porous media.

Fluid flow

The Richards’ equation (Richards 1931) is used to estimate
the flow field in the poro-elastic model as follows

ρ f
Cm

ρ fg
þ SeS

� �
∂p f

∂t
þ ∇:ρ f −Ksatκr ∇p f þ ρ fg∇zð Þ½ �

¼ −ρ fαB
∂
∂t

εvol ð2Þ

where ρf is the fluid density [ML−3], pf is the fluid pore pres-
sure [MT−2L−1], Cm represents the specific moisture capacity
[L−1], Se denotes the effective saturation [−], κr is the relative

Table 1 Driving head parameters

T(s) ω(rad/s) A(m) d(m) n(‐) Ksat(m/s) nωd/Ksat(‐)

16.4 0.38 0.123 0.934 0.41 4.7 × 10−4 243.63

908.6 0.01 0.149 0.843 0.41 4.7 × 10−4 3.97
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permeability [−]. S is the storage coefficient [L−1], Ksat is the
saturated hydraulic conductivity [LT−1], g is the acceleration
of the gravity [LT−2], z is the elevation [L], ∂εvol/∂t is the rate
of change in volumetric strain of the porous matrix [T−1].

The analytical formulas of van Genuchten (1980) are used
to define the Cm, Se and κr as follows

Se ¼ θ−θr
θs−θr

¼
1

1þ αψj jβ
h im ψ < 0

1 ψ ≥ 0

8><
>: ð3Þ

where ψ is the pressure head [L], θ is the volumetric moisture
content [−], θs and θr are saturated and residual moisture con-
tents [−], respectively.

The relative permeability is the ratio of the unsaturated
hydraulic conductivity relative to the saturated value and for
the van Genuchten (1980) model is given by
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The specific moisture capacity is defined as
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where α [L−1], β [−], l = 0.5 [−] and m = 1 – 1/β [−] are em-
pirical curve fitting parameters, and ψ = 0 corresponds to the
water-table position.

The Biot-Willis coefficient αB [−], which relates the vol-
ume of fluid expelled by (or sucked into) a porous material
element to the volumetric changes of the same element, is
defined in terms of the drained and solid bulk moduli as

αB ¼ ∂pm
∂p f

����
ε

¼ 1−
Kd

Ks
ð6Þ

where pm is the total mean pressure for the porousmatrix-fluid
system [MT−2L−1], ε is the strain tensor [−], and Kd and Ks are
the drained and the solid bulk modulus [MT−2L−1],

respectively. The drained bulk modulus (Kd) is always smaller
than the solid bulk modulus (Ks); therefore, Biot-Willis coef-
ficient is always bounded to εp ≤ αB ≤1 (where εp is the po-
rosity [−]). The αB does not depend on the properties of the
porous matrix. A soft porous matrix has a Biot-Willis coeffi-
cient close to 1 (since Kd << Ks), while for a stiff matrix, it is
close to the porosity (since Kd ≈ (1 – εp) Ks).

Porous matrix deformation

The governing equation for the poro-elastic material model is

−∇:σ ¼ ρavg ¼ ρ fεp þ ρd
� �

g ð7Þ

where σ is the total stress tensor [MT−2L−1], and ρav, ρf and ρd
are the average, fluid and drained densities [ML−3], respec-
tively. The total stress tensor, σ, can be calculated by

σ ¼ Cε−αBp f I ð8Þ
where C is the elasticity matrix [MT−2L−1], ε is the strain
tensor [−] and I is the identity matrix. For an isotropic porous
material under plane strain condition which is common for
two-dimensional (2D) poro-elasticity problems (i.e. the nor-
mal strain to the xz-plane equals zero), this can be simplified to
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ð9Þ
where E is the Young’s modulus [MT−2L−1] and ν is the
Poisson’s ratio for the drained porous matrix [−]. The poro-
elastic material model uses Eq. (7) to describe changes in the
total stress tensor σ and porous matrix displacement u [L] due
to boundary conditions and changes in pore pressure. The
αBpf term is often described as the fluid-to-structure coupling
expression which counts the fluid pressure contribution.

For small deformation with the plane strain condition, the
normal strains (εxx, εyy, εzz) and shear strains (εxy, εyz, εxz)
relate to displacements as

εxx ¼ ∂u
∂x

; εzz ¼ ∂v
∂z

; εxz ¼ εzx ¼ 1

2

∂u
∂z

þ ∂v
∂x

� �
;

εxy ¼ εyx ¼ εyz ¼ εzy ¼ εzz ¼ 0

ð10Þ

Table 2 Physical and hydraulic characteristics of the sand (Nielsen and Perrochet 2000a, b)

d50 (mm) d90/d10 (−) Ksat (m/s) θs (vol/vol) θr (vol/vol) αd (1/m) αw (1/m) β (−) Hψ (m)

0.20 1.83 4.7 × 10−4 0.41 0.09 1.7 3.4 9 0.55

d50, d90 and d10 are respectively the median and 90th and 10th percentiles of the sieve curve analysis; Ksat saturated hydraulic conductivity; θs saturated
moisture contents; θr residual moisture contents; Hψ steady capillary fringe thickness; αd and β are the best-fit van Genuchten parameters for the first
drying curve; αw is the adopted van Genuchten parameter for the first wetting curve
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where u and v are the displacement components in x and z
direction [L], respectively.

Equations (9) and (10) are substituted into Eq. (7) which is
then solved simultaneously with the time-dependent flow
model (Eq. 2) through the time rate of change in strain
(∂εvol/∂t). In this paper, the finite element method is applied
using the COMSOL 4.3b (COMSOL 2013) software package.

Model domain and boundary conditions

The model domain and boundary conditions of the sand flume
using the poro-elastic model are shown in Fig. 1.The no-flow
boundary condition in the fluid flow model is given by

n:Ksat∇p f ¼ 0 ð11Þ
where n is the vector normal to the boundary.

The Cauchy boundary condition has been used to imple-
ment the periodic seepage face boundary in the fluid flow
model. The Cauchy boundary condition can be expressed by

n:ρ fKsat∇p f ¼ ρ fRb
pb−p f

ρ fg

� �
þ zb−zð Þ

� �
ð12Þ

where pb and zb are the pressure [MT−2L−1] and elevation of
the distant fluid source [L], respectively, and Rb is the conduc-
tance of the material between the source and the model do-
main [T−1].

By applying appropriate logical statements, the Cauchy
boundary condition can be switched between a Dirichlet
boundary condition and a Neumann boundary condition. For
full details of implementation of the seepage face boundary
condition in the numerical model, the reader is referred to
Shoushtari et al. (2015a) and Chui and Freyberg (2009).

The boundary conditions for the porous matrix deforma-
tion model are a series of constraints on the displacement
which are including:

& Free constraint at the surface (the upper surface is free to
move in horizontal and vertical directions)

& Roller constraint at the bottom, left and right hand sides—
the displacement is zero in the direction perpendicular
(normal) to the boundary, but it is free to move in the
tangential direction.

Model parameters

The coefficients and parameters used in the poro-elastic model
are summarized in Table 3. Depending on the degree of com-
paction in the sand, Young’s modulus (E) and Poisson’s ratio
(ν) range between 10 < E (MPa) < 69 and 0.25 < ν < 0.4 re-
spectively. Hence a sensitivity analysis was conducted (see
section ‘Results and discussion’) to examine the influence of
these model parameters on the water-table wave propagation.

Results and discussion

To analyse the water-table wave propagation, the water-table
wave number has been calculated from a linear regression of
water-table wave amplitude and phase profiles which were
extracted using harmonic analysis on the simulated pore-
pressure time series (e.g. Nielsen 1990; Cartwright et al.
2003).

Model sensitivity analysis

Figures 3 and 4 show the predicted water-table wave number
components for T = 16.4 s and T = 908.6 s respectively and
their dependence on Young’s modulus (E) and Poisson’s ratio
(ν).

For the short period (T = 16.4 s), the real part of the water-
table wave number krd (Fig. 2a) is seen to be insensitive to E
and νwith a maximum of krd = 1.248 obtained for E = 10MPa
and ν = 0.25 and a minimum of krd = 1.21 for E = 69MPa and
ν = 0.40, i.e. less than 4 % changes in the value of the krd. In
terms of the imaginary part of the water-table wave number
kid (Fig. 2b), the maximum value is 0.396 for E = 10MPa and
ν = 0.25 and a minimum value of 0.092 for E = 69 MPa and

Fig. 1 The model domain and
boundary conditions used in the
poro-elastic model. MWL is the
mean water level and d is the
aquifer depth
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ν = 0.40, i.e. 76 % reduction, indicates that the kid (the rate of
increase in phase lag) is sensitive to E and ν.

For the long period (T = 908.6 s, Fig. 3), both real and
imaginary parts of the water-table wave number are essentially
insensitive to E and ν. The maximum value for krd is 0.929 for
E = 35 MPa and ν = 0.25, which is reduced by 2 % to a min-
imum value of 0.908 for E = 10MPa and ν = 0.25. In terms of
kid, the maximum value is 0.276 for E = 35 MPa and ν = 0.25
and the minimum value is 0.250 which indicates 9 %
reduction.

The results of the maximum total displacement [√(u2 + v2)]
where u and v are the displacement components in x and z
direction respectively) are summarized in Table 4. As it can be
seen in this table, there is a trend that the deformation

increases with decreasing Young’s modulus (E) and decreas-
ing Poisson’s ratio (ν). However, with the exception of the
E = 10 MPa results, the deformation is less than 1 mm in all
cases. This negligible response of the porous media is likely
due the fact that the water-table fluctuations in the experimen-
tal data are not large enough to induce a significant deforma-
tion; hence, overall the water-table wave numbers are gener-
ally insensitive to Young’s modulus (E) and Poisson’s ratio (ν)
due to the negligible deformation of the sand body.

In comparing the trends seen in Table 4 with the wave
numbers shown in Figs. 2 and 3, an interesting relationship
is found which, whilst perhaps not important under the present
experimental parameters (since maximum deformation is
<1 mm in almost all cases), may become important under
more energetic fluctuations. Figure 2 shows a clear trend of
increasing wave numbers with decreasing Young’s modulus
(E) which correlates with the predicted increase in deforma-
tion with decreasing Young’s modulus (E) for T = 16.4 s (cf.
Table 4). The increase in maximum displacement for
T = 908.6 s is very similar to that of the T = 16.4 s results;
however, Fig. 3 shows no obvious trend with E, which indi-
cates that, if the influence of porous media deformation on
water-table wave dispersion was to become more significant
under more energetic fluctuations, this would be more likely
to occur at shorter oscillation periods than longer ones.

Comparison with existing laboratory data and non-elastic
model results

The comparisons of the present poro-elastic model results
with the existing laboratory data and non-elastic (hysteretic

Table 3 Parameters used in the poro-elastic model

Parameter Symbol Value

Fluid density ρf 1,000 kg/m3

Drained density of porous layer ρd 2,750 kg/m3

Dynamic viscosity of water μ 0.001 Pa.s

Drained Young’s modulus for loose sand E 10–28 MPa

Drained Young’s modulus for dense sand E 35–69 MPa

Drained Poisson’s ratio for sandy soil ν 0.25–0.4

Biot-Willis coefficient αB 1

Saturated volume fraction for sand θs 0.41

Residual volume fraction for sand θr 0.09

Curve van Genuchten fitting parameter α 1.7 m−1

Curve van Genuchten fitting parameter β 9

Curve van Genuchten fitting parameter l 0.5

Saturated hydraulic conductivity Ksat 4.7 × 10−4 m/s

Fig. 2 Water-table wave number
components for T = 16.4 s
extracting from the poro-elastic
model with different values of
Young’s modulus (E) and
Poisson’s ratio (ν) of the sand—a
the real part of the water-table
wave number (krd) for ν = 0.25
(open circle) and ν = 0.40 (closed
circle); b the imaginary part of the
water-table wave number (kid) for
ν = 0.25 (open triangle) and
ν = 0.40 (closed triangle)
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and non-hysteretic) Richards’ equation model results of
Shoushtari et al. (2016) are presented in Figs. 4 and 5 and
are also summarised in Table 5. The non-hysteretic
Richards’ equation model employed the van Genuchten
(1980) parameters α = 1.7 m−1 and β = 9 and the hysteretic
model used αw = 3.4 m−1, αd = 1.7 m−1 and β = 9. Full details
of non-hysteretic and hysteretic Richards’model can be found
in Shoushtari et al. (2015b).

In terms of krd for the short period (T = 16.4 s, Fig. 4), the
poro-elastic model results (solid and open circles with an aver-
age of krd = 1.218) are very close to non-hysteretic Richards’
model (plus sign with krd = 1.151) which is almost 20 % less
than laboratory data (asterisk with krd = 1.499). The hysteretic
Richards’model (cross sign with krd = 1.426) predicts krd better
than the other two models (poro-elastic and non-hysteretic
model) with only <5 % underestimation with respect to labora-
tory data.

In terms of kid for the short period (Fig. 4), the non-
hysteretic Richards’ model results (plus sign with
kid = 0.101) is similar to the poro-elastic model with
E = 69MPa and ν = 0.40 (open circle with kid = 0.099), which
is 87 % less than laboratory data (asterisk with krd = 0.751).
The result of hysteretic Richards’ model (cross sign with
kid = 0.160) is close to poro-elastic model with E = 35 MPa
and ν = 0.25 (open circles with kid = 0.170), which is 78 %
less than the laboratory data. The closest result to the

Fig. 3 Water-table wave number
components for T = 908.6 s
extracting from the poro-elastic
model with different values of
Young’s modulus (E) and
Poisson’s ratio (ν) of the sand—a
the real part of the water-table
wave number (krd) for ν = 0.25
(open circle) and ν = 0.40 (closed
circle); b the imaginary part of the
water-table wave number (kid) for
ν = 0.25 (open triangle) and
ν = 0.40 (closed triangle)

Table 4 The summary of the maximum total displacement

ν(‐) E(MPa) Max total displacement (mm)

T = 16.4 s T = 908.6 s

0.25 10 2.59 2.72

28 0.93 0.97

35 0.74 0.78

69 0.37 0.39

0.4 10 1.45 1.52

28 0.52 0.54

35 0.42 0.44

69 0.21 0.22

Fig. 4 Model-data comparison of the water-table wave number
components for T = 16.4 s. Circles show the poro-elastic model results
for different values of Young’s modulus (E) for ν = 0.25 (open circle) and
ν = 0.40 (closed circle). The plus sign (+) denotes the non-hysteretic
Richards’ model with α = 1.7 m−1 and β = 9; the cross sign (×) shows
the hysteretic Richards’s model with αw = 3.4 m−1, αd = 1.7 m−1 and
β = 9; the asterisk (∗) denotes the laboratory data of Shoushtari et al.
(2016)
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laboratory data is obtained from the poro-elastic model with
E = 10 MPa and ν = 0.25 (open circles with kid = 0.395), but
this is still 47 % less than the laboratory data.

For the long period (T = 908.6 s, Fig. 5), the values of krd
and kid predicted by the poro-elastic model (solid and open
circles, average values of 0.919 and 0.263 respectively), are
very close to the non-hysteretic Richards’ model with
krd = 0.870 and kid = 0.231 as compared to the laboratory data
(0.471 and 0.295 for krd and kid respectively). The closest
result to the laboratory data has been obtained with the hys-
teretic Richards’ model which underestimates krd and kid as
17 and 24 % less than laboratory data respectively.

Conclusion

This paper has disproved the hypothesis that porous media
deformation can explain the observed model-data discrepancy
of Shoushtari et al. (2016) in which the experimental data
showed large amounts water-table wave dispersion that their
models were unable to predict.

Fig. 5 Model-data comparison of the water-table wave number
components for T = 908.6 s. Circles show the poro-elastic model results
for different values of Young’s modulus (E) for ν = 0.25 (open circle) and
ν = 0.40 (closed circle). The plus sign (+) denotes the non-hysteretic
Richards’ model with α = 1.7 m−1 and β = 9; the cross sign (×) shows
the hysteretic Richards’s model with αw = 3.4 m−1, αd = 1.7 m−1 and
β = 9; the asterisk (∗) denotes the laboratory data of Shoushtari et al.
(2016)

Table 5 Summary of water-table wave number components

Model ν (‐) E (MPa) kr(‐) ki(‐) krd (m) kid (m)

T = 16.4s, nωd/Ksat = 243.63

Poro-elastic model 0.25 10 1.337 0.423 1.248 0.395

28 1.301 0.290 1.215 0.195

35 1.296 0.183 1.210 0.170

69 1.300 0.132 1.214 0.123

0.40 10 1.312 0.249 1.225 0.232

28 1.297 0.144 1.212 0.134

35 1.296 0.130 1.210 0.121

69 1.296 0.106 1.210 0.099

Non-hysteretic, rigid media Richards’ model (α = 1.7 m− 1, β = 9) – – 1.232 0.108 1.151 0.101

Hysteretic, rigid media Richards’ model (αw = 3.4 m− 1, αd = 1.7 m
− 1, β = 9) – – 1.527 0.171 1.426 0.160

Laboratory data – – 1.604 0.804 1.499 0.751

T = 908.6s, nωd/Ksat = 3.97

Poro-elastic model 0.25 10 1.077 0.296 0.908 0.250

28 1.100 0.326 0.927 0.275

35 1.102 0.328 0.929 0.276

69 1.095 0.315 0.923 0.266

0.40 10 1.086 0.312 0.915 0.263

28 1.094 0.315 0.922 0.265

35 1.084 0.298 0.914 0.251

69 1.086 0.307 0.916 0.259

Non-hysteretic, rigid media Richards’ model (α = 1.7 m− 1, β = 9) – – 1.032 0.274 0.870 0.231

Hysteretic, rigid media Richards’ model (αw = 3.4 m− 1, αd = 1.7 m
− 1, β = 9) – – 0.464 0.266 0.391 0.224

Laboratory data – – 0.558 0.350 0.471 0.295
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The present study used a numerical model to solve Biot’s
poro-elastic equation coupled to Richards’ saturated-
unsaturated flow equation to examine the influence of porous
media deformation on the water-table wave dispersion which
was quantified using the complex water-table wave number.

The poro-elastic model results were found to be generally
insensitive to theYoung’smodulus (E) and Poisson’s ratio (ν) of
the sand with maximum displacements generally less than
1 mm with the exception of the E = 10 MPa results, which
indicate maximum displacements >2 mm. This is likely due to
the fact that the experimental water-table fluctuations are not
energetic enough to induce a significant deformation response.

A sensitivity analysis shows that the only model result
which was sensitive to these parameters was the imaginary part
of the water-table wave number (kid) for the short period oscil-
lation (T = 16.4 s). In this case, there was a 76 % change over
the range of acceptable values for E and ν. Correspondingly,
the real part of the water-table wave number (krd) only changed
about 4 % for the short period and for the long period
(T = 908.6 s), krd and kid varied by only 2 and 9% respectively.

The poro-elastic model results were compared with both the
laboratory data and rigid medium model results of Shoushtari
et al. (2016). For the short period (T = 16.4 s), the difference in
predicted krd between the poro-elastic and rigid medium model
results was negligible; however, both model predictions were
almost 20% less than the laboratory data. Decreasing the values
of E and ν in the poro-elastic model resulted in some small im-
provement in the prediction of kid compared to the rigid media
results although itwas still 47% less than the laboratory data. For
the long period (T = 908.6 s), the results of poro-elastic and rigid
mediamodelswerealmost thesame forbothkrdandkidwithboth
modelsover-predictingkrdby94%relativeto the laboratorydata.

Whilst the poro-elastic model was unable to reproduce the
experimental results, the model results suggest that, if porous
media deformation was to become more significant under
more energetic fluctuations, the influence of the deformation
on water-table wave dispersion is likely to be more significant
at shorter oscillation periods than longer ones.
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